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Abstract

The deconfounder was proposed as a method for estimating causal parameters in a context
with multiple causes and unobserved confounding. It is based on recovery of a latent vari-
able from the observed causes. We disentangle the causal interpretation from the statistical
estimation problem and show that the deconfounder in general estimates adjusted regres-
sion target parameters. It does so by outcome regression adjusted for the recovered latent
variable termed the substitute. We refer to the general algorithm, stripped of causal as-
sumptions, as substitute adjustment. We give theoretical results to support that substitute
adjustment estimates adjusted regression parameters when the regressors are conditionally
independent given the latent variable. We also introduce a variant of our substitute adjust-
ment algorithm that estimates an assumption-lean target parameter with minimal model
assumptions. We then give finite sample bounds and asymptotic results supporting substi-
tute adjustment estimation in the case where the latent variable takes values in a finite set.
A simulation study illustrates finite sample properties of substitute adjustment and shows
that it can be a viable method for adjusted regression when the recovery error is small.
Most importantly, we present clear assumptions about the data generating distribution
that allow us to control the recovery error and ultimately the estimation error that can be
attributed to the use of substitutes.

Keywords: adjusted regression, causality, deconfounder, latent variables, mixture models

1 Introduction

The deconfounder was proposed by Wang and Blei (2019) as a general algorithm for es-
timating causal parameters via outcome regression when: (1) there are multiple observed
causes of the outcome; (2) the causal effects are potentially confounded by a latent variable;
(3) the causes are conditionally independent given a latent variable Z. The proposal spurred
discussion and criticism; see the comments on the paper by Wang and Blei (2019) and the
contributions by D’Amour (2019); Ogburn et al. (2020) and Grimmer et al. (2023). One
question raised was whether the assumptions made by Wang and Blei (2019) are sufficient
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to claim that the deconfounder estimates a causal parameter. Though an amendment by
Wang and Blei (2020) addressed the criticism and clarified their assumptions, it did not
resolve all questions regarding the deconfounder.

The key idea of the deconfounder is to recover the latent variable Z from the observed
causes and use this substitute confounder as a replacement for the unobserved confounder.
The causal parameter is then estimated by outcome regression using the substitute con-
founder for adjustment. This way of adjusting for potential confounding has been in
widespread use for some time in genetics and genomics, where, e.g., EIGENSTRAT based
on PCA (Patterson et al., 2006; Price et al., 2006) was proposed to adjust for population
structure in genome wide association studies (GWASs); see also (Song et al., 2015). Simi-
larly, surrogate variable adjustment (Leek and Storey, 2007) adjusts for unobserved factors
causing unwanted variation in gene expression measurements.

In our view, the discussion regarding the deconfounder was muddled by several issues.
First, issues with non-identifiablity of target parameters from the observational distribution
with a finite number of observed causes lead to confusion. Second, the causal role of the
latent variable Z and its causal relations to any unobserved confounder were difficult to
grasp. Third, there was a lack of theory supporting that the deconfounder was actually
estimating causal target parameters consistently. We defer the treatment of the thorny
causal interpretation of the deconfounder to the discussion in Section 5 and focus here on
the statistical aspects.

We find that the statistical problem is best treated as adjusted regression without in-
sisting on a causal interpretation. Suppose that we observe a real valued outcome variable
Y and additional variables X1, X2, . . . , Xp. We can then be interested in estimating the
adjusted regression function

x 7→ E [E [Y | Xi = x;X−i]] (1)

where X−i denotes all variables but Xi. That is, we adjust for all other variables when
regressing Y on Xi. The adjusted regression function could have a causal interpretation in
some contexts, but is also of interest without a causal interpretation. It can, for instance,
be used to study the added predictive value of Xi, and it is constant (as a function of x) if
and only if E [Y | Xi = x;X−i] = E [Y | X−i]; that is, if and only if Y is conditionally mean
independent of Xi given X−i (Lundborg et al., 2024).

In the context of a GWAS, Y is a continuous phenotype and Xi represents a single
nucleotide polymorphism (SNP) at the genomic site i. The difference

E [Y | Xi = x;X−i] − E [Y | X−i]

is a measure of how much a SNP value of x at site i adds to the prediction of the phenotype
outcome on top of the values X−i of all other SNP sites. The regression function (1) thus
quantifies the expected added predictive value of the SNP at site i. A causal interpretation
might be justified if the SNP is located in a gene that is causal for the phenotypic outcome,
but any added predictive value of a single SNP is of interest when constructing polygenic
risk scores—irrespective of causal interpretations. In practice, only a fraction of all SNPs
along the genome are observed, yet the number of SNPs can be in the millions, and estima-
tion of the full regression model E [Y | Xi = x;X−i = x] can be impossible without model
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assumptions. Thus if the regression function (1) is the target of interest, it is extremely
useful if we, by adjusting for a substitute of a latent variable, can obtain a computationally
efficient and statistically valid estimator of (1).

From our perspective, when viewing the problem as that of adjusted regression, the
most pertinent questions are: (1) when is adjustment by the latent variable Z instead of
X−i appropriate; (2) can adjustment by substitutes of the latent variable, recovered from
the observed Xi-s, be justified; (3) can we establish an asymptotic theory that allows for
statistical inference when adjusting for substitutes? With the aim of answering the three
questions above, this paper makes two main contributions:

1. A transparent statistical framework. We focus on estimation of the adjusted mean,
thereby disentangling the statistical problem from the causal discussion. This way the
target of inference is clear and so are the assumptions we need about the observational
distribution in terms of the latent variable model. We present in Section 2 a general
framework with an infinite number of Xi-variables, and we present clear assumptions
implying that we can replace adjustment by X−i with adjustment by Z. Within the
general framework, we subsequently present an assumption-lean target parameter that
is interpretable without restrictive model assumptions on the regression function.

2. A novel theoretical analysis. By restricting attention to the case where the latent vari-
able Z takes values in a finite set, we give in Section 3 bounds on the estimation error
due to using substitutes and on the recovery error—that is, the substitute mislabeling
rate. These bounds quantify, among other things, how the errors depend on p; the
actual (finite) number of Xi-s used for recovery. With minimal assumptions on the
conditional distributions in the latent variable model and on the outcome model, we
use our bounds to derive asymptotic conditions ensuring that the assumption-lean tar-
get parameter can be estimated just as well using substitutes as if the latent variables
were observed.

To implement substitute adjustment in practice, we leverage recent developments on
estimation in finite mixture models via tensor methods, which are computationally and
statistically efficient in high dimensions. We illustrate our results via a simulation study in
Section 4. Proofs and auxiliary results are in Appendix A. Appendix B contains a complete
characterization of when recovery of Z is possible from an infinite X in a Gaussian mixture
model.

1.1 Relation to existing literature

Our framework and results are based on ideas by Wang and Blei (2019, 2020) and the
literature preceding them on adjustment by surrogate/substitute variables. We add new
results to this line of research on the theoretical justification of substitute adjustment as a
method for estimation.

There is some literature on the theoretical properties of tests and estimators in high-
dimensional problems with latent variables. Somewhat related to our framework is the work
by Wang et al. (2017) on adjustment for latent confounders in multiple testing, motivated
by applications to gene expression analysis. More directly related is the work by Kallus
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et al. (2018), who give theoretical results on the estimation error due to recovery of latent
confounders from noisy proxy observations. Their control of the estimation error in terms
of the recovery error of the column space of the confounders resembles our Theorem 7 and
its proof, but it is based on a low rank matrix factorization framework rather than the finite
mixture models we consider.

Related approaches by Ćevid et al. (2020) and Guo et al. (2022b) are based on estimators
within a linear modeling framework with unobserved confounding. While their methods and
results are definitely interesting, they differ from substitute adjustment, since they do not
directly attempt to recover the latent variables. Linearity and sparsity assumptions play an
important role for their methods and analysis but not for our results. Additional approaches,
that do not attempt explicit recovery of latent variables, include proxy and auxiliary variable
methods as considered by Louizos et al. (2017); Miao et al. (2018, 2023); Tchetgen et al.
(2024). Compared with our framework, these methods deal with unobserved confounding
without asymptotic exact recovery but under particular distributional assumptions.

The paper by Grimmer et al. (2023) comes closest to our framework and analysis. Grim-
mer et al. (2023) present theoretical results and extensive numerical examples, primarily
with a continuous latent variable. Their results are not favorable for the deconfounder and
they conclude that the deconfounder is “not a viable substitute for careful research design
in real-world applications”. Their theoretical analyses are mostly in terms of computing the
population (or n-asymptotic) bias of a method for a finite p (the number of Xi-variables),
and then possibly investigate the limit of the bias as p tends to infinity. We analyze instead
the asymptotic behavior of the estimator based on substitute adjustment as n and p tend
to infinity jointly. Moreover, since we specifically treat discrete latent variables, some of
our results are also in a different framework.

2 Substitute adjustment

The full model is specified in terms of variables (X, Y ), where Y ∈ R is a real valued outcome
variable of interest and X ∈ RN is a infinite vector of additional real valued variables. That
is, X = (Xi)i∈N with Xi ∈ R for i ∈ N. We let X−i = (Xj)j∈N\{i}, and define (informally)
for each i ∈ N and x ∈ R the target parameter of interest

χi
x = E [E [Y | Xi = x;X−i]] . (2)

That is, χi
x is the mean outcome given Xi = x when adjusting for all remaining variables

X−i. In this section we present a rigorous model specification together with the general
model assumptions and substitute adjustment algorithms.

2.1 The General Model

Since E [Y | Xi = x;X−i] is generally not uniquely defined for all x ∈ R by the distribution of
(X, Y ), we need some additional structure to formally define χi

x. The following assumption
and subsequent definition achieve this by assuming that a particular choice of the conditional
expectation is made and remains fixed. Throughout, R is equipped with the Borel σ-algebra
and RN with the corresponding product σ-algebra.
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Assumption 1 (Regular Conditional Distribution) Fix for each i ∈ N a Markov ker-
nel (P i

x,x)(x,x)∈R×RN on R. Assume that P i
x,x is the regular conditional distribution of Y

given (Xi,X−i) = (x,x) for all x ∈ R, x ∈ RN and i ∈ N. With P−i the distribution of
X−i, suppose additionally that∫∫

|y|P i
x,x(dy)P−i(dx) < ∞

for all x ∈ R.

Definition 1 Under Assumption 1 we define

χi
x =

∫∫
y P i

x,x(dy)P−i(dx). (3)

Remark 1 Definition 1 makes the choice of conditional expectation explicit by letting

E [Y | Xi = x;X−i] =

∫
y P i

x,X−i
(dy)

be defined in terms of the specific regular conditional distribution that is fixed according to
Assumption 1. We may need additional regularity assumptions to identify our target χi

x,
let alone the full Markov kernel P i

x,x, from the distribution of (X, Y ), which we will not
pursue here, but see Remark 2.

The main assumption in this paper is the existence of a latent variable, Z, that will
render the Xi-s conditionally independent, and which can be recovered from X in a suitable
way. The variable Z will take values in a measurable space (E, E), which we assume to be
a Borel space. We use the notation σ(Z) and σ(X−i) to denote the σ-algebras generated
by Z and X−i, respectively.

Assumption 2 (Latent Variable Model) There is a random variable Z with values in
(E, E) such that:

1. X1, X2, . . . are conditionally independent given Z,

2. σ(Z) ⊆
⋂∞

i=1 σ(X−i).

The latent variable model given by Assumption 2 allows us to identify the adjusted
mean by adjusting for the latent variable only.

Proposition 2 Fix i ∈ N and let P−i
z denote a regular conditional distribution of X−i

given Z = z. Under Assumptions 1 and 2, the Markov kernel

Qi
x,z(A) =

∫
P i
x,x(A)P−i

z (dx), A ⊆ R (4)

is a regular conditional distribution of Y given (Xi, Z) = (x, z), in which case

χi
x =

∫∫
y Qi

x,z(dy)PZ(dz) = E [E [Y | Xi = x;Z]] . (5)
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Figure 1: Directed Acyclic Graph (DAG) representing the joint distribution of
(Xi,X−i, Z, Y ). The variable Z blocks the backdoor from Xi to Y .

