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A TREK RULE FOR THE LYAPUNOV EQUATION

NIELS RICHARD HANSEN

The Lyapunov equation is a linear matrix equation characterizing the cross-sectional steady-state covari-
ance matrix of a Gaussian Markov process. We show a new version of the trek rule for this equation,
which links the graphical structure of the drift of the process to the entries of the steady-state covariance
matrix. In general, the trek rule is a power series expansion of the covariance matrix in the entries of the
drift and volatility matrices. For acyclic models it simplifies to a polynomial in the off-diagonal entries
of the drift matrix. Using the trek rule we can give relatively explicit formulas for the entries of the
covariance matrix for some special cases of the drift matrix. These results illustrate notable differences
between covariance models resulting from the Lyapunov equation and those resulting from linear additive
noise models. To further explore differences and similarities between these two model classes, we use the
trek rule to derive a new lower bound on the marginal variances in the acyclic case. This sheds light on
the phenomenon, well known for the linear additive noise model, that the variances in the acyclic case
tend to increase along a topological ordering of the variables.

1. Introduction

With M any d × d matrix and C a d × d positive semidefinite matrix, we can define a Gaussian Markov
process (X t)t≥0 on Rd as a solution to the stochastic differential equation

dX t = M X t dt +C1/2 dWt , (1)

where Wt is a d-dimensional Brownian motion; see, e.g., [7] or Section 3.7 in [11]. We call M the drift
matrix and C is called the diffusion matrix or the volatility matrix.

The Markov process has a steady-state distribution if and only if the matrix M is stable, that is, if and
only if all eigenvalues of M have strictly negative real parts. In this case, the steady-state distribution
is Gaussian with mean 0 and covariance matrix 6, which is the unique solution to the (continuous)
Lyapunov equation

M6+6MT
+C = 0; (2)

see, e.g., [7, Theorem 2.12].
When the process is stationary, that is, when it is started in its (unique) Gaussian steady-state distribution

N (0, 6), with 6 solving (2), the cross-sectional distribution of X t is N (0, 6) at any time t . Questions
regarding estimation and identification of M and/or C from cross-sectional observations of the process
were treated in [2; 16].

MSC2020: 15A24, 62A09, 62R01.
Keywords: Gaussian Markov processes, graphical models, Lyapunov equation, treks.

© 2025 MSP (Mathematical Sciences Publishers).

http://msp.org/astat/
http://msp.org/astat/
https://doi.org/10.2140/astat.2025.16-2
http://msp.org


96 NIELS RICHARD HANSEN

The main contribution of this paper is Theorem 2.5, which gives a novel representation of 6 in terms
of the drift and volatility matrices M and C . The nonzero entries of M and C define a mixed graph, see
Section 1.2, which is used in Section 2 to define a collection of treks between any two nodes. These are
special walks in the graph, and we give two versions of the trek rule in Proposition 2.3 and Theorem 2.5,
respectively, that express the entries of the solution 6 to (2) as a sum of trek weights over all treks.

Trek rules are well known for linear additive noise models, also known as linear structural equation
models; see [15] and Section 4 in [3]. A first version of the trek rule for the Lyapunov equation was
presented by [16], but our new version in Theorem 2.5 is more explicit and easier to use and interpret.
A special case of our general trek rule, valid for certain acyclic models, was recently presented as
Proposition 4.3 in [1], where it was used to characterize the conditional independencies that hold in the
steady-state distribution. We treat the acyclic case in detail in Section 3, where we use the trek rule to
derive a novel lower bound on the marginal variances.

1.1. The Lyapunov equation. The Lyapunov equation (2) is a linear matrix equation. Using the Kronecker
product, we can rewrite it as

(M ⊗ I + I ⊗M) vec(6)=− vec(C), (3)

where I is the d × d identity matrix and vec(A) denotes the vectorization of the matrix A. When M is
stable, the d2

× d2 matrix (M ⊗ I + I ⊗M) is invertible, and the unique solution to (3) is given by

vec(6)=−(M ⊗ I + I ⊗M)−1 vec(C). (4)

The representation (4) shows that 6i j is a rational function of the entries of M and C , but (4) is not
very explicit, nor is it efficient for numerical computation of the solution. There is a vast literature on
numerical methods for solving the Lyapunov equation efficiently; see, e.g., [13] for a review. See also [6]
for a comprehensive treatment of the Lyapunov equation and its applications.

We will not be particularly concerned with numerical methods but rather with giving a new representa-
tion of the solution that is interpretable in terms of the graphical structure of the drift matrix M. To this
end, we will use the well-known integral representation of the solution given by

6 =

∫
∞

0
et MCet MT

dt. (5)

Here, et M denotes the matrix exponential of t M, and the integral is understood as a matrix integral. It is
convergent when M is stable. See [7; 16] for further details on the integral representation of the solution.

1.2. Graphs. We will represent the nonzero entries of the drift matrix M and the volatility matrix C
by a mixed graph G with nodes [d] = {1, . . . , d}, directed edges, →, and blunt edges, −−. The blunt
edges, introduced in [9; 16], will be used to represent the covariance structure of the noise process. In the
literature on linear additive noise models, bidirected edges, rather than blunt edges, are conventionally
used to represent the covariance structure of the noise. The primary reason for using a different notation
is that a bidirected edge is also used to represent a common latent factor, and in the context of stochastic
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Figure 1. Mixed graph (a) representing a model with d = 5 variables and with a diagonal
C-matrix. The edge labels of the directed (blue) edges are the values of the nonzero entries in the
M-matrix, while all the blunt (light red) edges correspond to the diagonal entries of C all being 1.
The mixed graph (b) is the same as (a) but with all directed self-loops removed. We call (b) the
base graph of (a).

processes, a latent factor cannot in general be captured by a correlated noise process. See [9] for further
details.

Definition 1.1. A pair of matrices (M, C) is compatible with a mixed graph G if m j i ̸= 0 implies i→ j
and ci j ̸= 0 implies i −−j .

Example 1.2. We consider the specific model with d = 5 and, using · to denote zero entries,

M =


−1 0.5 · 0.2 ·

−1 −1 0.2 · ·

· · −1 0.5 ·

· · · −1 1
· · 1 · −1

 and C =


1 · · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1

 .

This pair (M, C) is compatible with the graph G = ([5], E) as given in Figure 1(a). The eigenvalues
of M are

−0.206, −1± 0.707i, and − 1.397± 0.687i,

with all real parts strictly negative, and M is thus stable. Solving the Lyapunov equation gives the
steady-state covariance matrix (rounded to three decimals)

6 =


0.496 −0.091 0.123 0.207 0.151
−0.091 0.594 0.013 −0.038 −0.005

0.123 0.013 0.838 0.676 0.647
0.207 −0.038 0.676 1.412 0.912
0.151 −0.005 0.647 0.912 1.147

 .

