Environmetrics

| RESEARCH ARTICLE CEIEED

'.) Check for updates

WILEY

Stacking Weights and Model Space Selection in Frequentist
Model Averaging for Benchmark Dose Estimation

Jens Riis Baalkilde!

| Niels Richard Hansen? | Signe Marie Jensen!

!Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark | 2Department of Mathematical Sciences, University of

Copenhagen, Copenhagen, Denmark

Correspondence: Jens Riis Baalkilde (jba@plen.ku.dk)

Received: 26 January 2024 | Revised: 23 January 2025 | Accepted: 29 January 2025

Funding: This work was supported by NOVO Nordisk Fonden (Grant number NNF210C0068954).

Keywords: AIC | dose-response analysis | frequentist model averaging | multi-model inference | stacked regression

ABSTRACT

In dose-response modeling, several models can often yield satisfactory fits to the observed data. The current practice in risk assess-

ment is to use model averaging, which is a way to combine multiple models in a weighted average. A key parameter in risk

assessment is the benchmark dose, the dose resulting in a predefined abnormal change in response. Current practice when apply-

ing frequentist model averaging is to use weights based on the Akaike Information Criterion (AIC). This paper introduces stacking

weights as an alternative for dose-response modeling and generalizes a Diversity Index from dichotomous to continuous responses
for model space selection. Three simulation studies were conducted to evaluate the new methods. They showed that, in three real-
istic scenarios, recommended strategies generally performed well, with stacking weights outperforming AIC weights in several

cases. Strategies involving model selection were less effective. However, in a challenging scenario, none of the methods performed

well. Due to the promising results of stacking weights, they have been added to the R package “bmd.”

1 | Introduction

In toxicological and ecotoxicological risk assessment, toxic agents
are evaluated in order to determine safe exposure levels. One
important tool in risk assessment is the so-called benchmark dose
(BMD), which is a dose level resulting in a predefined and adverse
deviation from the background response (Haber et al. 2018;
Crump 1984). The lower limit of the associated one-sided 95%
confidence interval, denoted the benchmark dose lower limit
(BMDL), is often used as the starting point for defining limit
values of various toxic compounds. The BMD can be defined
for continuous, binomial, and count response data as well as
time-to-event data (Jensen et al. 2021).

The literature concerning the BMD methodology has developed
rapidly during the last few decades (Jensen et al. 2019). Several
efforts have focused on how to deal with model misspecifica-
tion (West et al. 2012). For example, Piegorsch et al. (2014) and
Piegorsch et al. (2012) deal with this issue through a nonpara-
metric approach. However, the current practice in BMD esti-
mation is to estimate the BMD by combining several models
using a technique called model averaging (MA) (Kang et al. 2000;
Namata et al. 2008; Wheeler and Bailer 2009; Ritz et al. 2013;
Aerts et al. 2020). MA can be applied in a Bayesian or a fre-
quentist context. This manuscript will focus on frequentist model
averaging. Bayesian MA for dose-response modeling is investi-
gated in Wheeler and Bailer (2007), Wheeler et al. (2020), and
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Wheeler et al. (2022), and the software package ToxicR (Wheeler
etal. 2023) is available for utilizing Bayesian MA in dose-response
modeling.

MA works by constructing an estimator of the parameter of inter-
est, based on a weighted average of the individual models. This
can either be done as a weighted average of the estimates of the
parameter of interest within the individual models or by com-
bining the individual models into one MA dose-response model,
from which the parameter of interest can be estimated. Both types
of MA (referred to as post and curve MA in this paper) are recom-
mended in the literature; however, a comparison of the two types
is missing.

One important component in the definition of an MA estima-
tor is the weights. The currently used weights for frequentist
MA in BMD estimation are based on the AIC (Akaike Infor-
mation Criterion Akaike 1973.) values for each of the included
models (Ritz et al. 2013; Wheeler and Bailer 2009). However,
there are other ways to construct weights. Stacked regression
(Breiman 1996) is an MA method that finds the weighted combi-
nation of the fitted models with minimal squared prediction error.
In contrast to weights based on the AIC values, this approach
considers the final fit of the weighted model. The correspond-
ing weights will be denoted stacking weights. Van der Laan
et al. (2007) refer to this type of weights as SuperLearner weights.
They have shown that the predictive performance of a model
based on these weights is at least as good as the best individual
model. While the idea is promising, this type of weight has not yet
been utilized in frequentist MA for dose-response analysis and
BMD estimation.