Assumption 2(1) implies that X−i ⊥⊥ Xi | Z and Assumption 2(2) implies that Z is a
function of X−i. This means that Z is a balancing score for the “treatment” Xi and “co-
variates” X−i simultaneously for all i, see Rosenbaum and Rubin (1983). Their Theorem
3 shows, within a potential outcomes framework and for binary treatments, that strong ig-
norability given X−i implies strong ignorability given the balancing score Z. Consequently,
under strong ignorability given X−i the average treatment effect can be obtained by adjust-
ing only for the balancing score Z. The same reasons that make Z a balancing score make
the joint distribution of (Xi,X−i, Z, Y ) Markov w.r.t. to the graph in Figure 1. Proposition
2 is thus a variant of the backdoor criterion, since Z blocks the backdoor from Xi to Y via
X−i; see Theorem 3.3.2 in (Pearl, 2009) or Proposition 6.41(ii) in (Peters et al., 2017).

Even though balancing scores and the backdoor criterion are well known, we include a
proof of Proposition 2 in Appendix A for the following reasons. First, Proposition 2 does not
involve causal assumptions about the model, and we want to clarify that the mathematical
result is agnostic to such assumptions. Second, our proof is for real valued variables Xi—not
only binary or discrete variables—and it does not rely on positivity assumptions. Third,
we do not need other regularity assumptions either, specifically we do not require that the
conditional distributions have densities w.r.t. a fixed measure, which is an unreasonable
assumption for our infinite variable model. However, to be clear, the proof of Proposition
2 simply shows that we can replace the adjustment variables in an adjusted regression by a
balancing score, and that Assumption 2 makes Z a balancing score for (Xi,X−i) for all i.

To illuminate Assumptions 1 and 2—as well as to illustrate the implications of Proposi-
tion 2—we give two examples below. They show that the assumptions can be fulfilled, and
they give explicit examples of the Markov kernels Qi

x,z and the conditional expectations

E [Y | Xi = x;Z = z] =

∫
y Qi

x,z(dy).

Example 1 Suppose E[|Xi|] ≤ C for all i and some finite constant C, and assume, for
simplicity, that E[Xi] = 0. Let β = (βi)i∈N ∈ ℓ1 and define

⟨β,X⟩ =
∞∑
i=1

βiXi.
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The infinite sum converges almost surely since β ∈ ℓ1. With ε being N (0, 1)-distributed
and independent of X consider the outcome model

Y = ⟨β,X⟩ + ε.

Letting β−i denote the β-sequence with the i-th coordinate removed, a straightforward,
though slightly informal, computation, gives

χi
x = E

[
E
[
βiXi + ⟨β−i,X−i⟩ | Xi = x;X−i

]]
= βix + E

[
⟨β−i,X−i⟩

]
= βix + ⟨β−i,E [X−i]⟩ = βix.

To fully justify the computation, via Assumption 1, we let P i
x,x be the N (βix+⟨β−i,x⟩, 1)-

distribution for the P−i-almost all x where ⟨β−i,x⟩ is well defined. For the remaining x we
let P i

x,x be the N (βix, 1)-distribution. Then P i
x,x is a regular conditional distribution of Y

given (Xi,X−i) = (x,x),∫
y P i

x,x(dy) = βix + ⟨β−i,x⟩ for P−i-almost all x,

and χi
x = βix follows from (3). It also follows from (4) that for PZ-almost all z ∈ E,

E [Y | Xi = x;Z = z] =

∫
y Qi

x,z(dy)

= βix +

∫
⟨β−i,x⟩P−i

z (dx)

= βix +
∑
j ̸=i

βjE[Xj | Z = z].

That is, with Γ−i(z) =
∑

j ̸=i βjE[Xj | Z = z], the regression model

E [Y | Xi = x;Z = z] = βix + Γ−i(z)

is a partially linear model.

Example 2 While Example 1 is explicit about the outcome model, it does not describe
an explicit latent variable model fulfilling Assumption 2. To this end, take E = R, let
Z ′, U1, U2, . . . be i.i.d. N (0, 1)-distributed and set Xi = Z ′ + Ui. By the Law of Large
Numbers, for any i ∈ N,

1

n

n+1∑
j=1;j ̸=i

Xj = Z ′ +
1

n

n+1∑
j=1;j ̸=i

Uj → Z ′

almost surely for n → ∞. Setting

Z =

{
lim
n→∞

1
n

∑n+1
j=1;j ̸=iXj if the limit exists

0 otherwise

we get that σ(Z) ⊆ σ(X−i) for any i ∈ N and Z = Z ′ almost surely. Thus, Assumption 2
holds.
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Continuing with the outcome model from Example 1, we see that for PZ-almost all
z ∈ E,

E[Xj | Z = z] = E[Z ′ + Uj | Z = z] = z,

thus Γ−i(z) = γ−iz with γ−i =
∑

j ̸=i βj . In this example it is actually possible to compute

the regular conditional distribution, Qi
x,z, of Y given (Xi, Z) = (x, z) explicitly. It is the

N
(
βix + γ−iz, 1 + ∥β−i∥22

)
-distribution where ∥β−i∥22 = ⟨β−i,β−i⟩.

2.2 Substitute Latent Variable Adjustment

Proposition 2 tells us that under Assumptions 1 and 2 the adjusted mean, χi
x, defined by

adjusting for the entire infinite vector X−i, is also given by adjusting for the latent variable
Z. If the latent variable were observed we could estimate χi

x in terms of an estimate of the
following regression function.

Definition 3 (Regression function) Under Assumptions 1 and 2 define the regression
function

bix(z) =

∫
y Qi

x,z(dy) = E [Y | Xi = x;Z = z] (6)

where Qi
x,z is given by (4).

Remark 2 As noted in Remark 1, identification of χi
x from the observational distribution

requires additional regularity assumptions. Algorithm 1 below works if we can identify
(and consistently estimate) the regression function (x, z) 7→ bix(z). This can be done on
the support of the distribution of (Xi, Z) if the regression function is suitably regular. We
avoid a precise general statement since it will depend on the specific nature of the set E.
Assumptions 3 or 4 below include explicit positivity conditions that allow for identification
of an assumption-lean target parameter when E is finite.

If we had n i.i.d. observations, (xi,1, z1, y1), . . . , (xi,n, zn, yn), of (Xi, Z, Y ), a straight-
forward plug-in estimate of χi

x is

χ̂i
x =

1

n

n∑
k=1

b̂ix(zk), (7)

where b̂ix(z) is an estimate of the regression function bix(z). In practice we do not observe
the latent variable Z. Though Assumption 2(2) implies that Z can be recovered from X,
we do not assume we know this recovery map, nor do we in practice observe the entire X,
but only the first p coordinates, X1:p = (X1, . . . , Xp).

We thus need an estimate of a recovery map, f̂p : Rp → E, such that for the substitute
latent variable Ẑ = f̂p(X1:p) we have1 that σ(Ẑ) approximately contains the same informa-
tion as σ(Z). Using such substitutes, a natural way to estimate χi

x is given by Algorithm

1, which is a general three-step procedure returning the estimate χ̂i,sub
x .

1. We can in general only hope to learn a recovery map of Z up to a Borel isomorphism, but this is also
all that is needed, cf. Assumption 2.
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Algorithm 1: General Substitute Adjustment

1 input: data S0 = {x0
1:p,1, . . . ,x

0
1:p,m} and S = {(x1:p,1, y1), . . . (x1:p,n, yn)}, a set E,

i ∈ {1, . . . , p} and x ∈ R;
2 options: a method for estimating a recovery map fp : Rp → E, a method for

estimating the regression function z 7→ bix(z);
3 begin

4 use data in S0 to compute the estimate f̂p of the recovery map.

5 use data in S to compute the substitute latent variables as ẑk := f̂p(x1:p,k),
k = 1, . . . , n.

6 use data in S combined with the substitutes to compute the regression function

estimate, z 7→ b̂ix(z), and set

χ̂i,sub
x =

1

n

n∑
k=1

b̂ix(ẑk).

7 end

8 return χ̂i,sub
x

The regression estimate b̂ix(z) in Algorithm 1 is computed on the basis of the substitutes,

which likewise enter into the final computation of χ̂i,sub
x . Thus the estimate is directly

estimating χi,sub
x = E

[
E
[
Y | Xi = x; Ẑ

] ∣∣∣ f̂p
]
, and it is expected to be biased as an estimate

of χi
x. The general idea is that under some regularity assumptions, and for p → ∞ and

m → ∞ appropriately, χi,sub
x → χi

x and the bias vanishes asymptotically. Section 3 specifies
a setup where such a result is shown rigorously.

Note that the estimated recovery map f̂p in Algorithm 1 is the same for all i = 1, . . . , p.
Thus for any fixed i, the x0i,k-s are used for estimation of the recovery map, and the xi,k-s are
used for the computation of the substitutes. Steps 4 and 5 of the algorithm could be changed
to construct a recovery map f̂p

−i independent of the i-th coordinate. This appears to align
better with Assumption 2, and it would most likely make the ẑk-s slightly less correlated
with the xi,k-s. It would, on the other hand, lead to a slightly larger recovery error, and

worse, a substantial increase in the computational complexity if we want to estimate χ̂i,sub
x

for all i = 1, . . . , p.

Algorithm 1 leaves some options open. First, the estimation method used to compute f̂p

could be based on any method for estimating a recovery map, e.g., using a factor model if
E = R or a mixture model if E is finite. The idea of such methods is to compute a parsimo-
nious f̂p such that: (1) conditionally on ẑ0k = f̂p(x0

1:p,k) the observations x01,k, . . . , x
0
p,k are

approximately independent for k = 1, . . . ,m; and (2) ẑ0k is minimally predictive of x0i,k for

i = 1, . . . , p. Second, the regression method for estimation of the regression function bix(z)
could be any parametric or nonparametric method. If E = R we could use OLS combined
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with the parametric model bix(z) = β0 + βix + γ−iz, which would lead to the estimate

χ̂i,sub
x = β̂0 + β̂ix + γ̂−i

1

n

n∑
k=1

ẑk.

If E is finite, we could still use OLS but now combined with the parametric model bix(z) =
β′
i,zx + γ−i,z, which would lead to the estimate

χ̂i,sub
x =

(
1

n

n∑
k=1

β̂′
i,ẑk

)
x +

1

n

n∑
k=1

γ̂−i,ẑk .

The relation between the two data sets in Algorithm 1 is not specified by the algorithm
either. It is possible that they are independent, e.g., by data splitting, in which case f̂p

is independent of the data in S. It is also possible that m = n and x0
1:p,k = x1:p,k for

k = 1, . . . , n. While we will assume S0 and S independent for the theoretical analysis, the
x1:p-s from S will in practice often be part of S0, if not all of S0.

2.3 Assumption-Lean Substitute Adjustment

If the regression model in the general Algorithm 1 is misspecified we cannot expect that
χ̂i,sub
x is a consistent estimate of χi

x. In Section 3 we investigate the distribution of a
substitute adjustment estimator in the case where E is finite. It is possible to carry out
this investigation assuming a partially linear regression model, bix(z) = βix + Γ−i(z), but
the results would then hinge on this model being correct. To circumvent such a model
assumption we proceed instead in the spirit of assumption-lean regression (Berk et al.,
2021; Vansteelandt and Dukes, 2022). Thus we focus on a univariate target parameter
defined as a functional of the data distribution, and we then investigate its estimation via
substitute adjustment.

Assumption 3 (Moments) Suppose E(Y 2) < ∞, E[X2
i ] < ∞ and E [Var [Xi | Z]] > 0.