We use standard graph terminology; see, e.g., [8]. Specifically we let a walk be a sequence of (not
necessarily unique) nodes where each node is connected to the next by an edge. A walk from i to j is
directed if all edges are directed toward j . For example, in Figure 1(a), the walk 1← 4−−4→ 3→ 5→ 4
is a walk from 1 to 4, and 3→ 5→ 5→ 4→ 1 is a directed walk from 3 to 1.
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We will by convention assume that a mixed graph includes all directed self-loops unless otherwise
stated. It will, however, also be convenient to have a version of the graph with all directed self-loops
removed, which we call the base graph.

Definition 1.3. The base graph G0 of a mixed graph G is obtained from G by removing all directed
self-loops.

In Figure 1(b) we have the base graph of the mixed graph (a). A walk in the base graph is called a
base walk. The walk 3→ 5→ 5→ 4→ 1 in Figure 1(a) is not a base walk due to the self-loop 5→ 5,
while 1← 4−−4→ 3→ 5→ 4 is a base walk.

1.3. Linear additive noise models. It is instructive to compare and contrast our results for the Lyapunov
equation with the well-known results for linear additive noise models. In the linear additive noise model,
the random variable X ∈ Rd is given as a solution to the equation

X = B X + ε, (6)

where B is a d × d matrix with Bi i = 0 and ε has mean zero and covariance matrix �. Consequently, the
covariance matrix, 6, of X solves the equation

(I − B)6(I − B)T
=�. (7)

When I − B is invertible, the solution is unique and given by 6 = (I − B)−1�(I − B)−T. Similarly to
the Lyapunov equation, the matrix equation (7) is linear, and its solution yields a parametrization of the
covariance matrix in terms of the entries of B and �. Zero-constraints on the entries of B and � can,
moreover, be represented by a mixed graph according to Definition 1.1, just as for the Lyapunov equation.
The covariance models resulting from the two equations are, however, quite different, though they also
share some structural similarities.

2. Treks and trek rules

The trek rule for the solution of (7) is a well-known power series representation of the entries 6i j in the
covariance matrix in terms of the entries of B and �. We derive in this section a corresponding trek rule
for the solution of the Lyapunov equation (2). To this end, we need to define treks in a mixed graph.

Definition 2.1. A trek τ in a mixed graph G is a walk of the form

τ : i← · · · ← i1︸ ︷︷ ︸
n(τ )

← i0 −−j0→ j1→ · · · → j︸ ︷︷ ︸
m(τ )

. (8)

Here n(τ ) and m(τ ) denote the number of nodes to the left of i0 and to the right of j0, respectively. Let
l(τ )= n(τ )+m(τ ).

The trek given by (8) is said to be a trek from i to j . The pair (i0, j0) is the top of the trek, and if j0= i0

we refer to i0 as the top. The nodes i0, . . . , i and j0, . . . , j are the left-hand and right-hand sides of the
trek, respectively. The top nodes are connected by a blunt edge, possibly a blunt self-loop, while all other
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edges are directed. The left-hand side of the trek forms a directed walk from i0 to i with n(τ )+ 1 nodes,
and the right-hand side forms a directed walk from j0 to j with m(τ )+ 1 nodes. It is possible for a trek
to have n(τ )=m(τ )= 0, in which case the trek is just i0 −−j0, which is possibly a blunt self-loop i0 −−i0.

Definition 2.2. Let (M, C) be compatible with a mixed graph G and let τ be a trek in G with top (i0, j0).
The weight of the trek τ is the product of the edge weights along the trek, that is,

ω(M, C, τ )= ci0, j0

∏
k→l∈τ

mlk .

The walk 1← 4−−4→ 3→ 5→ 4 in Figure 1(a) is an example of a trek τ from 1 to 4 with top 4 and
with weight ω(M, C, τ )= 0.2 · 1 · 0.5 · 1 · 1= 0.1.

With the definitions above, suppose that (B, �) is compatible with a mixed graph G and that B has
spectral radius less than 1. Then the trek rule for the linear additive noise model, with 6 the solution
of (7), is

6i j =
∑

τ∈T (i, j)

ω(B, �, τ),

where T (i, j) denotes the set of all treks from i to j in G. See, for example, Theorem 4.2 in [3] or
Proposition 14.2.13 in [14]. The proof is a simple application of the Neumann series expansion of (I−B)−1.

For the Lyapunov equation, the following variant of a trek rule was obtained as Proposition 2.2 in [16].
Suppose that (M, C) is compatible with the mixed graph G, and M is stable and C is positive semidefinite.
For any trek τ in G we introduce the monomial

κ(s, τ )=
sl(τ )+1

((l(τ )+ 1)n(τ )!m(τ )!)

in the auxiliary variable s ∈ R, and the solution of the Lyapunov equation (2) is then given by

6i j = lim
s→∞

∑
τ∈T (i, j)

κ(s, τ )ω(M, C, τ ). (9)

The series appearing in (9) is an infinite sum over all treks from i to j of the trek weights multiplied
by the factors κ(s, τ ) (not depending on M and C). Besides these factors, the series is similar to the
classical trek rule. However, to obtain 6i j , we have to take the limit s→∞ of the resulting sum. This
makes the representation (9) somewhat clumsy and difficult to use and interpret.

The new trek rule that we give below essentially interchanges the summation and limit operation by a
translation of M by the identity matrix I (and by possibly rescaling M). Throughout we will let

3= M + I. (10)

Since the Lyapunov equation is invariant to rescaling, we can without loss of generality assume that 3

has spectral radius strictly smaller than 1 when M is stable. If not, we can always rescale M and C to
ensure this without changing 6.
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Proposition 2.3. Let (M, C) be compatible with a mixed graph G, and let M be stable and C be positive
semidefinite. When 3= M + I has spectral radius strictly smaller than 1, the solution of the Lyapunov
equation (2) is given by

6i j =
∑

τ∈T (i, j)

2−l(τ )−1
( l(τ )

n(τ )

)
ω(3, C, τ ), (11)

where T (i, j) denotes the set of all treks from i to j in G. The convergence of the series (11) is absolute.