Another important component in MA is the set of candidate
models to include in the weighted average. Current practice
in this regard is to use a set of diverse models, often includ-
ing the classical dose-response models such as the Log-Logistic,
the Log-Normal, and the two types of Weibull models. Aerts
et al. (2020) extended the set of dose-response models by intro-
ducing additional models based on various distribution func-
tions, including the Gamma and Lomax distribution functions.
Alternatively, augmenting the model space with models based
on fractional polynomials has been suggested (Faes et al. 2003;
Namata et al. 2008; Ritz et al. 2013).

Since the AIC weights do not take the fit of the MA model into
account, it is suspected that MA using the AIC weights is particu-
larly affected by the choice of model space and the possible inclu-
sion of poorly fitting models in the model space. Wheeler and
Bailer (2007) and Das (2018) found that when the true model lies
on the boundary of the model space, MA using the AIC weights
performed poorly.

Wheeler and Bailer (2009) concluded that in cases where the
models in the model space in general did not provide an accept-
able fit to the observations, the resulting MA BMD estimates
were highly biased, and coverage of the corresponding confi-
dence intervals was poor. In one of the cases, where the MA
procedure performed poorly, they tried expanding the model
space with so-called “supra-linear” dose-response models, and
prior to the MA step, they included a model space selection
procedure, where models were only included if the Pearson 2

goodness-of-fit statistic was non-significant at a 10% level. This
initial screening of the models yielded a huge improvement in
the performance of the MA estimate of the BMD.

Kim et al. (2014) suggested that a good model space is charac-
terized by the goodness of fit of the individual models, as well as
some degree of diversity around the parameter of interest. Based
on this, they suggested a Diversity Index for model space selec-
tion, which takes exactly these two properties into account. Their
proposed Diversity Index was, however, only defined for a bino-
mial response and increasing dose-response curves, and no exten-
sive study of its properties for MA has been conducted.

This paper takes a critical look at current practice for fre-
quentist MA approaches to BMD estimation by comparing the
standard approaches to different alternatives. These alterna-
tives include applying the stacking weights and using alterna-
tive model spaces, including a model space selection procedure
based on a modified version of the Diversity Index defined by
Kim et al. (2014). The methods are illustrated in two small data
examples from the literature, and their performance is examined
in an extensive simulation study. Furthermore, convergence of
the AIC and stacking weights is considered in a separate simula-
tion study.

2 | Theory and Methods

2.1 | Dose-Response Analysis

A dose-response model is a model of the expected response
level Y, given a dose level x, for a set of observations
(x1,Y7), -..5(x,,Y,) (Ritz et al. 2020). Valid dose levels are pos-
itive numbers (including 0), and the responses can be contin-
uous or discrete depending on the type of variable. When the
response is continuous, a dose-response model is typically of
the form

Y, = g(x) + € 6

where E(g,,) =0 and g : [0,00) — R is the true dose-response
curve.

Model averaging using AIC weights, defined in Section 2.2.1,
requires specific distributional assumptions about the additive
errors ¢,,, while stacking weights do not. Stacking weights are,
however, most appropriate if the errors have approximately the
same variance, and we have throughout the paper taken €,, to be
normally distributed with mean 0 and variance 6> —both in the
computations of AIC weights and in the simulation studies.

In applications, we model the dose-response curve by a
(non-linear) parameterized function, g,, where the parameter
vector, 0, determines the shape of the curve, and these parame-
ters are estimated based on the observations. Common choices of
dose-response models are listed in Table 1. They all include lower
and upper limits, captured by the parameters ¢ and d, respec-
tively. The fixed parameters p; and p, in the fractional polynomial
models are chosen as variations of p; € {-2,-1,-0.5} and p, €
{0.5,1, 2} throughout this paper, inspired by Ritz et al. (2013).