Definition 4 (Target parameter) Let i ∈ N. Under Assumptions 2 and 3 define the
target parameter

βi =
E [Cov [Xi, Y | Z]]

E [Var [Xi | Z]]
. (8)

Algorithm 2 gives a procedure for estimating βi based on substitute latent variables.
The following proposition gives insight on the interpretation of the target parameter βi.

Proposition 5 Under Assumptions 1, 2 and 3, and with bix(z) given as in Definition 3,
and βi given as in Definition 4,

βi =
E
[
Cov

[
Xi, b

i
Xi

(Z) | Z
]]

E [Var [Xi | Z]]
. (9)

Moreover, βi = 0 if bix(z) does not depend on x. If bix(z) = β′
i(z)x + Γ−i(z) then

βi = E
[
wi(Z)β′

i(Z)
]

(10)
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Algorithm 2: Assumption-Lean Substitute Adjustment

1 input: data S0 = {x0
1:p,1, . . . ,x

0
1:p,m} and S = {(x1:p,1, y1), . . . (x1:p,n, yn)}, a set E

and i ∈ {1, . . . , p};
2 options: a method for estimating the recovery map fp : Rp → E, methods for

estimating the regression functions µi(z) = E [Xi | Z = z] and
g(z) = E [Y | Z = z];

3 begin

4 use data in S0 to compute the estimate f̂p of the recovery map.

5 use data in S to compute the substitute latent variables as ẑk := f̂p(x1:p,k),
k = 1, . . . , n.

6 use data in S combined with the substitutes to compute the regression function
estimates z 7→ µ̂i(z) and z 7→ ĝ(z), and set

β̂sub
i =

∑n
k=1(xi,k − µ̂i(ẑk))(yk − ĝ(ẑk))∑n

k=1(xi,k − µ̂i(ẑk))2
.

7 end

8 return β̂sub
i

where

wi(Z) =
Var[Xi | Z]

E [Var[Xi | Z]]
.

We include a proof of Proposition 5 in Appendix A.1 for completeness. The arguments
are essentially as given by Vansteelandt and Dukes (2022).

Remark 3 If bix(z) = β′
i(z)x + Γ−i(z) it follows from Proposition 2 that χi

x = β′
ix, where

the coefficient β′
i = E[β′

i(Z)] may differ from βi given by (10). In the special case where
the variance of Xi given Z is constant across all values of Z, the weights in (10) are all 1,
in which case βi = β′

i. For the partially linear model, bix(z) = β′
ix + Γ−i(z), with β′

i not
depending on z, it follows from (10) that βi = β′

i irrespectively of the weights.

Remark 4 If Xi ∈ {0, 1} then bix(z) = (bi1(Z)−bi0(Z))x+bi0(Z), and the contrast χi
1−χi

0 =
E
[
bi1(Z) − bi0(Z)

]
is an unweighted mean of differences, while it follows from (10) that

βi = E
[
wi(Z)(bi1(Z) − bi0(Z))

]
. (11)

If we let πi(Z) = P(Xi = 1 | Z), we see that the weights are given as

wi(Z) =
πi(Z)(1 − πi(Z))

E [πi(Z)(1 − πi(Z))]
.

We summarize three important take-away messages from Proposition 5 and the remarks
above as follows:

11
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1. Conditional mean independence. The null hypothesis of conditional mean indepen-
dence,

E [Y | Xi = x;X−i]) = E [Y | X−i] ,

implies that βi = 0. The target parameter βi thus suggests an assumption-lean
approach to testing this null without a specific model of the conditional mean.

2. Heterogeneous partial linear model. If the conditional mean,

bix(z) = E [Y | Xi = x;Z = z] ,

is linear in x with an x-coefficient that depends on Z (heterogeneity), the target
parameter βi is a weighted mean of these coefficients, while χi

x = β′
ix with β′

i the
unweighted mean.

3. Simple partial linear model. If the conditional mean is linear in x with an x-coefficient
that is independent of Z (homogeneity), the target parameter βi coincides with this
x-coefficient and χi

x = βix. Example 1 is a special case where the latent variable
model is arbitrary but the full outcome model is linear.

Just as for the general Algorithm 1, the estimate that Algorithm 2 outputs, β̂sub
i , is not

directly estimating the target parameter βi. It is directly estimating

βsub
i =

E
[
Cov

[
Xi, Y | Ẑ

] ∣∣∣ f̂p
]

E
[
Var

[
Xi | Ẑ

] ∣∣∣ f̂p
] . (12)

Fixing the estimated recovery map f̂p and letting n → ∞, we can expect that β̂sub
i is

consistent for βsub
i and not for βi.

Pretending that the zk-s were observed, we introduce the oracle estimator

β̂i =

∑n
k=1(xi,k − µi(zk))(yk − g(zk))∑n

k=1(xi,k − µi(zk))2
.

Here, µi and g denote estimates of the regression functions µi and g, respectively, using
the zk-s instead of the substitutes. The estimator β̂i is independent of m, p, and f̂p, and
when (xi,1, z1, y1), . . . , (xi,n, zn, yn) are i.i.d. observations, standard regularity assumptions

(van der Vaart, 1998) will ensure that the estimator β̂i is consistent for βi (and possibly
even

√
n-rate asymptotically normal). Writing

β̂sub
i − βi = (β̂sub

i − β̂i) + (β̂i − βi) (13)

we see that if we can appropriately bound the error, |β̂sub
i − β̂i|, due to using the substitutes

instead of the unobserved zk-s, we can transfer asymptotic properties of β̂i to β̂sub
i . It is

the objective of the following section to demonstrate how such a bound can be achieved for
a particular model class.

12
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3 Substitute adjustment in a mixture model

In this section, we present a theoretical analysis of assumption-lean substitute adjustment
in the case where the latent variable takes values in a finite set. We provide finite-sample
bounds on the error of β̂sub

i due to the use of substitutes, and we show, in particular, that
there exist trajectories of m, n and p along which the estimator is asymptotically equivalent
to the oracle estimator β̂i, which uses the actual latent variables.

3.1 The mixture model

To be concrete, we assume that X is generated by a finite mixture model such that condition-
ally on a latent variable Z with values in a finite set, the coordinates of X are independent.
The precise model specification is as follows.

Assumption 4 (Mixture Model) There is a latent variable Z with values in the finite
set E = {1, . . . ,K} such that X1, X2, . . . are conditionally independent given Z = z. Fur-
thermore,

1. The conditional distribution of Xi given Z = z has finite second moment, and its
conditional mean and variance are denoted

µi(z) = E[Xi | Z = z]

σ2
i (z) = Var[Xi | Z = z]

for z ∈ E and i ∈ N.

2. The conditional means satisfy the following separation condition

∞∑
i=1

(µi(z) − µi(v))2 = ∞ (14)

for all z, v ∈ E with v ̸= z.

3. There are constants 0 < σ2
min ≤ σ2

max < ∞ that bound the conditional variances;

σ2
min ≤ max

z∈E
σ2
i (z) ≤ σ2

max (15)

for all i ∈ N.

4. P(Z = z) > 0 for all z ∈ E.

Algorithm 3 is one specific version of Algorithm 2 for computing β̂sub
i when the latent

variable takes values in a finite set E. The recovery map in Step 5 is given by computing
the nearest mean, and it is thus estimated in Step 4 by estimating the means for each of
the mixture components. How this is done precisely is an option of the algorithm. Once
the substitutes are computed, outcome means and xi,k-means are (re)computed within each
component. The computations in Steps 6 and 7 of Algorithm 3 result in the same estimator
as the OLS estimator of βi when it is computed using the linear model

bix(z) = βix + γ−i,z, βi, γ−i,1, . . . , γ−i,K ∈ R

13
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on the data (xi,1, ẑ1, y1), . . . (xi,n, ẑn, yn). This may be relevant in practice, but it is also

used in the proof of Theorem 7. The corresponding oracle estimator, β̂i, is similarly an OLS
estimator.

Algorithm 3: Assumption Lean Substitute Adjustment w. Mixtures

1 input: data S0 = {x0
1:p,1, . . . ,x

0
1:p,m} and S = {(x1:p,1, y1), . . . (x1:p,n, yn)}, a finite

set E and i ∈ {1, . . . , p};
2 options: a method for estimating the conditional means µj(z) = E[Xj | Z = z];
3 begin
4 use the data in S0 to compute the estimates µ̌j(z) for j ∈ {1, . . . , p} and z ∈ E.
5 use the data in S to compute the substitute latent variables as

ẑk = arg minz ∥x1:p,k − µ̌1:p(z)∥2, k = 1, . . . , n.

6 use the data in S combined with the substitutes to compute the estimates

ĝ(z) =
1

n̂(z)

∑
k:ẑk=z

yk, z ∈ E

µ̂i(z) =
1

n̂(z)

∑
k:ẑk=z

xi,k, z ∈ E,

where n̂(z) =
∑n

k=1 1(ẑk = z) is the number of k-s with ẑk = z.
7 use the data in S combined with the substitutes to compute

β̂sub
i =

∑n
k=1(xi,k − µ̂i(ẑk))(yk − ĝ(ẑk))∑n

k=1(xi,k − µ̂i(ẑk))2
.

8 end

9 return β̂sub
i

Note that Assumption 4 implies that

E[X2
i ] =

∑
z∈E

E[X2
i | Z = z]P(Z = z) =

∑
z∈E

(σ2
i (z) + µi(z)2)P(Z = z) < ∞

E [Var [Xi | Z]] =
∑
z∈E

σ2
i (z)P(Z = z) ≥ σ2

min min
z∈E

P(Z = z) > 0.

Hence Assumption 4, combined with E[Y 2] < ∞, ensure that the moment conditions in
Assumption 3 hold.

The following proposition states that the mixture model given by Assumption 4 is a
special case of the general latent variable model.

Proposition 6 Assumption 4 on the mixture model implies Assumption 2. Specifically,
that σ(Z) ⊆ σ(X−i) for all i ∈ N.

Remark 5 The proof of Proposition 6 is in Appendix A.3. Technically, the proof only
gives almost sure recovery of Z from X−i, and we can thus only conclude that σ(Z) is

14
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contained in σ(X−i) up to negligible sets. We can, however, replace Z by a variable, Z ′,
such that σ(Z ′) ⊆ σ(X−i) and Z ′ = Z almost surely. We can thus simply swap Z with Z ′

in Assumption 4.

Remark 6 The arguments leading to Proposition 6 rely on Assumptions 4(2) and 4(3)—
specifically the separation condition (14) and the upper bound in (15). However, these
conditions are not necessary to be able to recover Z from X−i. Using Kakutani’s theorem
on equivalence of product measures it is possible to characterize precisely when Z can be
recovered, but the abstract characterization is not particularly operational. In Appendix B
we analyze the characterization for the Gaussian mixture model, where Xi given Z = z has
a N (µi(z), σ2

i (z))-distribution. This leads to Proposition 16 and Corollary 17 in Appendix
B, which gives necessary and sufficient conditions for recovery in the Gaussian mixture
model.

3.2 Bounding the estimation error due to using substitutes

In this section we derive an upper bound on the estimation error, which is due to using
substitutes, cf. the decomposition (13). To this end, we consider the (partly hypothetical)
observations (xi,1, ẑ1, z1, y1), . . . (xi,n, ẑn, zn, yn), which include the otherwise unobserved zk-
s as well as their observed substitutes, the ẑk-s. We let xi = (xi,1, . . . , xi,n)T ∈ Rn and
y = (y1, . . . , yn)T ∈ Rn, and ∥xi∥2 and ∥y∥2 denote the 2-norms of xi and y, respectively.
We also let

n(z) =

n∑
k=1

1(zk = z) and n̂(z) =

n∑
k=1

1(ẑk = z)

for z ∈ E = {1, . . . ,K}, and

nmin = min{n(1), . . . , n(K), n̂(1), . . . , n̂(K)}.