Proof. Using the series expansion of the exponential function we have

6 =

∫
∞

0
et MCet MT

dt =
∫
∞

0
e−2t et3Cet3T

dt =
∫
∞

0

∞∑
n=0

∞∑
m=0

e−2t tntm

n!m!
3nC(3m)T dt. (12)

With ∥ ·∥ denoting any matrix norm, the assumption that the spectral radius of 3 is strictly smaller than 1,
combined with the spectral radius formula, implies the existence of constants K > 0 and r ∈ [0, 1) such that

∥3n
∥ ≤ Krn.

This bound implies absolute convergence of (12), which justifies interchanging the summation and
integration. Thus,

6 =

∞∑
n=0

∞∑
m=0

3nC(3m)T 1
n!m!

∫
∞

0
tn+me−2t dt

=

∞∑
n=0

∞∑
m=0

3nC(3m)T 2−n−m−10(n+m+ 1)

n!m!

=

∞∑
n=0

∞∑
m=0

3nC(3m)T 2−n−m−1
(n+m

n

)
.

Since G, by convention, includes all directed self-loops, (3, C) is also compatible with G. Now note that

(3nC(3m)T )i j

is precisely the sum over all trek weights, ω(3, C, τ ), for treks τ from i to j with n+ 1 nodes on the
left-hand side and m+ 1 nodes on the right-hand side. By the arguments above, the series representation
of 6 is absolutely convergent and the summation order does not matter. Therefore, the i j-th entry of
6 can be written as the trek representation (11). □

The trek weights are monomials in the M and C entries, and (11) provides a (generally infinite) power
series representation of the covariances in terms of these entries. Some factors in the monomials are the
diagonal entries 3i i = mi i + 1, while the remaining factors are off-diagonal entries of 3 (that coincide
with off-diagonal entries of M) and entries of C . It is possible, as we will show, to derive a trek rule
where the contributions from the diagonal entries are separated from the off-diagonal entries.

Recall that the mixed graph G is assumed to include all directed self-loops, while the base graph G0 is
obtained by removing the directed self-loops. A base trek is then a trek in the base graph G0, and it is a trek
without any self-loops. Any trek in G can be regarded as a base trek combined with a total of α1, . . . , αd ≥0
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self-loops on the left-hand side and β1, . . . , βd ≥ 0 self-loops on the right-hand side. Here αi and βi denote
the total number of self-loops for node i present on the trek on the left- and right-hand sides, respectively.

To elaborate on the definition of the self-loop counts αi and βi , consider the example trek

1← 1← 2← 2← 2← 1−−1→ 1→ 2→ 1→ 1

with nodes {1, 2}. The corresponding base trek is 1← 2← 1−−1→ 2→ 1, and the trek includes one
self-loop at node 1 and two self-loops at node 2 on the left-hand side and two self-loops at node 1 on the
right-hand side, whence α1 = 1, α2 = 2, β1 = 2, and β2 = 0.

The base trek and self-loop counts do not uniquely determine a trek, but there are some constraints.
If node i is not present on the left-hand side of the base trek, then αi = 0. If node i is present once on the
left-hand side of the base trek, then αi is exactly the number of self-loops at that position. In the example
above, node 2 is present once on the left-hand side of the base trek, and α2 = 2 gives the number of self-
loops of node 2 at that position. If node i is present more than once on the left-hand side of the base trek,
then the total number of self-loops αi can be partitioned in several ways among the different positions of
node i , and similiarly for βi on the right-hand side. This situation can only occur when the graph contains
directed cycles beyond self-loops. In the example above, node 1 is present twice on the right-hand side of
the base trek and β1 = 2 can be partitioned in three different ways among the two occurrences of node 1.

For a base trek τ ∈ G0 and multiindices α, β ∈ Nd
0 we define ρ(τ, α, β) as the number of ways the α

and β self-loops can be partitioned among the nodes of the base trek. If the base trek τ does not contain
repeated nodes in its left- or right-hand sides, ρ(τ, α, β) ∈ {0, 1}, but when τ contains repeated nodes, it
is possible that ρ(τ, α, β) > 1. Define also

α• =

d∑
i=1

αi

and similarly for β.

Definition 2.4. For λ1, . . . , λd ∈ (−1, 1) and a base trek τ define

D(λ1, . . . , λd , τ )=
∑

α,β∈Nd
0

ρ(τ, α, β)
( l(τ )+α•+β•

n(τ )+α•

) d∏
i=1

(
λi

2

)αi+βi

. (13)

It may not be obvious that the series in (13) converges. Its absolute convergence does, however,
follow from Theorem 2.5 below by taking C = I and letting mi i ∈ [−1, 0) and mi j = ε for i ̸= j for a
small ε > 0. Then M + I has spectral radius strictly smaller than 1 by Perron–Frobenius theory, and
D(m11+1, . . . , mdd +1, τ ) <∞ for all base treks τ in the complete graph since (15) below is finite and
all terms in that sum are positive.

Theorem 2.5. Let (M, C) be compatible with a mixed graph G, and let M be stable and C be positive
semidefinite. If 3= M + I has spectral radius strictly smaller than 1 and 3i i = mi i + 1 ∈ (−1, 1), then

6i j =
∑

τ∈T0(i, j)

2−l(τ )−1 D(311, . . . , 3dd , τ )ω(3, C, τ ) (14)

=

∑
τ∈T0(i, j)

2−l(τ )−1 D(m11+ 1, . . . , mdd + 1, τ )ω(M, C, τ ), (15)
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where T0(i, j) denotes the set of all treks from i to j in the base graph G0 of G. In the special case where
mi i =−1 for all i , then

6i j =
∑

τ∈T0(i, j)

2−l(τ )−1
( l(τ )

n(τ )

)
ω(M, C, τ ). (16)

Proof. Since the convergence of the series (11) is absolute, we can reorder the terms. The formula (14)
follows by splitting the sum (11) into an outer sum over the base treks and an inner sum over self-loops.
Specifically,

6i j =
∑

τ∈T (i, j)

2−l(τ )−1
( l(τ )

n(τ )

)
ω(3, C, τ )

=

∑
τ∈T0(i, j)

∑
α,β∈Nd

0

ρ(τ, α, β)2−l(τ )−α•−β•−1
( l(τ )+α•+β•

n(τ )+α•

) d∏
i=1

3
αi+βi
i i ω(3, C, τ )

=

∑
τ∈T0(i, j)

2−l(τ )−1
( ∑

α,β∈Nd
0

ρ(τ, α, β)
( l(τ )+α•+β•

n(τ )+α•

) d∏
i=1

(
3i i

2

)αi+βi
)

ω(3, C, τ )

=

∑
τ∈T0(i, j)

2−l(τ )−1 D(311, . . . , 3dd , τ )ω(3, C, τ ).