20f 20

Environmetrics, 2025

85UB017 SUOWILIOD 3A1I1D) 3|cedl|dde auy Ag pausenob a1e sapie YO ‘88N JO SaINnJ 10} A2eiq18UIIUO AB|IM UO (SUO 3 IPUCD-PUR-SUIR}LI0D A8 | 1M AReAq | BU1|UO//SONY) SUORIPUOD PUe SWLB L 83U} 89S *[5202/20/8T] Uo Ariq1Tauiuo 1M ‘961pBuoy Ba Ad 20002 AUS/Z00T OT/I0p/L0d"AB| 1M Afeq joul JUo//SARY LD pepeojumoq ‘Z ‘S20z XS60660T



TABLE1 | Popular choices for dose-response models, where ® in the Log-Normal model is the cumulative distribution function of the standard

normal distribution. The parameters p; and p, in the Fractional Polynomial are fixed parameters that must be set prior to fitting the model. In all models,

it is required that ¢ < d.

Model name Abbreviation Function g, . , .(x)
.. . d—c

Log-Logistic (Hill) LL Vv ——]
Log-Normal LN ¢+ (d — c)® [b(log x — loge)|
Weibull 1 w1 ¢+ (d — c)exp [—exp(b(log x — loge))]
Weibull 2 W2 c+(d—-c) [1 — exp(— exp(b(log x — log e)))]

. . c e e d—c
Fractional Polynomial (logistic link) FPL(p,, p,) + TP RGP Fe R et ]

211 | Benchmark Dose Methodology

The BMD can be defined in several ways. The definition used
depends on the type of response variable considered (binomial,
count, or continuous) and the aim of the analysis. This paper
focuses on the case with a continuous response variable. There
are several BMD definitions for continuous data (Crump 1995;
Jensen et al. 2019) with the relative risk and the hybrid approach
being the two most commonly used.

Let BMR denote the pre-specified Benchmark Response (typi-
cally in the range 1%-10%). Let g denote the dose-response func-
tion. The Benchmark dose (BMD) by the “relative risk” definition
(EFSA Scientific Committee et al. 2022) is the dose level satisfying

g(BMD) — £(0)

BMR = 2
8(0)
for an increasing dose-response curve, and
0) — g(BMD
BMR = 8(0) — g( ) 3)

g(0)

for a decreasing dose-response curve. The hybrid approach
(Crump 1995) relies on a background level defined as

xo—g(O)) @)

po=1- CD( .
where x, is a prespecified cutoff (for example, a quantile of the
response in the unexposed population), ¢ is the residual standard
deviation, and @ is the cumulative distribution function of the
standard normal distribution. The BMD is then defined either by
the extra risk definition as the solution to

1-— q,(xo—gusMD)) — 5

[

BMR = (5)
1-p,
and by the added risk definition as the solution to
— g(BMD
]31\/[R=1_q:.<w>_p0 (6)
o

The European Food Safety Authority (EFSA) and the United
States Environmental Protection Agency (US EPA) recommend
the relative risk definition with BMR selected based on biologi-
cal considerations of an adverse response, or, if no information
on a biologically adverse response level is available, a BMR level
corresponding to one control standard deviation from the control

group (EFSA Scientific Committee et al. 2022; Davis et al. 2011).
US EPA et al. (2012) also notes the potential for using the hybrid
approach.

For the remaining of this work, we will consider the relative risk
definition. However, the methods introduced and evaluated are
equally applicable for the hybrid approach as well as other BMD
definitions.

To account for uncertainty of data when estimating the BMD
value, the lower limit of a (95%) one-sided confidence interval
for the BMD estimate, denoted by BMDL, is often used in risk
assessment.

2.2 | Frequentist Model Averaging

Let M = {M,, ..., M, } denote a set of k dose-response models.
Let u be a parameter of interest (for instance, the BMD). Two
types of estimators of u can be constructed by combining the
models in M in a weighted average. Let w = (w;, ..., w,) denote
aset of weights such that Zfllwi =land0<w, <1l,i=1,... k.
The weights can be combined with the individual estimates of the
parameter /i, ..., fi, in the following way

k
Avaw 1= zwiﬁi (7
i=1

This kind of MA estimator, where the MA step is applied after
estimation of the parameter of interest, will be referred to as
post-MA estimation. Another approach is to combine the indi-
vidual fitted curves g, ..., g, in an MA curve

k
Buaw(®) 1= D W0,8,(x) ®)
i=1

Subsequently, the parameter of interest can be estimated based
on this curve. This technique will be referred to as curve MA
estimation.