Furthermore,

µi(z) =
1

n(z)

∑
k:zk=z

xi,k,

and we define the following three quantities

α =
nmin

n
(16)

δ =
1

n

n∑
k=1

1(ẑk ̸= zk) (17)

ρ =
min

{∑n
k=1(xi,k − µi(zk))2,

∑n
k=1(xi,k − µ̂i(ẑk))2

}
∥xi∥22

. (18)

Theorem 7 Let α, δ and ρ be given by (16), (17) and (18). If α, ρ > 0 then

|β̂sub
i − β̂i| ≤

2
√

2

ρ2

√
δ

α

∥y∥2
∥xi∥2

. (19)
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The proof of Theorem 7 is given in Appendix A.2. Appealing to the Law of Large
Numbers, the quantities in the upper bound (19) can be interpreted as follows:

1. The ratio ∥y∥2/∥xi∥2 is approximately a fixed and finite constant (unless Xi is con-
stantly zero) depending on the marginal distributions of Xi and Y only.

2. The fraction α is approximately

min
z∈E

{
min{P(Z = z),P(Ẑ = z)}

}
, (20)

which is strictly positive by Assumption 4(4) (unless recovery is working poorly).

3. The quantity ρ is a standardized measure of the residual variation of the xi,k-s within
the groups defined by the zk-s or the ẑk-s. It is approximately equal to the constant

min
{
E [Var [Xi | Z]] ,E

[
Var

[
Xi | Ẑ

]]}
E(X2

i )
,

which is strictly positive if the probabilities in (20) are strictly positive and not all of
the conditional variances are 0.

4. The fraction δ is the relative mislabeling frequency of the substitutes. It is approxi-
mately equal to the mislabeling rate P(Ẑ ̸= Z).

The bound (19) tells us that if the mislabeling rate of the substitutes tends to 0, that is,

if P(Ẑ ̸= Z) → 0, the estimation error tends to 0 roughly like

√
P(Ẑ ̸= Z). This could

potentially be achieved by letting p → ∞ and m → ∞. We formalize this statement in
Section 3.4.

3.3 Bounding the mislabeling rate of the substitutes

In this section we give bounds on the mislabeling rate, P(Ẑ ̸= Z), with the ultimate purpose
of controlling the magnitude of δ in the bound (19). Two different approximations are the
culprits of mislabeling. First, the computation of Ẑ is based on the p variables in X1:p

only, and it is thus an approximation of the full recovery map based on all variables in X.
Second, the recovery map is an estimate and thus itself an approximation. The severity of
the second approximation is quantified by the following relative errors of the conditional
means used for recovery.

Definition 8 (Relative errors, p-separation) For the mixture model given by Assump-
tion 4 let µ1:p(z) = (µi(z))i=1,...,p ∈ Rp for z ∈ E. With µ̌1:p(z) ∈ Rp for z ∈ E any
collection of p-vectors, define the relative errors

R(p)
z,v =

∥µ1:p(z) − µ̌1:p(z)∥2
∥µ1:p(z) − µ1:p(v)∥2

(21)

for z, v ∈ E, v ̸= z. Define, moreover, the minimal p-separation as

sep(p) = min
z ̸=v

∥µ1:p(z) − µ1:p(v)∥22. (22)
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Note that Assumption 4(2) implies that sep(p) → ∞ for p → ∞. This convergence
could be arbitrarily slow. The following definition captures the important case where the
separation grows at least linearly in p.

Definition 9 (Strong separation) We say that the mixture model satisfies strong sepa-
ration if there exists an ε > 0 such that sep(p) ≥ εp eventually.

Strong separation is equivalent to

lim inf
p→∞

sep(p)

p
> 0.

A sufficient condition for strong separation is that for some ε > 0, |µi(z) − µi(v)| ≥ ε
eventually for all z, v ∈ E, v ̸= z. That is, lim infi→∞ |µi(z) − µi(v)| > 0 for v ̸= z. When
we have strong separation, then for p large enough(

R(p)
z,v

)2
≤ 1

εp
∥µ1:p(z) − µ̌1:p(z)∥22 ≤

1

ε
max

i=1,...,p
(µi(z) − µ̌i(z))2 ,

and we note that it is conceivable2 that we can estimate µ1:p(z) by an estimator, µ̌1:p(z),

such that for m, p → ∞ appropriately, R
(p)
z,v

P→ 0.

The following proposition shows that a bound on R
(p)
z,v is sufficient to ensure that the

growth of sep(p) controls how fast the mislabeling rate diminishes with p. The proposition
is stated for a fixed µ̌, which means that when µ̌ is an estimate, we are effectively assuming
it is independent of the template observation (X1:p, Z) used to compute Ẑ.

Proposition 10 Suppose that Assumption 4 holds. Let µ̌1:p(z) ∈ Rp for z ∈ E and let

Ẑ = arg min
z

∥X1:p − µ̌1:p(z)∥2.

Suppose also that R
(p)
z,v ≤ 1

10 for all z, v ∈ E with v ̸= z. Then

P
(
Ẑ ̸= Z

)
≤ 25Kσ2

max

sep(p)
. (23)

If, in addition, the conditional distribution of Xi given Z = z is sub-Gaussian with variance
factor vmax, independent of i and z, then

P
(
Ẑ ̸= Z

)
≤ K exp

(
− sep(p)

50vmax

)
(24)

Remark 7 The proof of Proposition 10 is in Appendix A.3. It shows that the specific

constants, 25 and 50, appearing in the bounds above hinge on the specific bound, R
(p)
z,v ≤ 1

10 ,
on the relative error. The proof works for any bound strictly smaller than 1

4 . Replacing
1
10 by a smaller bound on the relative errors decreases the constant, but it will always be
larger than 4.

2. Parametric assumptions, say, and marginal estimators of each µi(z) that, under Assumption 4, are
uniformly consistent over i ∈ N can be combined with a simple union bound to show the claim, possibly
in a suboptimal way, cf. Section 3.5.

17



Adams and Hansen

The upshot of Proposition 10 is that if the relative errors, R
(p)
z,v, are sufficiently small then

Assumption 4 is sufficient to ensure that P
(
Ẑ ̸= Z

)
→ 0 for p → ∞. Without additional

distributional assumptions the general bound (23) decreases slowly with p, and even with
strong separation, the bound only gives a rate of 1

p . With the additional sub-Gaussian
assumption, the rate is improved dramatically, and with strong separation it improves to
e−cp for some constant c > 0. If the Xi-s are bounded, their (conditional) distributions are
sub-Gaussian, thus the rate is fast in this special but important case.

3.4 Asymptotics of the substitute adjustment estimator

Suppose Z takes values in E = {1, . . . ,K} and that (xi,1, z1, y1), . . . , (xi,n, zn, yn) are ob-

servations of (Xi, Z, Y ). Then Assumption 3 ensures that the oracle OLS estimator β̂i is√
n-consistent and that

β̂i
as∼ N (βi, w

2
i /n).

There are standard sandwich formulas for the asymptotic variance parameter w2
i . In this

section we combine the bounds from Sections 3.2 and 3.3 to show our main theoretical
result; that β̂sub

i is a consistent and asymptotically normal estimator of βi for n,m → ∞ if
also p → ∞ appropriately.

Assumption 5 The data set S0 in Algorithm 3 consists of i.i.d. observations of X1:p, the
data set S in Algorithm 3 consists of i.i.d. observations of (X1:p, Y ), and S is independent
of S0.

Theorem 11 Suppose Assumption 1 holds and E(Y 2) < ∞, and consider the mixture
model fulfilling Assumption 4. Consider data satisfying Assumption 5 and the estimator

β̂sub
i given by Algorithm 3. Suppose that n,m, p → ∞ such that P(R

(p)
z,v > 1

10) → 0. Then
the following hold:

1. The estimation error due to using substitutes tends to 0 in probability, that is,

|β̂sub
i − β̂i|

P→ 0,

and β̂sub
i is a consistent estimator of βi.

2. If sep(p)
n → ∞ and nP(R

(p)
z,v > 1

10) → 0, then
√
n|β̂sub

i − β̂i|
P→ 0.

3. If Xi conditionally on Z = z is sub-Gaussian, with variance factor independent of i

and z, and if sep(p)
log(n) → ∞ and nP(R

(p)
z,v > 1

10) → 0, then
√
n|β̂sub

i − β̂i|
P→ 0.

In addition, in case (2) as well as case (3), β̂sub
i

as∼ N (βi, w
2
i /n), where the asymptotic

variance parameter w2
i is the same as for the oracle estimator β̂i.

Remark 8 The proof of Theorem 11 is in Appendix A.4. As mentioned in Remark 7, the
precise value of the constant 1

10 is not important. It could be replaced by any other constant
strictly smaller than 1

4 , and the conclusion would be the same.
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Remark 9 The general growth condition on p in terms of n in case (2) is bad; even with
strong separation we would need p

n → ∞, that is, p should grow faster than n. In the
sub-Gaussian case this improves substantially so that p only needs to grow faster than
log(n).

3.5 Tensor decompositions

One open question from both a theoretical and practical perspective is how we construct
the estimators µ̌1:p(z). We want to ensure consistency for m, p → ∞, which is expressed

as P
(
R

(p)
z,v > 1

10

)
→ 0 in our theoretical results, and that the estimator can be computed

efficiently for large m and p. We indicated in Section 3.3 that simple marginal estimators
of µi(z) can achieve this, but such estimators may be highly inefficient. In this section we
briefly describe two methods based on tensor decompositions (Anandkumar et al., 2014)
related to the third order moments of X1:p. Thus to apply such methods we need to
additionally assume that the Xi-s have finite third moments.

Introduce first the third order p× p× p tensor G(p) as

G(p) =

p∑
i=1

ai ⊗ ei ⊗ ei + ei ⊗ ai ⊗ ei + ei ⊗ ei ⊗ ai,

where ei ∈ Rp is the standard basis vector with a 1 in the i-th coordinate and 0 elsewhere,
and where

ai =
∑
z∈E

P(Z = z)σ2
i (z)µ1:p(z).

In terms of the third order raw moment tensor and G(p) we define the tensor

M
(p)
3 = E[X1:p ⊗X1:p ⊗X1:p] −G(p). (25)

Letting I = {(i1, i2, i3) ∈ {1, . . . , p} | i1, i2, i3 all distinct} denote the set of indices of the

tensors with all entries distinct, we see from the definition of G(p) that G
(p)
i1,i2,i3

= 0 for
(i1, i2, i3) ∈ I. Thus

(M
(p)
3 )i1,i2,i3 = E [Xi1Xi2Xi3 ]

for (i1, i2, i3) ∈ I. In the following, (M
(p)
3 )I denotes the incomplete tensor obtained by

restricting the indices of M
(p)
3 to I.

The key to using the M
(p)
3 -tensor for estimation of the µi(z)-s is the following rank-K

tensor decomposition,

M
(p)
3 =

K∑
z=1

P(Z = z)µ1:p(z) ⊗ µ1:p(z) ⊗ µ1:p(z); (26)

see Theorem 3.3 by Anandkumar et al. (2014) or the derivations by Guo et al. (2022a) on
page 2.

Guo et al. (2022a) propose an algorithm based on incomplete tensor decomposition as

follows: Let (M̂
(p)
3 )I denote an estimate of the incomplete tensor (M

(p)
3 )I ; obtain an ap-

proximate rank-K tensor decomposition of the incomplete tensor (M̂
(p)
3 )I ; extract estimates
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µ̌1:p(1), . . . , µ̌1:p(K) from this tensor decomposition. Theorem 4.2 by Guo et al. (2022a)
shows that if the vectors µ1:p(1), . . . ,µ1:p(K) satisfy certain regularity assumptions, they

are estimated consistently by their algorithm (up to permutation) if (M̂
(p)
3 )I is consistent.

We note that the regularity assumptions are fulfilled for generic vectors in Rp.