Moreover, (15) follows by the definition of 3i i = mi i + 1 and by noting that ω(3, C, τ )= ω(M, C, τ )

for any base trek τ . Finally, if mi i =−1 then 3i i = mi i + 1= 0 for i = 1, . . . , d, and since

D(0, . . . , 0, τ )=
( l(τ )

n(τ )

)
for all base treks τ , (16) follows from (15). □

Note that for a base trek, the monomial ω(M, C, τ ) does not depend on the diagonal elements of M,
and (15) provides a certain disentanglement of how the total covariance depends on the self-loop entries
and the other edge entries.

Example 2.6. To illustrate the trek rule, we revisit Example 1.2, specifically the entry 613 = 0.123. Note
that mi i =−1 for all i . Table 1 lists all 12 base treks from 1 to 3 in the base graph in Figure 1(b) with
l(τ )≤ 5 together with their corresponding trek weights and term values contributing to 613 in the sum (16).

We see from Table 1 that ∑
τ∈T0(1,3):l(τ )≤5

2−l(τ )−1
( l(τ )

n(τ )

)
ω(M, C, τ )= 0.07890625,

which is still a bit from the limit value 613 = 0.123. Proceeding up to l(τ ) = 10 gives 74 base treks,
and the sum of the corresponding terms is 0.10992737, while the sum of the 515 terms with l(τ )≤ 20 is
0.12127330, which is accurate up to the second decimal. The purpose of this example is not to claim that
the trek rule is useful for computing the solution of the Lyapunov equation in the general case. On the
contrary, there is quite a lot of bookkeeping involved in computing the treks and the corresponding terms
in the sum, and you may need a fairly large number of terms to get an accurate finite sum approximation.



A TREK RULE FOR THE LYAPUNOV EQUATION 103

trek ω ω factorization l n 2−l−1
( l

n

)
·ω term value

1← 4−−4→ 3 0.1 0.2 · 0.5 2 1 2−3
·
(2

1

)
· 0.1 0.02500000

1← 2← 3−−3 0.1 0.5 · 0.2 2 2 2−3
·
(2

2

)
· 0.1 0.01250000

1← 4← 5← 3−−3 0.2 0.2 · 1 · 1 3 3 2−4
·
(3

3

)
· 0.2 0.01250000

1← 2← 1← 2← 3−−3 −0.05 0.5 · (−1) · 0.5 · 0.2 4 4 2−5
·
(4

4

)
· (−0.05) −0.00156250

1← 2← 1← 4−−4→ 3 −0.05 0.5 · (−1) · 0.2 · 0.5 4 3 2−5
·
(4

3

)
· (−0.05) −0.00625000

1← 2← 3← 4−−4→ 3 0.025 0.5 · 0.2 · 0.5 · 0.5 4 3 2−5
·
(4

3

)
· 0.025 0.00312500

1← 4← 5−−5→ 4→ 3 0.1 0.2 · 1 · 1 · 0.5 4 2 2−5
·
(4

2

)
· 0.1 0.01875000

1← 2← 3← 4← 5← 3−−3 0.05 0.5 · 0.2 · 1 · 1 · 0.5 5 5 2−6
·
(5

5

)
· 0.05 0.00078125

1← 2← 1← 4← 5← 3−−3 −0.1 0.5 · (−1) · 0.2 · 1 · 1 5 5 2−6
·
(5

5

)
· (−0.1) −0.00156250

1← 4← 5← 3← 4−−4→ 3 0.05 0.2 · 1 · 1 · 0.5 · 0.5 5 4 2−6
·
(5

4

)
· 0.05 0.00390625

1← 2← 3−−3→ 5→ 4→ 3 0.05 0.5 · 0.2 · 1 · 1 · 0.5 5 2 2−6
·
(5

2

)
· 0.05 0.00781250

1← 4−−4→ 3→ 5→ 4→ 3 0.05 0.2 · 0.5 · 1 · 1 · 0.5 5 1 2−6
·
(5

1

)
· 0.05 0.00390625

Total 0.07890625

Table 1. Base treks τ with l = l(τ ) ≤ 5 in Figure 1(b) and their corresponding weights ω =

ω(M, C, τ ) and term values 2−l−1
( l

n

)
·ω in the sum (16).

The purpose of the example is rather to illustrate how the trek rule breaks down the total covariance into
contributions from the individual treks, with each term being a monomial in the edge entries.

3. Acyclic models

If the directed part of the base graph G0 is acyclic, and thus a DAG, we say that the model given by M
and C is acyclic. Choosing any topological order of the nodes will make the M-matrix lower triangular.
We assume throughout this section that the model is acyclic and that the nodes 1, . . . , d are ordered in a
topological order such that M is lower triangular, that is,

M =


m11 · · · · · ·

m21 m22 · · · · ·

m31 m32 m33 · · · ·
...

...
...

. . .
...

md1 md2 md3 · · · mdd

 .

The diagonal entries of M are then the eigenvalues, and M is stable if and only mi i < 0 for all i . By
rescaling, we can assume that mi i ∈ [−1, 0) for all i so that 3i i = mi i + 1 ∈ [0, 1), in which case 3 also
has spectral radius strictly less than 1.

3.1. Simplifying the trek rule for acyclic models. For an acyclic model any base trek has no nodes
repeated on either side (though the same node can be present once on the left- and once on the right-hand
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(a)

(b)

1 2 3 · · · d

m11

m21

m31

md1

m32

md2

m22 m33
md3

mdd

1 2 3 · · · d

−1

ζ ζ

−1 −1 −1

γ γ γ γ

Figure 2. The mixed graph (a) for a general acyclic model with the nodes in a topological order,
and the mixed graph (b) for the specific model in Example 3.1.

side). This means that ρ(τ, α, β) ∈ {0, 1}, and if we define

N (τ )= {(α, β) ∈ Nd
0 ×Nd

0 | ρ(τ, α, β)= 1}

then

D(m11+ 1, . . . , mdd + 1, τ )=
∑

(α,β)∈N (τ )

( l(τ )+α•+β•
n(τ )+α•

) d∏
i=1

(
mi i + 1

2

)αi+βi

. (17)

The expression (17) does not appear to simplify further in general. However, if all the diagonal entries of
M are equal, in which case we can assume them all equal to −1 by rescaling, the trek rule simplifies
to (16). This special case is effectively the same as Proposition 4.3 in [1], which was obtained directly by
an induction argument.

For any acyclic model, the directed part of G0 forms a DAG, and there are no loops but self-loops in G.
The number of base treks from i to j is thus finite, and (15) gives a finite sum representation of 6i j . That
is, the representation (15) is a polynomial in the off-diagonal entries of M and the entries of C .