2.2.1 | Weight Choice

Buckland et al. (1997) suggested a set of weights based on
AIC (Akaike 1973) values for the fitted models, see also Burn-
ham and Anderson (2003) and Claeskens and Hjort (2008).
These weights have been widely adopted in frequentist MA in
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dose-response analysis, particularly for BMD estimation. The
weights are defined as follows:

exp (—1AIC,->
~AIC _ 2

i - k 1
2,‘:1 exp (—EAICJ->

where AIC; denotes the Akaike Information Criterion for model
M;. In general, AIC; = =2/, + 2p;, where p; is the number of
parameters in model M, and /, is the log-likelihood of model M,
evaluated in the maximume-likelihood estimate of the parameters.
For a dose-response model of the form (1), a common model of ¢,
is a normal distribution with mean 0 and variance o2, in which
case the maximume-likelihood estimate, g;, of the dose-response
curve for model M, is found by least squares, and the correspond-
ing maximum-likelihood variance estimate is

©)

Y

- &(x, )

Using the normal model, -2/, = nlog(&,.z) +n and the AIC
weights are in this case given as

-1
A n
O
HAIC = (1 + z‘ <T'> ep,—p,)
i 6.
j#i NCi

These are the most widely used AIC weights, and they will also
be used throughout this paper.

For curve MA, the resulting BMD estimate is a plug-in estimate of
the MA curve. In this case, finding the weighted curve that mini-
mizes the mean squared prediction error (MSPE) can be seen as a
way to obtain the best-fitting curve. As shown in Lemma S1 in the
Supporting Information, the AIC weights generally do not lead to
the minimal squared prediction error of the true dose-response
curve. The stacking weights, as introduced by Breiman (1996),
explicitly do so.

With the fitted curves, g, ...
defined as

, 81, the optimal weights, wS%#¥, are

i 2
WS = arg min Z(Zw i8;(x,,) — 8(x,, ))

2,11 m=1 \j

0<w; <1

These weights are estimated by V-fold cross-validation as
described in detail in Algorithm 1.

The estimated weights can then be applied on the estimated

curves, §;, ..., §;, obtained by fitting all models on the entire data
set, resulting in a stacked MA dose-response curve

k
gAMA,wSmck(x) = Z StackA ( )
Jj=1

Alternatively, although less obvious, the stacking weights can be
used in post-MA as well.

ALGORITHM1 | Stacking weights.

1. Randomly split the data into V" distinct data sets, denoted
GLYD, (YD), VYY),

2. Forve{l,...,V}:
Fit all models, M, on the data set consisting of all obser-
vations excluding (x”, Y"). Denote the fitted curves on this
data set by (87,85, ..., 8})-
Then, find the convex combination of the fitted curves that
minimizes the squared prediction error on the data set
(xV, YV):

WSk = argmin Z

k 2
2w =Y )
T 0= (x,Y)ERe, YY) \ =1

O<w;<l

3. Return the final weights

4
~ Stz 1 Z ~ Stack.v
wStdck L= wStdck,L.
V

v=1

TABLE2 | Comparison of AIC weights and stacking weights. The
optimal MA curve is defined as the MA curve minimizing the squared
prediction error. *See Lemma S1.

AIC weights Stacking weights

Currently used in Yes No
dose-response
analysis
Motivation Information =~ Minimize mean squared

theory prediction error of MA

curve
Random for a No Yes, if V' is less than the
fixed data set number of observations,
the stacking weights
depend on the random
split of data

Convergence to No* Yes

optimal MA curve

Since the stacking weights depend on a random split of the
dataset, they are not fixed for a given observation. In contrast, AIC
weights are fixed because they depend solely on the density func-
tion evaluated at the maximum likelihood estimate. Ideally, the
data should be split within the dose levels, such that the design
is fixed within each data split. However, if V' is larger than the
number of repetitions for each dose, this is not possible. Various
values of V' are investigated in Section 5.

General characteristics of the AIC weights and the stacking

weights are summarized in Table 2.

2.3 | Model Space Selection

In MA, the model space plays an important role. Several pub-
lished simulation studies suggest that it is sufficient to have a
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model space consisting of a range of models providing somewhat
satisfactory fits to the observations (Wheeler and Bailer 2009; Ritz
etal.2013; Namata et al. 2008; Aerts et al. 2020). However, various
schemes for selecting a suitable (sub)set of models are suggested
as well (Wheeler and Bailer 2009; EFSA 2011; Kim et al. 2014).