A computational downside of working directly with M
(p)
3 is that it grows cubically with

p. Anandkumar et al. (2014) propose to consider X̃(p) = WTX1:p ∈ RK , where W is a p×K
whitening matrix. The tensor decomposition is then computed for the corresponding K ×
K×K tensor M̃3. When K < p is fixed and p grows, this is computationally advantageous.
Theorem 5.1 by Anandkumar et al. (2014) shows that, under a generically satisfied non-

degeneracy condition, the tensor decomposition of M̃3 can be estimated consistently (up to

permutation) if M̃3 can be estimated consistently.

To use the methodology proposed by Anandkumar et al. (2014) in Algorithm 3, we

replace Step 4 by their Algorithm 1 applied to x̃(0,p) = WTx
(0)
1:p. This will estimate the

transformed mean vectors µ̃(p)(z) = WTµ1:p(z) ∈ RK . Likewise, we replace Step 5 in
Algorithm 3 by

ẑk = arg min
z

∥∥∥x̃(p) − ˇ̃µ
(p)

(z)
∥∥∥
2

where x̃(p) = WTx1:p. The separation and relative errors conditions should then be ex-

pressed in terms of the p-dependent K-vectors µ̃(p)(1), . . . , µ̃(p)(K) ∈ RK .

4 Simulation Study

Our analysis in Section 3 shows that Algorithm 3 is capable of consistently estimating the
βi-parameters via substitute adjustment for n,m, p → ∞ appropriately. The purpose of
this section is to shed light on the finite sample performance of substitute adjustment via
a simulation study.

The Xi-s are simulated according to a mixture model fulfilling Assumption 4, and the
outcome model is as in Example 1, which makes bix(z) = E[Y | Xi = x;Z = z] a partially
linear model. Throughout, we take m = n and S0 = S in Algorithm 3. The simulations
are carried out for different choices of n, p, β and µi(z)-s, and we report results on both
the mislabeling rate of the latent variables and the mean squared error (MSE) of the βi-
estimators.

4.1 Mixture model simulations and recovery of Z

The mixture model in our simulations is given as follows.

1. We set K = 10 and fix pmax = 1000 and nmax = 1000.

2. We draw µi(z)-s independently and uniformly from (−1, 1) for z ∈ {1, . . . ,K} and
i ∈ {1, . . . , pmax}.

3. Fixing the µi(z)-s and a choice of µscale ∈ {0.75, 1, 1.5}, we simulate nmax independent
observations of (X1:pmax , Z), each with the latent variable Z uniformly distributed on
{1, ...,K}, and Xi given Z = z being N (µscale · µi(z), 1)-distributed.
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Figure 2: Empirical mislabeling rates as a function of n = m and p and for three different
separation scales.

21



Adams and Hansen

We use the algorithm by Anandkumar et al. (2014), as described in Section 3.5, for
recovery. We replicate the simulation outlined above 10 times, and we consider recovery of Z
for p ∈ {50, 100, 200, 1000} and n ∈ {50, 100, 200, 500, 1000}. For replication b ∈ {1, . . . , 10}
the actual values of the latent variables are denoted zb,k. For each combination of n and p

the substitutes are denoted ẑ
(n,p)
b,k . The mislabeling rate for fixed p and n is estimated as

δ(n,p) =
1

10

10∑
b=1

1

n

n∑
k=1

1(ẑ
(n,p)
b,k ̸= zb,k).

Figure 2 shows the estimated mislabeling rates from the simulations. The results demon-
strate that for reasonable choices of n and p, the algorithm based on (Anandkumar et al.,
2014) is capable of recovering Z quite well.

The theoretical upper bounds of the mislabeling rate in Proposition 10 are monotonely
decreasing as functions of

∥∥µ1:p(z) − µ1:p(v)
∥∥
2
. These are, in turn, monotonely increasing

in p and in µscale. The results in Figure 2 support that this behavior of the upper bounds
carry over to the actual mislabeling rate. Moreover, the rapid decay of the mislabeling
rate with µscale is in accordance with the exponential decay of the upper bound in the
sub-Gaussian case.

4.2 Outcome model simulation and estimation of βi

Given simulated Z-s and Xi-s as described in Section 4.1, we simulate the outcomes as
follows.

1. Draw βi independently and uniformly from (−1, 1) for i = 1, . . . , pmax.

2. Fix γscale ∈ {0, 20, 40, 100, 200} and let γz = γscale · z for z ∈ {1, . . . ,K}.

3. With ε ∼ N (0, 1) simulate nmax independent outcomes as

Y =

pmax∑
i=1

βiXi + γZ + ε.

The simulation parameter γscale captures a potential effect of unobserved Xi-s for i >
pmax. We refer to this effect as unobserved confounding. For p < pmax, adjustment using the
naive linear regression model

∑p
i=1 βixi would lead to biased estimates even if γscale = 0,

while the naive linear regression model for p = pmax would be correct when γscale = 0.
When γscale > 0, adjusting via naive linear regression for all observed Xi-s would still lead
to biased estimates due to the unobserved confounding.

We consider the estimation error for p ∈ {125, 175} and n ∈ {50, 100, 200, 500, 1000}.

Let βb,i denote the i-th parameter in the b-th replication, and let β̂sub,n,p
b,i denote the corre-

sponding estimate from Algorithm 3 for each combination of n and p. The average MSE of

β̂
sub,n,p

b is computed as

MSE(n,p) =
1

10

10∑
b=1

1

p

p∑
i=1

(β̂sub,n,p
b,i − βb,i)

2.
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Figure 3: Average MSE for substitute adjustment using Algorithm 3 as a function of sample
size n and for two different dimensions, a range of the unobserved confounding
levels, and with µscale = 1.
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Figure 4: Difference in MSE between the substitute adjustement estimator, β̂sub, and the
oracle estimator, β̂, for µscale = 1.

Figure 3 shows the MSE for the different combinations of n and p and for different
choices of γscale. Unsurprisingly, the MSE decreases with sample size and increases with
the magnitude of unobserved confounding. More interestingly, we see a clear decrease with
the dimension p indicating that the lower mislabeling rate for larger p translates to a lower
MSE as well.

Our main theoretical result, Theorem 11, gives conditions under which the substitute
adjustment estimator is asymptotically equivalent to the oracle estimator. Notably, the
conditions ensure that the mislabeling rate tends to 0 sufficiently fast. Since we know
the Z-s in the simulation study we can compute the oracle estimator and its average MSE.
Figure 4 shows the difference in MSE by using substitutes for µscale = 1. Unsurprisingly, the
MSE of the substitute adjustment estimator is largest—but the difference almost vanishes
when p is 200 or larger and the sample size is large enough. This aligns with the mislabeling
rates also being small in this case, see Figure 2.
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4.3 Comparisons with alternative estimators

Algorithm 3 implements substitute adjustment in its most obvious way; by plugging in the
recovered values of the Z-s in the OLS estimator. In this section we compare Algorithm
3 with five other estimators. Three of these carry out the adjustment by regression on
all the observed Xi-s, and two estimators augment these regression adjustment models by
including the substitutes as regression variables.

1. Ridge and focal ridge regression. Letting X denote the n × p model matrix for the
xi,k-s and y the n-vector of outcomes, the ridge regression estimator is given as

β̂
(n,p)

Ridge = arg min
β∈Rp

min
β0∈R

∥y − β0 − Xβ∥22 + λ∥β∥22,

with λ chosen by five-fold cross-validation. The focal ridge regression estimator is
obtained by considering separate ridge regression estimators for each focal parameter
βi—leaving out βi from the penalization. That is,

β̂
(n,p)
i,Focal-Ridge = arg min

βi∈R
min
β0∈R

β−i∈Rp−1

∥y − β0 − X−iβ−i − Xiβi∥22 + λ
∥∥β−i

∥∥2
2
.

To avoid excessive computations, the penalty parameter for focal ridge is chosen as

λ
(n,p)
Ridge for all i, where λ

(n,p)
Ridge is the penalty parameter found by cross-validation for

ridge regression.

2. Augmented and focal augmented ridge regression. Letting Ẑ denote the n×K model
matrix of dummy variable encodings of the substitutes, the augmented ridge regression
estimator is given as

β̂
(n,p)

Aug-Ridge = arg min
β∈Rp

min
γ∈RK

∥∥∥∥y −
[
X, Ẑ

] [ β
γ

]∥∥∥∥2
2

+ λ∥β∥22.

Note that the γ-parameter is not penalized. Again, λ is chosen by five-fold cross-
validation. The focal augmented ridge regression estimator is defined as above by
leaving out βi from the penalization when βi is the focal parameter, and with the

penalty parameter fixed as λ
(n,p)
Aug-Ridge for all i.

3. Double ML. A double machine learning estimator is obtained by replacing the esti-
mates µ̂i and ĝ, that are functions of the substitutes in Algorithm 3, by estimates of
the regression functions

µDML
i (x−i) = E[Xi | X−i = x−i]

gDML
i (x−i) = E[Y | X−i = x−i].

We report results with these nuisance functions estimated using gradient-boosted re-
gression trees (GBTs). To avoid excessive computations, hyperparameters for learning
all p GBTs gDML

i were fixed and selected by a single five-fold cross-validation for learn-
ing gDML

1 . Similarly, hyperparameters for learning all p GBTs µDML
i were fixed and

selected by five-fold cross-validation for learning µDML
1 .
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Figure 5: Average MSE for substitute adjustment using Algorithm 3 and five alternative
estimators. Results are shown for µscale = 1, two different dimensions, and three
different levels of unobserved confounding.

25



Adams and Hansen

The average MSE is computed for all five alternative estimators just as for substitute
adjustment. Figure 5 shows results for p = 125 and p = 175. These two values of p
correspond to asymptotic (as p stays fixed and n → ∞) mislabeling rates δ around 7% and
2%, respectively. The most important observations are summarized as follows:

1. The ridge and augmented ridge regression estimators have fairly small MSEs, which
change little with sample size. The MSE is dominated by the bias induced by penal-
ization, which leads to the favorable MSE, in particular for small sample sizes. This is
most pronounced for the augmented estimator when there is unobserved confounding
(γscale > 0),

2. For the remaining four estimators the MSE decreases as expected with sample size
with almost no differences between the four estimators for γscale = 0 but notable
differences for γscale > 0.

3. Among the four estimators, the focal augmented ridge regression estimator has the
smallest MSE in all cases when γscale > 0. Algorithm 3 has a similarly small MSE
when p = 175 (where the mislabeling rate is small), but suffers a little from the higher
mislabeling rate for p = 125.

4. The focal ridge regression estimator and the double machine learning estimator have
the largest MSE when γscale > 0. They appear to become increasingly worse with an
increasing amount of unobserved confounding.

The good performance of the ridge and, in particular, the augmented ridge estimator
should not be overinterpreted. Their biases are favorable to our particular simulation setup,
as the relatively poor performance of the focal ridge estimator suggests, and the results are
not likely to generalize. The three best-performing estimators all leverage the substitutes,
with the augmented and focal augmented estimators having better small sample perfor-
mance than Algorithm 3. Note that it is unsurprising that Algorithm 3 performs similar to
the augmented and focal augmented estimators for large sample sizes and large p, because
after adjusting for the substitutes, the xi,k-residuals are roughly orthogonal if the substi-
tutes give accurate recovery, and a joint regression will give estimates similar to those of
the marginal regressions.

4.4 Concluding remarks concerning the simulation study

We made a couple of observations (data not shown) during the simulation study. We
experimented with changing the mixture distributions to other sub-Gaussian distributions
as well as to the Laplace distribution and got similar results as shown here using the
Gaussian distribution. We also implemented sample splitting, and though Proposition 10
assumes sample splitting, we found that the improved estimation accuracy attained by using
all available data for the tensor decomposition outweighs the benefit of sample splitting in
the recovery stage. Finally, we implemented double machine learning using random forests
for estimating the nuisance regression functions, but the results were significantly worse
than using GBTs.