Example 3.1 (path model). Suppose mi i =−1, m(i+1)i = ζ ∈ R and ci i = γ ≥ 0. All other entries are 0.
That is,

M =



−1 · · · · · · ·

ζ −1 · · · · · ·

· ζ −1 · · · · ·
...

...
...

. . .
...

...
· · · · · · −1 ·

· · · · · · ζ −1

 and C =



γ · · · · · · ·

· γ · · · · · ·

· · γ · · · · ·
...

...
...

. . .
...

...
· · · · · · γ ·

· · · · · · · γ

 .

The mixed graph for this model is shown in Figure 2(b). We have 3(i+1)i = ζ and all other entries of 3

are 0. The only base treks from i to j have top i0 ≤min{i, j} and are of the form

τ : i← i − 1← · · · i0+ 1← i0 −−i0→ i0+ 1→ · · · → j − 1→ j,
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for which n(τ )= i − i0, m(τ )= j − i0, l(τ )= i + j − 2i0. This shows that

6i j =

min{i, j}∑
i0=1

22i0−i− j−1
( i+ j−2i0

i−i0

)
ζ i+ j−2i0γ =

γ

2

(
ζ

2

)i+ j min{i, j}∑
i0=1

(
4
ζ 2

)i0( i+ j−2i0
i−i0

)
. (18)

We see that 6i1 =61i = γ /2(ζ/2)i−1, and by induction the following recursion holds for i, j > 1:

6i j =
ζ

2
6i−1, j +

ζ

2
6i, j−1+

γ

2
δi j , (19)

where δi j is the Kronecker delta.
If we take ζ = γ = 2, we get the simple expression

6i j =

min{i, j}∑
i0=1

( i+ j−2i0
i−i0

)
, (20)

involving only a sum of binomial coefficients. Then 6i1 =61i = 1, the recursion is

6i j =6i−1, j +6i, j−1+ δi j ,

and the corresponding covariance matrix becomes

6 =



1 1 1 1 1 · · ·
1 3 4 5 6 · · ·
1 4 9 14 20 · · ·
1 5 14 29 49 · · ·
1 6 20 49 99 · · ·
...

...
...

...
...

. . .


, (21)

with the antidiagonal elements being similar to Pascal’s triangle except that an extra 1 is added to the
diagonal. This is OEIS A013580.

Example 3.2 (factor model). Another simple acyclic model is the factor model with m11 =−1, mi i ∈

[−1, 0) for i = 2, . . . , d , C diagonal, and the only possible off-diagonal nonzero entries of M being mi1

for i = 2, . . . , d. That is,

M =


−1 · · · · · ·

m21 m22 · · · · ·

m31 · m33 · · · ·
...

...
...

. . .
...

md1 · · · · · mdd

 and C =


c11 · · · · · ·

· c22 · · · · ·

· · c33 · · · ·
...

...
...

. . .
...

· · · · · · cdd

 .

The mixed graph for this model is shown in Figure 3. The only base treks are of the form i −−i and
i← 1−−1→ j for i, j > 1. Using (15) we get for i, j > 1 that

6i j =

{
d0

i ci i + di i m2
i1c11 if i = j,

di j mi1m j1c11 if i ̸= j,
(22)

https://oeis.org/A013580
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1

2 3 4 · · · d

−1

m22 m33 m33 mdd

m21

m31
m31

md1
c11

c22 c33 c44 cdd

Figure 3. The mixed graph for the factor model in Example 3.2.

where
d0

i = 2−1 D(0, m22+ 1, . . . , mdd + 1, i −−i),

di j = 2−3 D(0, m22+ 1, . . . , mdd + 1, i← 1−−1→ j).

A somewhat tedious computation, similar to the one given in the proof of Proposition 3.3, shows that
d0

i =−1/(2mi i ) and

di j =
1
2

mi i +m j j − 2
(1−mi i )(1−m j j )(mi i +m j j )

> 0. (23)

Another way to write the off-diagonal entries is

6i j =

(
1
2
−

1
mi i +m j j

)
mi1

1−mi i

m j1

1−m j j
c11, i, j > 1, i ̸= j, (24)

which reveals that the model does not generally have the same low-rank structure as the classical one-
factor model based on linear additive noise. Indeed, the tetrad 6i j6kl −6il6k j is nonzero unless (mi i +

m j j )(mkk+mll)= (mi i +mll)(m j j +mkk); see [4; 5] for further details on algebraic invariants for factor
models. It is an open problem to characterize invariants for factor models based on the Lyapunov equation.

3.2. A lower bound on the marginal variance. Consider an acyclic linear additive noise model with the
nodes in a topological order such that

B =


0 · · · · · ·

β21 0 · · · · ·

β31 β32 0 · · · ·
...

...
...

. . .
...

βd1 βd2 βd3 · · · 0

=
(

B11 0
Bd1 0

)
,

where B11 is the (d − 1)× (d − 1) upper left block of B and Bd1 = (βd1, . . . , βd(d−1)) consists of the
d − 1 first entries of the last row of B. It then follows directly from (6) that for this linear additive noise
model,

Xd =

d−1∑
i=1

Bdi X i + εd = Bd1(X1, . . . , Xd−1)
T
+ εd .
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Hence, since εd is independent of (X1, . . . , Xd−1)
T and �dd = Var(εd), the marginal variance of Xd is

6dd =�dd + Bd1611(Bd1)
T , (25)

where 611 is the covariance matrix of (X1, . . . , Xd−1)
T.

The marginal variance of the last node d is by (25) decomposed into the variance of the residual error εd

and the variance propagated forward from all parents of d. As these parents have variances that again
decompose into residual error variances and the variances propagated from their parents, the marginal vari-
ances 6i i tend to increase along the topological order of the nodes. The paper [12] introduced varsortability
as a measure that captures this phenomenon, and the authors demonstrated that commonly used simulation
models typically have marginal variances that increase along the topological order. In this case, the
topological order can be identified from the order of the marginal variances. See also [10] for related ideas.

In this section we explore if a similar phenomenon holds for the solution of the Lyapunov equation in
the acyclic case, and we will, in particular, investigate if the variance 6dd has a decomposition similar
to (25). Specifically, we derive a lower bound on 6dd in terms of the other (co)variances, which is similar
to the identity (25). To state the result, we write the matrices M and 6 in block form as

M =
(

M11 0
Md1 mdd

)
and 6 =

(
611 61d

6d1 6dd

)
,

where M11 is a (d−1)× (d−1) matrix, and Md1 is a (d−1)-dimensional row vector, and similarly for 6.