23.1 | F-Test

In order to avoid basing the MA estimate on poorly fitting models,
a model space selection strategy based on conducting an F-test
(inspired by Wheeler and Bailer (2009) where a model space
selection procedure based on a y? goodness-of-fit test is used) is
investigated. In the following, let M = {M,, ..., M, } denote the
set of fitted models. The procedure works as follows:

For each model M; € M,

1. Fit two linear normal models on the residuals from the
model. The first model is the normal null model with mean
0 and constant variance. The second model is a one-way
ANOVA model with a separate mean value for each dose
level and constant variance.

2. Carry out an F-test comparing the two linear normal mod-
els. If the F-test yields a p-value above 0.05, model M, is used
in the MA step. If not, the model is discarded.

This procedure is an automated procedure that determines if each
model yields an acceptable fit to the observations. The intuition
behind the procedure is that if model M, is the correct model, the
normal null model is the correct model for the residuals, and if
model M, is not the correct model, the one-way ANOVA model
for the residuals is correct, under the assumption of normality,
independence, and constant variance. Consequently, if M, fits the
observations well, the model should be accepted for use in the MA
step, and if not, M, should be discarded.

2.3.2 | A Diversity Index for Model Space Selection

Kim et al. (2014) suggested a Diversity Index (DI) for model
space selection in the case of binomial response data and strictly
increasing dose-response curves. In the following, their method
is extended to a DI for model space selection in the case of con-
tinuous response data and either strictly increasing or strictly
decreasing dose-response curves.

Definition 1. (Diversity Index). Let M ={M,,...,M,}
denote the full model space of size k. Let M, C M be a subset
of the model space with k; = |My| > 2. Let w = {wy, ..., w;}
denote a set of weights for each of the k models, and let g5 ,,(x) =
Zl’;l w; §;(x) denote the MA curve based on all models. The DI for
the subspace M, is given by

k krn A
DI (My) 1= @)= 3 K@ uaw)  (10)
0j:M;eM,

where K* is the local pseudo Kullback-Leibler absolute diver-
gence, which is given by

U
K*(g9.8)) := / lo
L

<|g(’)(X)I
lg; (0l

>gg<x>‘ & an

for pre-specified lower and upper limits, L. and U, where the
derivatives of the dose-response curves are taken with respect to
the dose x, and

h,(w) = Z w?

i:M,eM,
The model space selected by the DI is then

MG(w, A,y) 1= argmax DI, ; (M)
MoCM,|M,|>2

The DI includes four tuning parameters: 4, y, and the upper and
lower limits in the local pseudo Kullback-Leibler absolute diver-
gence. Kim et al. (2014) suggested that the latter two are chosen
such that they contain the dose range in which diversity among
the included models is desired.

The parameters A and y can be tuned to control the size of
the suggested subspace of models. For a fixed y > 0, increasing
A will reduce the selected subspace in such a way that any
excluded model does not reappear for a larger value of 1. For a
fixed 4 > 0, the selected subspace will converge to the subspace
consisting of the two most divergent models in the limit y — oo
(Kim et al. 2014). Values of 4 and y in the range of 1 to 5 were
investigated in this paper. These values were chosen to explore
the effectiveness of the Diversity Index (DI) across a spectrum,
ranging from cases where few or no models (0-2) were removed
from the model space to scenarios where several models (5+)
were excluded.

2.4 | Implementation

The methods are implemented in R (R Core Team 2024). BMD
estimation by MA was implemented in the bmd package (Jensen
et al. 2020a), and recently the stacking weights were added to the
package for all available BMD definitions by the authors of this
paper. The bmd package is available at GitHub in the www.github.
com/doseResponse repository. The convex optimization in the
estimation of the stacking weights was implemented using the
CVXR package (Fu et al. 2017). An implementation of the DI is
included in the Supporting Information.

3 | Data Example I: Lemna Minor Treated With
Aciflourfen

The methods described in the previous section are demonstrated
on a data example with observations of relative growth rate of
Lemna minor treated with one of eight doses of the herbicide
Aciflourfen and untreated control observations. Three replicates
were included for each of the dose levels, and 12 replicates were
included for the control level. The plants grew for seven days
after the application of the treatment. The plants were then pho-
tographed next to a 1 cm? white square with a digital camera, and
the frond area was determined by pixel counts. The experiment
was described in detail in Cedergreen and Streibig (2005). The full
data set is available in the R package drcData.