The purpose of this simulation study is to support the asymptotic theory by investigat-
ing the finite-sample performance of substitute adjustment and comparing it to its direct
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competitors. Obviously, we could break the performance of Algorithm 3 and the augmented
ridge estimators by violating the model setup, e.g., by a more complicated structure of the
latent variable, by additional dependence structure among the Xi-s, or by a more compli-
cated outcome regression model. Although it is of interest to investigate this breakdown
and, more importantly, how to alleviate a resulting performance loss, this is beyond the
scope of the present paper.

In conclusion, our simulations show that for reasonable finite n and p, it is possible to
recover the latent variables sufficiently well for substitute adjustment to be comparable or
better than alternative methods based on, e.g., naive linear or ridge regression as well as
certain implementations of double machine learning. The better performance is achieved in
settings where the unobserved confounding is sufficiently large and recovery is sufficiently
good.

5 Discussion

We break the discussion into three parts. In the first part we revisit the discussion about
the causal interpretation of the target parameters χi

x treated in this paper. In the second
part we discuss substitute adjustment as a method for estimation of these parameters as
well as the assumption-lean parameters βi. In the third part we discuss possible extensions
of our results.

5.1 Causal interpretations

The main causal question is whether a contrast of the form χi
x − χi

x0
has a causal inter-

pretation as an average treatment effect. The framework by Wang and Blei (2019) and
the subsequent criticisms by D’Amour (2019) and Ogburn et al. (2020) are based on the
Xi-s all being causes of Y , and on the possibility of unobserved confounding. Notably, the
latent variable Z to be recovered is not equal to an unobserved confounder, but Wang and
Blei (2019) argue that using the deconfounder allows us to weaken the assumption of “no
unmeasured confounding” to “no unmeasured single-cause confounding”. The assumptions
made by Wang and Blei (2019) did not fully justify this claim, and we found it difficult to
understand precisely what the causal assumptions related to Z were.

Mathematically precise assumptions that allow for identification of causal parameters
from a finite number of causes, X1, . . . , Xp, via deconfounding are stated as Assumptions
1 and 2 by Wang and Blei (2020). We find these assumptions regarding recovery of Z
(also termed “pinpointing” in the context of the deconfounder) for finite p implausible.
Moreover, the entire framework of the deconfounder rests on the causal assumption of “weak
unconfoundedness” in Assumption 1 and Theorem 1 by Wang and Blei (2020), which might
be needed for a causal interpretation but is unnecessary for the deconfounder algorithm to
estimate a meaningful target parameter.

We find it beneficial to disentangle the causal interpretation from the definition of the
target parameter. By defining the target parameter entirely in terms of the observational
distribution of observed (or, at least, observable) variables, we can discuss the properties
of the statistical method of substitute adjustment without making causal claims. We have
shown that substitute adjustment under our Assumption 2 on the latent variable model
targets the adjusted mean irrespectively of any unobserved confounding. Grimmer et al.
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(2023) present a similar view. The contrast χi
x − χi

x0
might have a causal interpretation

in specific applications, but substitute adjustment as a statistical method does not rely
on such an interpretation or assumptions needed to justify such an interpretation. In any
specific application with multiple causes and potential unobserved confounding, substitute
adjustment might be a useful method for deconfounding, but this depends crucially on the
context and the causal assumptions we are willing to make. The factor model might be
unrealistic or it might be implausible that we can recover the latent variable, for instance
if p is small. In such cases the use of proxy or auxiliary variable methods, as considered
by Louizos et al. (2017); Miao et al. (2018, 2023); Tchetgen et al. (2024), is likely more
appropriate.

5.2 Substitute adjustment: interpretation, merits and deficits

We define the target parameter as an adjusted mean when adjusting for an infinite number
of variables. Clearly, this is a mathematical idealization of adjusting for a large number of
variables, but it also has some important technical consequences. For once, the recovery
Assumption 2(2) is a more plausible modeling assumption than recovery from a finite num-
ber of variables, and the natural requirement in Assumption 2(2) that Z can be recovered
from X−i for any i replaces the minimality of a “multi-cause separator” as Wang and Blei
(2020) require. Our assumption is that σ(Z) is sufficiently minimal in a very explicit way,
which ensures that Z does not contain information unique to any single Xi.

Additionally, our infinite variable model gives a clear qualitative distinction between the
adjusted mean of one (or any finite number of) variables and regression on all variables.
According to Wang and Blei (2019), the deconfounder algorithm not only recovers the latent
variable from all causes but it also estimates the effect of any joint intervention on all causes.
In our view, this is too ambitious and leads to the counterexamples by D’Amour (2019).
Our substitute adjustment algorithms only target one variable at a time in the adjusted
regression. The joint distribution of (Xi, Z) still needs to be non-degenerate, though, to
avoid the Section 6.5 counterexample by D’Amour (2019). Assumption 2(2) is not enough
as it does not rule out exact recovery of Z from a single Xi. For the assumption-lean
parameter, the positivity condition E[Var[Xi | Z]] > 0 in Assumption 3 serves this purpose.
We emphasize that the case of primary interest is when Z can only be recovered exactly
from an infinite number of variables, which makes this assumption benign.

We argue that substitute adjustment (and the deconfounder) should be used to target
the adjusted mean χi

x, where you adjust for all other variables except Xi. Grimmer et al.
(2023) come to a similar conclusion and argue forcefully that substitute adjustment, using a
finite number p of variables, does not have an advantage over naive regression, that is, over
estimating the regression function E [Y | X1 = x1, . . . , Xp = xp] directly. For i = 1, say, they
argue that substitute adjustment is effectively assuming a partially linear, semiparametric
regression model

E [Y | X1 = x1, . . . , Xp = xp] = β0 + β1x1 + h(x2, . . . , xp),

with the specific constraint that h(x2, . . . , xp) = g(ẑ) = g(f (p)(x2, . . . , xp)). We agree
with their analysis and conclusion; substitute adjustment is implicitly a way of making
assumptions about h. It is also a way to leverage those assumptions, either by shrinking
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the bias compared with directly estimating a misspecified (linear, say) h, or by improving
efficiency over methods that use a too flexible model of h. We believe there is room for
further studies of such bias and efficiency tradeoffs.

We also believe that there are two potential benefits of substitute adjustment, which
are not brought forward by Grimmer et al. (2023). First, the latent variable model can
be estimated without access to outcome observations. This means that the inner part of
h = g ◦ f (p) could, potentially, be estimated very accurately on the basis of a large sample
S0 in cases where it would be difficult to estimate the composed map h accurately from
S alone. Our simulation study actually illustrates this point. Since the mislabeling rates
(see Figure 2) decrease with sample size, the recovery map f (p) would be estimated more
accurately with access to unlabeled data. Second, when p is very large, e.g., in the millions,
but Z is low-dimensional, there can be huge computational advantages to running p small
parallel regressions compared to just one naive linear regression of Y on all of X1:p, let alone
p naive partially linear regressions.

5.3 Possible extensions and some practical advice

We believe that our error bound in Theorem 7 is an interesting result, which in a precise
way bounds the error of an OLS estimator in terms of errors in the regressors. This result is
closely related to the classical literature on errors-in-variables models (or measurement error
models) (Durbin, 1954; Cochran, 1968; Schennach, 2016), though this literature focuses on
methods for bias correction when the errors are non-vanishing. Kallus et al. (2018) present
a related analysis of OLS estimation errors due to adjustment by regressors with errors.

We see two possible extensions of our result. For one, Theorem 7 could easily be gener-
alized to E = Rd. In addition, it might be possible to apply the bias correction techniques
developed for errors-in-variables to improve the finite sample properties of the substitute
adjustment estimator. It would be interesting to clarify how this relates to the literature
on using proxy variables.

Our analysis of the recovery error could also be extended. The concentration inequalities
in Section 3.3 are unsurprising, but developed to match our specific needs for a high-
dimensional analysis with as few assumptions as possible. Heinrich and Kahn (2018) give
more refined results on finite mixture estimation, and Ndaoud (2022) derives an optimal
recovery method when K = 2 and the mixture distributions are Gaussian. In cases where
the mixture distributions are Gaussian, it is also plausible that specialized algorithms as
those by Kalai et al. (2012) and Gandhi and Borns-Weil (2016) are more efficient than the
methods we consider based on conditional means only.

One general concern with substitute adjustment is model misspecification. We have
done our analysis with minimal distributional assumptions, but there are, of course, two
fundamental assumptions: the assumption of conditional independence of the Xi-s given
the latent variable Z, and the assumption that Z takes values in a finite set of size K.
An important extension of our results is to study robustness to violations of these two
fundamental assumptions. We have also not considered estimation of K, and it would
likewise be relevant to understand how that affects the substitute adjustment estimator.

We believe that our theoretical results and simulations show that substitute adjustment
can be a viable method for adjusted regression—but we acknowledge that the distributional
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assumptions are strong and can be difficult to justify in practice. The purpose of this paper
is not to advocate uncritical usage of substitute adjustment but to clarify when it actually
works. Besides a correctly specified latent variable model it is also important that the
recovery error is sufficiently small, which would typically require p to be large. This is
also when substitute adjustment has the most obvious computational and statistical benefit
over naive regression, say. If p is small, adjustment via a semiparametric regression model is
likely a better choice, or we might want to consider proxy variable methods to additionally
justify a causal interpretation.
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Appendix A. Proofs and auxiliary results

A.1 Proofs of results in Section 2.1

Proof of Proposition 2 Since Xi as well as X−i take values in Borel spaces, there exists a
regular conditional distribution given Z = z of each (Kallenberg, 2021, Theorem 8.5). These
are denoted P i

z and P−i
z , respectively. Moreover, Assumption 2(2) and the Doob-Dynkin

lemma (Kallenberg, 2021, Lemma 1.14) imply that for each i ∈ N there is a measurable
map fi : RN → E such that Z = fi(X−i). This implies that P−i(B) =

∫
P−i
z (B)PZ(dz) for

B ⊆ RN measurable.

Since Z = fi(X−i) it holds that fi(P
−i) = PZ , and furthermore that P−i

z (f−1
i ({z})) = 1.

Assumption 2(1) implies that Xi and X−i are conditionally independent given Z, thus for
A,C ⊆ R and B ⊆ E measurable sets and B̃ = f−1

i (B) ⊆ RN,

P(Xi ∈ A,Z ∈ B, Y ∈ C) = P(Xi ∈ A,X−i ∈ B̃, Y ∈ C)

=

∫
1A(x)1B̃(x)P i

x,x(C)P (dx,dx)

=

∫
1A(x)1B̃(x)P i

x,x(C)

∫
P i
z ⊗ P−i

z (dx,dx)PZ(dz)

=

∫∫∫
1A(x)1B̃(x)P i

x,x(C)P i
z(dx)P−i

z (dx)PZ(dz)

=

∫∫∫
1A(x)1B(z)

∫
P i
x,x(C)P−i

z (dx)P i
z(dx)PZ(dz)

=

∫∫
1A(x)1B(z)Qi

x,z(C)P i
z(dx)PZ(dz).

Hence Qi
x,z is a regular conditional distribution of Y given (Xi, Z) = (x, z).

We finally find that

χi
x =

∫∫
y P i

x,x(dy)P−i(dx)

=

∫∫∫
y P i

x,x(dy)P−i
z (dx)PZ(dz)

=

∫∫
y

∫
P i
x,x(dy)P−i

z (dx)PZ(dz)

=

∫∫
y Qi

x,z(dy)PZ(dz).
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Proof of Proposition 5 We find that

Cov [Xi, Y | Z] = E [(Xi − E[Xi | Z])Y | Z]

= E [E [(Xi − E[Xi | Z])Y | Xi, Z] | Z]

= E [(Xi − E[Xi | Z])E [Y | Xi, Z] | Z]

= E
[
(Xi − E[Xi | Z])biXi

(Z) | Z
]

= Cov
[
Xi, b

i
Xi

(Z) | Z
]
,

which shows (9). From this representation, if bix(z) = bi(z) does not depend on x, bi(Z) is
σ(Z)-measurable and Cov

[
Xi, b

i(Z) | Z
]

= 0, whence βi = 0.
If bix(z) = β′

i(z)x + η−i(z),

Cov
[
Xi, b

i
Xi

(Z) | Z
]

= Cov
[
Xi, β

′
i(Z)Xi + η−i(Z) | Z

]
= β′

i(Z) Var [Xi | Z] ,

and (10) follows.