Proposition 3.3. Let M be a lower triangular matrix with mi i ∈ [−1, 0) and mi j ≥ 0 for j < i , and let C
be a diagonal positive semidefinite matrix. With 6 the solution of the Lyapunov equation, the following
lower bound holds for the marginal variance of node d:

6dd ≥−
cdd

2mdd
+

1
2

Md1611(Md1)
T . (26)

The proof is given in Section 3.3. Note that (26) does not hold generally if the off-diagonal entries mi j

are allowed to be negative.

Example 3.4. To illuminate what the lower bound in Proposition 3.3 says, and to illustrate the phenomenon
that marginal variances tend to increase along the topological order, we reconsider the simple acyclic
model from Example 3.1 with ζ = γ = 1. Then

6i j = 2−i− j−1
min{i, j}∑

i0=1

4i0
( i+ j−2i0

i−i0

)
. (27)

From (27) it follows directly that, for d ≥ 2,

6dd = 2−2d−1
d∑

i0=1

4i0
(2(d−i0)

d−i0

)
= 2−2(d−1)−1

(2(d−1)

d−1

)
+ 2−2d−1

d∑
i0=2

4i0
(2(d−i0)

d−i0

)
︸ ︷︷ ︸

=6(d−1)(d−1)

> 6(d−1)(d−1), (28)
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6dd

d

Figure 4. The variance 6dd in Example 3.4 given by (28) as a function of d (black) and the lower
bound given by (29) (gray).

which shows that the marginal variance 6dd is strictly increasing as a function of d; see Figure 4. This is
not surprising, since the sink node d accumulates the variances from all other nodes.

To compare 6dd to the lower bound in (26) we first derive a slightly different representation of 6dd .
Using that (n

k

)
=

n(n− 1)

k(n− k)

(n−2
k−1

)
for the second identity below, we get from (28) that, for d ≥ 2,

6dd =
1
2
+ 2−2d−1

d−1∑
i0=1

4i0
(2(d−i0)

d−i0

)

=
1
2
+ 2−2(d−1)−12−2

d−1∑
i0=1

4i0
2(d − i0)(2(d − i0)− 1)

(d − i0)2

(2(d−1−i0)

d−1−i0

)

=
1
2
+ 2−2(d−1)−1

d−1∑
i0=1

4i0

(
1−

1
2(d − i0)

)(2(d−1−i0)

d−1−i0

)
.

The second term above is 6(d−1)(d−1) except from the factors (1− 1/(2(d − i0))) within the sum.
Observe that

1
2
≤

(
1−

1
2(d − i0)

)
< 1,

with the factor being equal to 1
2 for i0 = d − 1. This shows that

1
2
+

1
2
6(d−1)(d−1) ≤6dd <

1
2
+6(d−1)(d−1).

To compute the lower bound in (26), we first note that mdd =−1 and cdd = 1; thus

−
cdd

2mdd
=

1
2
.
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Moreover, Md1 = (0, 0, . . . , 1); thus Md1611(Md1)
T
=6(d−1)(d−1). This shows that the lower bound in

(26) is indeed
6dd ≥

1
2 +

1
26(d−1)(d−1), (29)

as we also found above. The computations in this example show that we cannot in general replace the factor
1
2 in the bound by a larger constant, and certainly not by 1. The lower bound is also shown in Figure 4.

3.3. Proof of Proposition 3.3. Before giving the proof, we will need a few auxiliary results.

Definition 3.5. For a, b ∈ N0 and |z|< 1
2 define

H(a, b, z)=
∑

n,m∈N0

(a+ b+ 1)n+m+2

(a+ 1)n+1(b+ 1)m+1
zn+m . (30)

Here (a)n = a(a+ 1) · · · (a+ n− 1) denotes the rising Pochhammer symbol.

Proposition 3.6. Let τ = d← τ̃ → d be a base trek from d to d. Then

D(λ1, . . . , λd , τ )=
∑

α,β∈N (τ̃ )

H
(

n(τ̃ )+α•, m(τ̃ )+β•,
λd

2

)( l(τ̃ )+α•+β•

n(τ̃ )+α•

) d−1∏
i=1

(
λi

2

)αi+βi

.

Proof. By Definition 2.4 we have

D(λ1, . . . , λd , τ )=
∑

α,β∈N (τ )

( l(τ )+α•+β•
n(τ )+α•

) d∏
i=1

(
λi

2

)αi+βi

=

∑
α,β∈N (τ̃ )

∑
αd ,βd∈N0

( l(τ̃ )+α•+β•+αd+βd+2
n(τ̃ )+α•+αd+1

) d∏
i=1

(
λi

2

)αi+βi

.

Recall that l(τ̃ )= n(τ̃ )+m(τ̃ ), so with a = n(τ̃ )+α• and b=m(τ̃ )+β• we have the following identity
for the binomial coefficient:( l(τ̃ )+α•+β•+αd+βd+2

n(τ̃ )+α•+αd+1

)
=

(a+b+αd+βd+2
a+αd+1

)
=

(a+b+αd+βd+2)!

(a+αd+1)! (b+βd+1)!

=
(a+b+1)αd+βd+2

(a+1)αd+1(b+1)βd+1

(a+b)!

a! b!
=

(a+b+1)αd+βd+2

(a+1)αd+1(b+1)βd+1

( l(τ̃ )+α•+β•
n(τ̃ )+α•

)
.

Plugging this into the sum above and using the definition of H in (30) gives

D(λ1, . . . , λd , τ )=
∑

α,β∈N (τ̃ )

∑
αd ,βd∈N0

(a+ b+ 1)αd+βd+2

(a+ 1)αd+1(b+ 1)βd+1

(
λd

2

)αd+βd ( l(τ̃ )+α•+β•
n(τ̃ )+α•

) d−1∏
i=1

(
λi

2

)αi+βi

=

∑
α,β∈N (τ̃ )

H
(

n(τ̃ )+α•, m(τ̃ )+β•,
λd

2

)( l(τ̃ )+α•+β•
n(τ̃ )+α•

) d−1∏
i=1

(
λi

2

)αi+βi

. □

Lemma 3.7. For a, b ∈ N0 and z ∈
[
0, 1

2

)
we have

H(a, b, z)≥ 2. (31)
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Proof. Note that H(a, b, z)= H(b, a, z), so we may assume that b≥ a. Since z ≥ 0, all terms in the sum
defining H(a, b, z) are nonnegative and we find that

H(a, b, z)=
∑

n,m∈N0

(a+ b+ 1)n+m+2

(a+ 1)n+1(b+ 1)m+1
zn+m

≥
(a+ b+ 1)2

(a+ 1)1(b+ 1)1

=
(a+ b+ 2)(a+ b+ 1)

(a+ 1)(b+ 1)
=

(
1+

b+ 1
a+ 1

)(
1+

a
b+ 1

)
≥ 2. □

Proof of Proposition 3.3. The base treks from d to d are either of the form d −−d or d← τ̃→ d for a base
trek τ̃ from i to j with i, j < d . Since ω(M, C, d−−d)= cdd , we have the following representation of 6dd :

6dd =
cdd

2

∑
αd ,βd∈N0

(
αd+βd

αd

)(
mdd + 1

2

)αd+βd

+

d−1∑
i=1

d−1∑
j=1

∑
τ̃∈T0(i, j)

2−l(τ̃ )−2−1 D(m11+ 1, . . . , mdd + 1, d← τ̃ → d)ω(M, C, d← τ̃ → d)

︸ ︷︷ ︸
=R

.

Using the negative binomial and geometric series, the sum in the first term equals∑
αd ,βd∈N0

(
αd+βd

αd

)(
mdd + 1

2

)αd+βd

=

∑
βd∈N0

(
mdd + 1

2

)βd ∑
αd∈N0

(
αd+βd

αd

)(
mdd + 1

2

)αd

=

∑
βd∈N0

(
mdd + 1

2

)βd
(

1−
mdd + 1

2

)−βd−1

=
2

1−mdd

∑
βd∈N0

(
1+mdd

1−mdd

)βd

=
2

(1−mdd)

1(
1− 1+mdd

1−mdd

) =− 1
mdd

.

For the second term R, we first note that for τ̃ ∈ T0(i, j),

ω(M, C, d← τ̃ → d)= mdi md jω(M, C, τ̃ ).

By Proposition 3.6 and Lemma 3.7 we have

D(m11+ 1, . . . , mdd + 1, d← τ̃ → d)≥ 2
∑

α,β∈N (τ̃ )

( l(τ̃ )+α•+β•
n(τ̃ )+α•

) d−1∏
k=1

(
mkk + 1

2

)αk+βk

= 2D(m11+ 1, . . . , mdd + 1, τ̃ ).

As mi j ≥ 0 for j < i , ω(M, C, τ̃ )≥ 0 for a base trek τ̃ , and using the above inequality within the sum
in the second term R gives

R ≥ 1
2

d−1∑
i=1

d−1∑
j=1

mdi md j

∑
τ̃∈T0(i, j)

2−l(τ̃ )−1 D(m11+ 1, . . . , mdd + 1, τ̃ )ω(M, C, τ̃ )

=
1
2

d−1∑
i=1

d−1∑
j=1

mdi md j6i j =
1
2

Md1611(Md1)
T .
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Combining these results gives

6dd =−
cdd

2mdd
+ R ≥−

cdd

2mdd
+

1
2

Md1611(Md1)
T . □

Remark 3.8. The proof of Proposition 3.3 shows that we can always write

6dd =−
cdd

2mdd
+ R,

which is directly comparable to (25) for the linear additive noise model. The general expression for R is
somewhat complicated, but the proof above shows that it can be lower bounded by a simpler expression
whenever mi j ≥ 0. It is an open question if other assumptions lead to either bounds or simplifications of R.

4. Concluding remarks

Trek rules are useful for linking the entries of the solution to the Lyapunov equation to graphical properties
of the underlying mixed graph. A straightforward observation is that 6i j = 0 if there is no trek from i
to j . The general trek rule as stated in Proposition 2.3 and Theorem 2.5 is, however, more complicated
than the well-known trek rule for the linear additive noise model, and even in the acyclic case it does not
simplify completely to a polynomial representation in general. This is due to the self-loops. For acyclic
models the trek rule in Theorem 2.5 is, nevertheless, a polynomial in the off-diagonal entries of M and
the entries of C .

The trek rule is not generally useful for the numerical computation of the solution to the Lyapunov
equation, but it can be used in special cases to derive either explicit formulas for solutions or to derive
bounds on entries of the solution. We have illustrated this for the acyclic models in Examples 3.2 and 3.4,
where much simpler polynomial trek rules are possible. As an example of a nontrivial application of the
trek rule, we derived the lower bound in Proposition 3.3 on the marginal variance 6dd for a stable acyclic
model with a diagonal C matrix and off-diagonal drift entries being nonnegative.

Acknowledgements

The trek rules in Proposition 2.3 and Theorem 2.5 were discovered while I was visiting Mathias Drton
at the Technical University of Munich in November and December 2021. I am grateful to Mathias for
hosting me. More recently, Alexander Reisach mentioned to me that lower bounds on the variances for
acyclic models would be of interest, and the trek rule seemed well suited for this purpose. I am grateful
to Alexander for this suggestion. I also thank Mathias Drton, Sarah Lumpp and the three anonymous
reviewers for a number of suggestions that improved the manuscript. I was supported by a research grant
(NNF20OC0062897) from Novo Nordisk Fonden.

References

[1] T. Boege, M. Drton, B. Hollering, S. Lumpp, P. Misra, and D. Schkoda, “Conditional independence in stationary distributions
of diffusions”, Stochastic Process. Appl. 184 (2025), art. id. 104604.

https://doi.org/10.1016/j.spa.2025.104604
https://doi.org/10.1016/j.spa.2025.104604


112 NIELS RICHARD HANSEN

[2] P. Dettling, R. Homs, C. Améndola, M. Drton, and N. R. Hansen, “Identifiability in continuous Lyapunov models”, SIAM J.
Matrix Anal. Appl. 44:4 (2023), 1799–1821.

[3] M. Drton, “Algebraic problems in structural equation modeling”, pp. 35–86 in The 50th anniversary of Gröbner bases,
edited by T. Hibi, Adv. Stud. Pure Math. 77, Math. Soc. Japan, Tokyo, 2018.

[4] M. Drton, B. Sturmfels, and S. Sullivant, “Algebraic factor analysis: tetrads, pentads and beyond”, Probab. Theory Related
Fields 138:3-4 (2007), 463–493.

[5] M. Drton, A. Grosdos, I. Portakal, and N. Sturma, “Algebraic sparse factor analysis”, SIAM J. Appl. Algebra Geom. 9:2
(2025), 279–309.

[6] Z. Gajic and M. T. J. Qureshi, Lyapunov matrix equation in system stability and control, Mathematics in Science and
Engineering 195, Academic Press, San Diego, CA, 1995.

[7] M. Jacobsen, “A brief account of the theory of homogeneous Gaussian diffusions in finite dimensions”, pp. 86–94 in
Frontiers in Pure and Applied Probability (Turku, Finland), edited by H. Niemi et al., VSP/TVP, Utrecht, The Nether-
lands/Moscow, Russia, 1993.