A.2 Auxiliary results related to Section 3.2 and proof of Theorem 7

Let Z denote the n×K matrix of dummy variable encodings of the zk-s, and let Ẑ denote
the similar matrix for the substitutes ẑk-s. With PZ and PẐ the orthogonal projections onto

the column spaces of Z and Ẑ, respectively, we can write the estimator from Algorithm 3
as

β̂sub
i =

⟨xi − PẐxi,y − PẐy⟩
∥xi − PẐxi∥22

. (27)

Here xi,y ∈ Rn denote the n-vectors of xi,k-s and yk-s, respectively, and ⟨·, ·⟩ is the standard
inner product on Rn, so that, e.g., ∥y∥22 = ⟨y,y⟩. The estimator, had we observed the latent
variables, is similarly given as

β̂i =
⟨xi − PZxi,y − PZy⟩

∥xi − PZxi∥22
. (28)

The proof of Theorem 7 is based on the following bound on the difference between the
projection matrices.

Lemma 12 Let α and δ be as defined by (16) and (17). If α > 0 it holds that

∥PZ − PẐ∥2 ≤
√

2δ

α
, (29)

where ∥ · ∥2 above denotes the operator 2-norm also known as the spectral norm.

Proof When α > 0, the matrices Z and Ẑ have full rank K. Let Z+ = (ZTZ)−1ZT

and Ẑ+ = (ẐT Ẑ)−1ẐT denote the Moore-Penrose inverses of Z and Ẑ, respectively. Then
PZ = ZZ+ and PẐ = ẐẐ+. By Theorems 2.3 and 2.4 in (Stewart, 1977),

∥PZ − PẐ∥2 ≤ min
{
∥Z+∥2, ∥Ẑ+∥2

}
∥Z− Ẑ∥2.

32



Substitute Adjustment

The operator 2-norm ∥Z+∥2 is the square root of the largest eigenvalue of

(ZTZ)−1 =


n(1)−1 0 . . . 0

0 n(2)−1 . . . 0
...

...
. . .

...
0 0 . . . n(K)−1

 .

Whence ∥Z+∥2 ≤ (nmin)−1/2 = (αn)−1/2. The same bound is obtained for ∥Ẑ+∥2, which
gives

∥PZ − PẐ∥2 ≤
1√
αn

∥Z− Ẑ∥2.

We also have that

∥Z− Ẑ∥22 ≤ ∥Z− Ẑ∥2F =
n∑

k=1

p∑
i=1

(Zk,i − Ẑk,i)
2 = 2δn,

because
∑p

i=1(Zk,i − Ẑk,i)
2 = 2 precisely for those k with ẑk ̸= zk and 0 otherwise. Com-

bining the inequalities gives (29).

Before proceeding with the proof of Theorem 7, note that

n∑
k=1

(xi,k − µi(zk))2 = ∥xi − PZxi∥22 = ∥(I − PZ)xi∥22 ≤ ∥xi∥22

since (I −PZ) is a projection. Similarly,
∑n

k=1(xi,k − µ̂i(ẑk))2 = ∥xi −PẐxi∥22 ≤ ∥x∥22, thus

ρ =
min

{
∥xi − PZxi∥22, ∥xi − PẐxi∥22

}
∥xi∥22

≤ 1.

Proof of Theorem 7 First note that since I − PẐ is an orthogonal projection,

⟨xi − PẐxi,y − PẐy⟩ = ⟨xi, (I − PẐ)y⟩

and similarly for the other inner product in (28). Moreover,

⟨xi, (I − PẐ)y⟩ − ⟨xi, (I − PZ)y⟩ = ⟨xi, (PZ − PẐ)y⟩

and

∥(I − PZ)xi∥22 − ∥(I − PẐ)xi∥22 = ∥(PẐ − PZ)xi∥22.
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We find that

β̂sub
i − β̂i =

⟨xi, (I − PẐ)y⟩
∥(I − PẐ)xi∥22

− ⟨xi, (I − PZ)y⟩
∥(I − PZ)xi∥22

= ⟨xi, (I − PẐ)y⟩
(

1

∥(I − PẐ)xi∥22
− 1

∥(I − PZ)xi∥22

)
+

⟨xi, (I − PẐ)y⟩ − ⟨xi, (I − PZ)y⟩
∥(I − PZ)xi∥22

= ⟨xi, (I − PẐ)y⟩
( ∥(PẐ − PZ)xi∥22
∥(I − PẐ)xi∥22∥(I − PZ)xi∥22

)
+

⟨xi, (PZ − PẐ)y⟩
∥(I − PZ)xi∥22

.

This gives the following inequality, using that ρ ≤ 1,

|β̂sub
i − β̂i| ≤

∥PZ − PẐ∥2∥xi∥32∥y∥2
ρ2∥xi∥42

+
∥PZ − PẐ∥2∥xi∥2∥y∥2

ρ∥xi∥22

=

(
1

ρ2
+

1

ρ

)
∥PZ − PẐ∥2

∥y∥2
∥xi∥2

≤ 2

ρ2
∥PZ − PẐ∥2

∥y∥2
∥xi∥2

.

Combining this inequality with (29) gives (19).

A.3 Auxiliary concentration inequalities. Proofs of Propositions 6 and 10

Lemma 13 Suppose that Assumption 4 holds. Let µ̌1:p(z) ∈ Rp for z ∈ E and let Ẑ =

arg minz ∥X1:p − µ̌1:p(z)∥2. Suppose that R
(p)
z,v ≤ 1

10 for all z, v ∈ E with v ̸= z then

P(Ẑ = v | Z = z) ≤ 25σ2
max

∥µ1:p(z) − µ1:p(v)∥22
. (30)

Proof Since p is fixed throughout the proof, we simplify the notation by dropping the 1:p
subscript and use, e.g., X and µ to denote the Rp-vectors X1:p and µ1:p, respectively.

Fix also z, v ∈ E with v ̸= z and observe first that

(Ẑ = v) ⊆ (∥X− µ̌(v)∥2 < ∥X− µ̌(z)∥2)

=
(
⟨X− µ̌(z), µ̌(z) − µ̌(v)⟩ < −1

2∥µ̌(z) − µ̌(v)∥22
)

=
(
⟨X− µ(z), µ̌(z) − µ̌(v)⟩ <

−
(
1
2∥µ̌(z) − µ̌(v)∥22 + ⟨µ(z) − µ̌(z), µ̌(z) − µ̌(v)⟩

))
.
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The objective is to bound the probability of the event above using Chebyshev’s inequality.
To this end, we first use the Cauchy-Schwarz inequality to get

1
2∥µ̌(z) − µ̌(v)∥22 + ⟨µ(z) − µ̌(z), µ̌(z) − µ̌(v)⟩

≥ 1
2∥µ̌(z) − µ̌(v)∥22 − ∥µ(z) − µ̌(z)∥2∥µ̌(z) − µ̌(v)∥2

= ∥µ(z) − µ(v)∥22
(
1
2B

2
z,v −R(p)

z,vBz,v

)
,

where

Bz,v =
∥µ̌(z) − µ̌(v)∥2
∥µ(z) − µ(v)∥2

.

The triangle and reverse triangle inequality give that

∥µ̌(z) − µ̌(v)∥2 ≤ ∥µ(z) − µ(v)∥2 + ∥µ̌(z) − µ(z)∥2 + ∥µ(v) − µ̌(v)∥2
∥µ̌(z) − µ̌(v)∥2 ≥

∣∣∣∥µ(z) − µ(v)∥2 − ∥µ(z) − µ̌(z)∥2 − ∥µ(v) − µ̌(v)∥2
∣∣∣,

and dividing by ∥µ(z) − µ(v)∥2 combined with the bound 1
10 on the relative errors yield

Bz,v ≤ 1 + R(p)
z,v + R(p)

v,z ≤
6

5
,

Bz,v ≥
∣∣∣1 −R(p)

z,v −R(p)
v,z

∣∣∣ ≥ 4

5
.

This gives
1
2B

2
z,v −R(p)

z,vBz,v ≥ 1
2B

2
z,v − 1

10Bz,v ≥ 6
25

since the function b 7→ b2 − 2
10b is increasing for b ≥ 4

5 .
Introducing the variables Wi = (Xi − µi(z))(µ̌i(z) − µ̌i(v)) we conclude that

(Ẑ = v) ⊆

(
p∑

i=1

Wi < − 6
25∥µ(z) − µ(v)∥22

)
. (31)

Note that E[Wi | Z = z] = 0 and Var[Wi | Z = z] = (µ̌i(z) − µ̌i(v))2σ2
i (z), and by Assump-

tion 4, the Wi-s are conditionally independent given Z = z, so Chebyshev’s inequality gives
that

P(Ẑ = v | Z = z) ≤ P

(
p∑

i=1

Wi < − 6
25∥µ(z) − µ(v)∥22

∣∣∣∣∣ Z = z

)

≤
(

25

6

)2 ∑p
i=1(µ̌i(z) − µ̌i(v))2σ2

i (z)

∥µ(z) − µ(v)∥42

≤
(

25

6

)2 σ2
max∥µ̌(z) − µ̌(v)∥22
∥µ(z) − µ(v)∥24

≤
(

25

6

)2

B2
z,v

σ2
max

∥µ(z) − µ(v)∥22

≤ 25σ2
max

∥µ(z) − µ(v)∥22
,
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where we, for the last inequality, used that B2
z,v ≤

(
6
5

)2
.

Before proceeding to the concentration inequality for sub-Gaussian distributions, we use
Lemma 13 to prove Proposition 6.
Proof of Proposition 6 Suppose that i = 1 for convenience. We take µ̌1:p(z) = µ1:p(z)

for all p ∈ N and z ∈ E and write Ẑp = arg minz ∥X2:p − µ2:p(z)∥2 for the prediction of Z
based on the coordinates 2, . . . , p. With this oracle choice of µ̌1:p(z), the relative errors are
zero, thus the bound (30) holds, and Lemma 13 gives

P
(
Ẑp ̸= Z

)
=
∑
z

∑
v ̸=z

P
(
Ẑp = v, Z = z

)
=
∑
z

∑
v ̸=z

P
(
Ẑp = v

∣∣∣ Z = z
)
P (Z = z)

≤ C

minz ̸=v

∥∥µ2:p(z) − µ2:p(v)
∥∥2
2

with C a constant independent of p. By (14), minz ̸=v

∥∥µ2:p(z) − µ2:p(v)
∥∥2
2

→ ∞ for

p → ∞, and by choosing a subsequence, pr, we can ensure that P
(
Ẑpr ̸= Z

)
≤ 1

r2
. Then∑∞

r=1 P
(
Ẑpr ̸= Z

)
< ∞, and by Borel-Cantelli’s lemma,

P
(
Ẑpr ̸= Z infinitely often

)
= 0.

That is, P
(
Ẑpr = Z eventually

)
= 1, which shows that we can recover Z from (Ẑpr)r∈N

and thus from X−1 (with probability 1). Defining

Z ′ =

{
lim
r→∞

Ẑpr if Ẑpr = Z eventually

0 otherwise

we see that σ(Z ′) ⊆ σ(X−1) and Z ′ = Z almost surely. Thus if we replace Z by Z ′ in
Assumption 4 we see that Assumption 2(2) holds.