[8] M. Maathuis, M. Drton, S. Lauritzen, and M. Wainwright (editors), Handbook of graphical models, CRC Press, Boca
Raton, FL, 2019.

[9] S. W. Mogensen and N. R. Hansen, “Graphical modeling of stochastic processes driven by correlated noise”, Bernoulli 28:4
(2022), 3023–3050.

[10] G. Park, “Identifiability of additive noise models using conditional variances”, J. Mach. Learn. Res. 21 (2020), art. id. 75.

[11] G. A. Pavliotis, Stochastic processes and applications: diffusion processes, the Fokker–Planck and Langevin equations,
Texts in Applied Mathematics 60, Springer, 2014.

[12] A. G. Reisach, C. Seiler, and S. Weichwald, “Beware of the simulated DAG! Causal discovery benchmarks may be easy to
game”, in Advances in neural information processing systems 34, edited by A. Beygelzimer et al., 2021.

[13] V. Simoncini, “Computational methods for linear matrix equations”, SIAM Rev. 58:3 (2016), 377–441.

[14] S. Sullivant, Algebraic statistics, Graduate Studies in Mathematics 194, Amer. Math. Soc., Providence, RI, 2018.

[15] S. Sullivant, K. Talaska, and J. Draisma, “Trek separation for Gaussian graphical models”, Ann. Statist. 38:3 (2010),
1665–1685.

[16] G. Varando and N. Hansen, “Graphical continuous Lyapunov models”, pp. 989–998 in Proceedings of the 36th Conference
on Uncertainty in Artificial Intelligence, edited by J. Peters and D. Sontag, Proceedings of Machine Learning Research 124,
2020.

Received 2024-12-02. Revised 2025-07-02. Accepted 2025-07-17.

NIELS RICHARD HANSEN: niels.r.hansen@math.ku.dk
Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark

mathematical sciences publishers msp

https://doi.org/10.1137/22M1520311
https://doi.org/10.2969/aspm/07710035
https://doi.org/10.1007/s00440-006-0033-2
https://doi.org/10.1137/23M1626517
https://doi.org/10.1515/9783112314203-007
https://doi.org/10.3150/21-bej1446
https://doi.org/10.1007/978-1-4939-1323-7
https://proceedings.neurips.cc/paper_files/paper/2021/hash/e987eff4a7c7b7e580d659feb6f60c1a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/e987eff4a7c7b7e580d659feb6f60c1a-Abstract.html
https://doi.org/10.1137/130912839
https://doi.org/10.1090/gsm/194
https://doi.org/10.1214/09-AOS760
https://proceedings.mlr.press/v124/varando20a.html
mailto:niels.r.hansen@math.ku.dk
http://msp.org


msp.org/astat

MANAGING EDITORS

Thomas Kahle Otto-von-Guericke-Universität Magdeburg, Germany

Sonja Petrovic Illinois Institute of Technology, United States

ADVISORY BOARD

Mathias Drton Technical University of Munich, Germany

Peter McCullagh University of Chicago, United States

Bernd Sturmfels University of California, Berkeley, and Max Planck Institute, Leipzig

Akimichi Takemura University of Tokyo, Japan

Caroline Uhler Massachusetts Institute of Technology, United States

EDITORIAL BOARD

Carlos Améndola Technical University of Berlin, Germany

Marta Casanellas Universitat Politècnica de Catalunya, Spain

Yuguo Chen University of Illinois, Urbana-Champaign, United States

Hisayuki Hara Doshisha University, Japan

Vishesh Karwa Temple University, United States

Jason Morton Pennsylvania State University, United States

Uwe Nagel University of Kentucky, United States

Fabio Rapallo Università del Piemonte Orientale, Italy

Eva Riccomagno Università degli Studi di Genova, Italy

Anna Seigal Harvard University, UUnited States

Ruriko Yoshida Naval Postgraduate School, United States

Piotr Zwiernik Universitat Pompeu Fabra, Barcelona, Spain

PRODUCTION

Silvio Levy (Scientific Editor)
production@msp.org

See inside back cover or msp.org/astat for submission instructions.

The subscription price for 2025 is US $250/year for the electronic version, and $310/year (+$15, if shipping outside the US) for print
and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebraic Statistics (ISSN 2693-3004 electronic, 2693-2997 printed) at Mathematical Sciences Publishers, 2000 Allston Way # 59,
Berkeley, CA 94701-4004, is published continuously online.

AStat peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY
mathematical sciences publishers

nonprofit scientific publishing
http://msp.org/

© 2025 Mathematical Sciences Publishers

https://msp.org/astat/
production@msp.org
http://dx.doi.org/10.2140/astat
http://msp.org/
http://msp.org/


Algebraic Statistics
2025 16 : 2

95A trek rule for the Lyapunov equation
NIELS RICHARD HANSEN

113Activation degree thresholds and expressiveness of polynomial neural networks
BELLA FINKEL, JOSE ISRAEL RODRIGUEZ, CHENXI WU and THOMAS
YAHL

131The Aldous–Hoover theorem in categorical probability
LEIHAO CHEN, TOBIAS FRITZ, TOMÁŠ GONDA, ANDREAS KLINGLER and
ANTONIO LORENZIN

175Direct sampling from conditional distributions by sequential maximum likelihood
estimations

SHUHEI MANO

201The codegree, weak maximum likelihood threshold, and the Gorenstein property of
hierarchical models

JOSEPH JOHNSON and SETH SULLIVANT

217Lawrence lifts, matroids, and maximum likelihood degrees
TAYLOR BRYSIEWICZ and AIDA MARAJ

A
lg

e
b

ra
ic

Sta
tistic

s
16

:2
2025

http://dx.doi.org/10.2140/astat.2025.16.95
http://dx.doi.org/10.2140/astat.2025.16.113
http://dx.doi.org/10.2140/astat.2025.16.131
http://dx.doi.org/10.2140/astat.2025.16.175
http://dx.doi.org/10.2140/astat.2025.16.175
http://dx.doi.org/10.2140/astat.2025.16.201
http://dx.doi.org/10.2140/astat.2025.16.201
http://dx.doi.org/10.2140/astat.2025.16.217

	1. Introduction
	1.1. The Lyapunov equation
	1.2. Graphs
	1.3. Linear additive noise models

	2. Treks and trek rules
	3. Acyclic models
	3.1. Simplifying the trek rule for acyclic models
	3.2. A lower bound on the marginal variance
	3.3. Proof of Proposition 3.3

	4. Concluding remarks
	Acknowledgements
	References
	
	