Lemma 14 Consider the same setup as in Lemma 13, that is, Assumption 4 holds and

R
(p)
z,v ≤ 1

10 for all z, v ∈ E with v ̸= z. Suppose, in addition, that the conditional distribution
of Xi given Z = z is sub-Gaussian with variance factor vmax, independent of i and z, then

P(Ẑ = v | Z = z) ≤ exp

(
− 1

50vmax
∥µ1:p(z) − µ1:p(v)∥22

)
. (32)

Proof Recall that Xi given Z = z being sub-Gaussian with variance factor vmax means
that

logE
[
eλ(Xi−µi(z))

∣∣∣ Z = z
]
≤ 1

2
λ2vmax
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for λ ∈ R. Consequently, with Wi as in the proof of Lemma 13, and using conditional
independence of the Xi-s given Z = z,

logE
[
eλ

∑p
i=1 Wi

∣∣∣ Z = z
]

=

p∑
i=1

logE
[
eλ(µ̌i(z)−µ̌i(v))(Xi−µi(z))

∣∣∣ Z = z
]

≤ 1

2
λ2vmax

p∑
i=1

(µ̌i(z) − µ̌i(v))2

=
1

2
λ2vmax∥µ̌1:p(z) − µ̌1:p(v)∥22.

Using (31) in combination with the Chernoff bound gives

P(Ẑ = v | Z = z) ≤ P

(
p∑

i=1

Wi < − 6
25

∥∥µ1:p(z) − µ1:p(v)
∥∥2
2

∣∣∣∣∣ Z = z

)

≤ exp

(
−
(

6

25

)2
∥∥µ1:p(z) − µ1:p(v)

∥∥4
2

2vmax∥µ̌1:p(z) − µ̌1:p(v)∥22

)

= exp

(
− 1

2vmax

(
6

25

)2

B−2
z,v

∥∥µ1:p(z) − µ1:p(v)
∥∥2
2

)

≤ exp

(
− 1

50vmax

∥∥µ1:p(z) − µ1:p(v)
∥∥2
2

)
,

where we, as in the proof of Lemma 13, have used that the bound on the relative error
implies that Bz,v ≤ 6

5 .

Proof of Proposition 10 The argument proceeds as in the proof of Proposition 6. We
first note that

P
(
Ẑ ̸= Z

)
=
∑
z

∑
v ̸=z

P
(
Ẑ = v, Z = z

)
=
∑
z

∑
v ̸=z

P
(
Ẑ = v

∣∣∣ Z = z
)
P (Z = z) .

Lemma 13 then gives

P
(
Ẑ ̸= Z

)
≤ 25Kσ2

max

sep(p)
.

If the sub-Gaussian assumption holds, Lemma 14 instead gives

P
(
Ẑ ̸= Z

)
≤ K exp

(
− sep(p)

50vmax

)
.
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A.4 Proof of Theorem 11

Proof of Theorem 11 Recall that

δ =
1

n

n∑
k=1

1(ẑk ̸= zk),

hence by Proposition 10

E[δ] = P(Ẑk ̸= Z)

≤ P
(
Ẑk ̸= Z

∣∣∣∣ max
z ̸=v

R(p)
z,v ≤ 1

10

)
+ P

(
max
z ̸=v

R(p)
z,v > 1

10

)
≤ 25Kσ2

max

sep(p)
+ K2 max

z ̸=v
P
(
R(p)

z,v > 1
10

)
. (33)

Both of the terms above tend to 0, thus δ
P→ 0.

Now rewrite the bound (19) as

|β̂sub
i − β̂i| ≤

√
δ

(
2
√

2

ρ2
√
α

∥y∥2
∥xi∥2

)
︸ ︷︷ ︸

=Ln

From the argument above,
√
δ

P→ 0. We will show that the second factor, Ln, tends to a
constant, L, in probability under the stated assumptions. This will imply that

|β̂sub
i − β̂i|

P→ 0,

which shows case (1).
Observe first that

∥xi∥22 =
1

n

n∑
k=1

x2i,k
P→ E[X2

i ] ∈ (0,∞)

by the Law of Large Numbers, using the i.i.d. assumption and the fact that E[X2
i ] ∈ (0,∞)

by Assumption 4. Similarly, ∥y∥22
P→ E[Y ] ∈ [0,∞).

Turning to α, we first see that by the Law of Large Numbers,

n(z)

n

P→ P(Z = z)

for n → ∞ and z ∈ E. Then observe that for any z ∈ E

|n̂(z) − n(z)| ≤
n∑

k=1

|1(ẑk = z) − 1(zk = z)| ≤
n∑

k=1

1(ẑk ̸= zk) ≤ nδ.

Since δ
P→ 0, also

n̂(z)

n

P→ P(Z = z),
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thus

α =
nmin

n
= min

{
n(1)

n
, . . . ,

n(K)

n
,
n̂(1)

n
, . . . ,

n̂(K)

n

}
P→ min

z∈E
P(Z = z) ∈ (0,∞).

We finally consider ρ, and to this end we first see that

1

n
∥(I − PZ)xi∥22 =

1

n

n∑
k=1

(xi,k − µ(zk))2
P→ E

[
σ2
i (Z)

]
∈ (0,∞).

Moreover, using Lemma 12,∣∣∥(I − PẐ)xi∥22 − ∥(I − PZ)xi∥22
∣∣ =

∣∣∥(PẐ − PZ)xi∥22 + 2|⟨(I − PẐ)xi, (PẐ − PZ)xi⟩
∣∣

≤ ∥PẐ − PZ∥22∥xi∥22 + 2∥PẐ − PZ∥2∥xi∥22

≤

(
2δ

α
+

√
2δ

α

)
∥xi∥22.

Hence

ρ
P→

E
[
σ2
i (Z)

]
E[X2

i ]
∈ (0,∞).

Combining the limit results,

Ln
P→ L =

2
√

2E[X2
i ]2

E
[
σ2
i (Z)

]2√
minz∈E P(Z = z)

√
E[Y 2]

E[X2
i ]

∈ (0,∞).

To complete the proof, suppose first that sep(p)
n → ∞. Then

√
n|β̂sub

i − β̂i| ≤
√
nδLn

By (33) we have, under the assumptions given in case (2) of the theorem, that nδ
P→ 0, and

case (2) follows.

Finally, in the sub-Gaussian case, and if just hn = sep(p)
log(n) → ∞, then we can replace (33)

by the bound

E[δ] ≤ K exp

(
− sep(p)

50vmax

)
+ K2 max

z ̸=v
P
(
R(p)

z,v > 1
10

)
.

Multiplying by n, we get that the first term in the bound equals

Kn exp

(
− sep(p)

50vmax

)
= K exp

(
− sep(p)

50vmax
+ log(n)

)
= K exp

(
log(n)

(
1 − hn

50vmax

))
→ 0

for n → ∞. We conclude that the relaxed growth condition on p in terms of n in the

sub-Gaussian case is enough to imply nδ
P→ 0, and case (3) follows.

39



Adams and Hansen

By the decomposition
√
n(β̂sub

i − βi) =
√
n(β̂sub

i − β̂i) +
√
n(β̂i − βi)

it follows from Slutsky’s theorem that in case (2) as well as case (3),

√
n(β̂sub

i − βi) =
√
n(β̂i − βi) + oP (1)

D→ N (0, w2
i ).

Appendix B. Gaussian mixture models

This appendix contains an analysis of a latent variable model with a finite E, similar to the
one given by Assumption 4, but with Assumption 4(1) strengthened to

Xi | Z = z ∼ N (µi(z), σ2
i (z)).

Assumptions 4(2), 4(3) and 4(4) are dropped, and the purpose is to understand precisely
when Assumption 2(2) holds in this model. That is, when Z can be recovered from X−i.
To keep notation simple, we will show when Z can be recovered from X, but the analysis
and conclusion is the same if we left out a single coordinate.

The key to this analysis is a classical result due to Kakutani. As in Section 2, the
conditional distribution of X given Z = z is denoted Pz, and the model assumption is that

Pz =
∞⊗
i=1

P i
z (34)

where P i
z is the conditional distribution of Xi given Z = z. For Kakutani’s theorem below

we do not need the Gaussian assumption; only that P i
z and P i

v are equivalent (absolutely

continuous w.r.t. each other), and we let dP i
z

dP i
v

denote the Radon-Nikodym derivative of P i
z

w.r.t. P i
v.

Theorem 15 (Kakutani (1948)) Let z, v ∈ E and v ̸= z. Then Pz and Pv are singular
if and only if

∞∑
i=1

− log

∫ √
dP i

z

dP i
v

dP i
v = ∞. (35)

Note that

BCi
z,v =

∫ √
dP i

z

dP i
v

dP i
v

is known as the Bhattacharyya coefficient, while − log
(
BCi

z,v

)
and

√
1 − BCi

z,v are known

as the Bhattacharyya distance and the Hellinger distance, respectively, between P i
z and P i

v.
Note also that if P i

z = hiz · λ and P i
v = hiv · λ for a reference measure λ, then

BCi
z,v =

∫ √
hizh

i
v dλ.
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Proposition 16 Let P i
z be the N (µi(z), σ2

i (z))-distribution for all i ∈ N and z ∈ E. Then
Pz and Pv are singular if and only if either

∞∑
i=1

(µi(z) − µi(v))2

σ2
i (z) + σ2

i (v)
= ∞ or (36)

∞∑
i=1

log

(
σ2
i (z) + σ2

i (v)

2σi(z)σi(v)

)
= ∞ (37)

Proof Letting µ = µi(z), ν = µi(v), τ = 1/σi(z) and κ = 1/σi(v) we find

BCi
z,v =

∫ √
τ√
2π

exp

(
−τ2

2
(x− µ)2

)
κ√
2π

exp

(
−κ2

2
(x− ν)2

)
dx

=

√
τκ

2π

∫
exp

(
−(τ2 + κ2)x2 − 2(τ2µ + κ2ν)x + (τ2µ2 + κ2ν2)

4

)
dx

=

√
τκ

2π

√
4π

τ2 + κ2
exp

(
(τ2µ + κ2ν)2

4(τ2 + κ2)
− τ2µ2 + κ2ν2

4

)
=

√
2τκ

τ2 + κ2
exp

(
−τ2κ2(µ− ν)2

4(τ2 + κ2)

)
=

√
2σi(z)σi(v)

σ2
i (z) + σ2

i (z)
exp

(
− (µi(z) − µi(v))2

4(σ2
i (z) + σ2

i (z))

)
.

Thus

∞∑
i=1

− log
(
BCi

z,v

)
=

1

2

∞∑
i=1

log

(
σ2
i (z) + σ2

i (v)

2σi(z)σi(v)

)
+

1

4

∞∑
i=1

(µi(z) − µi(v))2

σ2
i (z) + σ2

i (v)
,

and the result follows from Theorem 15.

Corollary 17 Let P i
z be the N (µi(z), σ2

i (z))-distribution for all i ∈ N and z ∈ E. There is
a mapping f : RN → E such that Z = f(X) almost surely if and only if either (36) or (37)
holds.

Proof If either (36) or (37) holds, Pz and Pv are singular whenever v ̸= z. This implies
that there are measurable subsets Az ⊆ RN for z ∈ E such that Pz(Az) = 1 and Pv(Az) = 0
for v ̸= z. Setting A = ∪zAz we see that

P (A) =
∑
z

Pz(A)P(Z = z) =
∑
z

Pz(Az)P(Z = z) = 1.

Defining the map f : RN → E by f(x) = z if x ∈ Az (and arbitrarily on the complement of
A) we see that f(X) = Z almost surely.
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On the other hand, if there is such a mapping f , define Az = f−1({z}) for all z ∈ E.
Then Az ∩Av = ∅ for v ̸= z and

Pz(Az) =
P(X ∈ Az, Z = z)

P(Z = z)
=

P(f(X) = z, Z = z)

P(Z = z)

=
P(f(X) = Z,Z = z)

P(Z = z)
=

P(Z = z)

P(Z = z)
= 1.

Similarly, for v ̸= z

Pv(Az) =
P(X ∈ Az, Z = v)

P(Z = v)
=

P(f(X) = z, Z = v)

P(Z = v)

=
P(f(X) ̸= Z,Z = v)

P(Z = v)
=

0

P(Z = v)
= 0.

This shows that Pz and Pv are singular, and by Proposition 16, either (36) or (37) holds.
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