3.1 | Analysis

In the analysis of the Aciflourfen data, the model space M con-
sisted of eight models, including the Log-Logistic, Log-Normal,

50f 20

85UB017 SUOWILIOD 3A1I1D) 3|cedl|dde auy Ag pausenob a1e sapie YO ‘88N JO SaINnJ 10} A2eiq18UIIUO AB|IM UO (SUO 3 IPUCD-PUR-SUIR}LI0D A8 | 1M AReAq | BU1|UO//SONY) SUORIPUOD PUe SWLB L 83U} 89S *[5202/20/8T] Uo Ariq1Tauiuo 1M ‘961pBuoy Ba Ad 20002 AUS/Z00T OT/I0p/L0d"AB| 1M Afeq joul JUo//SARY LD pepeojumoq ‘Z ‘S20z XS60660T


http://www.github.com/doseResponse
http://www.github.com/doseResponse

two types of Weibull models, and four Fractional Polyno-
mial models with all combinations of fixed parameters p, €
{-2,-1},p, € {0.5,1} (see Table 1). All models were fitted in
the four-parameter version where the lower and upper limits of
the dose-response curve were estimated. The corresponding fitted
dose-response curves and all observations can be seen in Figure 1.

The AIC weights and the stacking weights for the fitted mod-
els are listed in Table 3. Three-fold cross-validation was chosen
since there were three replicates per treatment, ensuring a fixed
design for each data split. In this case, the AIC weights favored

‘.r

=
N
h

o
e
1

Relative growth rate (cm cm™' week ™)

=
=}
"

0 10 100 1000 5000
ug A.l. 1" Aciflourfen

FIGURE1 | All models fitted to the Aciflourfen data. The model
abbreviations are explained in Table 1. All models were fitted in their
four-parameter version, where the upper as well as the lower limit of the
curve were estimated.

the Log-Logistic, the Log-Normal, and the Weibull 1 models,
while the stacking weights favored the Log-logistic, Weibull 1,
and FPL(-2, 1) models. Post as well as curve MA were applied
for BMD estimation.

Model space selection by the DI was applied for A € {1,3,5} and
y =1 with the AIC weights. The lower and upper limits used
in the pseudo Kullback-Leibler divergence were L = 10 and U =
1000, respectively.

The parameter of interest was chosen to be the BMD from the
“relative risk” definition (3) with BMR = 10%. Table 4 shows the
resulting BMD estimates and BMDL values from applying the dif-
ferent MA methods for BMD estimation. The resulting BMDL
values were estimated by non-parametric bootstrap using the per-
centile method (Tibshirani and Efron 1993) based on 500 resam-
pled data sets. The model weights were considered as a part of the
model and were recomputed for each resampled data set.

The MA methods yielded quite similar BMD estimates rang-
ing from 64.69 (curve MA, AIC weights on DI reduced sub-
space with A = 5, Table 4) to 67.67 (curve MA, stacking weights),
and similar BMDL values ranging from 44.04 (curve MA, AIC
weights on DI reduced subspace with 4 =5) to 48.33 (curve
MA, stacking weights). In contrast, the single model selected
by the minimum AIC value yielded a BMD estimate of 58.16
and a BMDL value of 43.29. The DI model space selection
removed the FPL(—2,0.5) model for A =1,y = 1. For 4 = 3, the
FPL(-2,0.5) and FPL(—1, 1) models were removed, and for 4 =
5, the FPL(-2,0.5), FPL(—1,1), and Log-Normal models were
removed from the model space, which resulted in slightly differ-
ent BMD and BMDL estimates compared to the curve MA esti-
mate using the AIC weights (Table 4).

TABLE 3 | AIC and stacking weights on the Aciflourfen data example. The model abbreviations are explained in Table 1. All models were fitted in

their four-parameter version, where the upper as well as the lower limit of the curve were estimated.

LL LN W1 W2 FPL(-2,0.5) FPL(—1,0.5) FPL(-2,1) FPL(-1,1)
wAIC 0.31 0.18 0.34 0.02 0.01 0.05 0.01 0.08
Stack 0.31 0.00 0.51 0.00 0.02 0.00 0.16 0.00

TABLE 4 | Benchmark dose (BMD) and benchmark dose lower limit (BMDL) estimates on Aciflourfen data for the selection of model averaging

(MA) methods included in the analysis. The BMD based on the “relative risk” definition (3) with BMR = 10% was estimated. Single model refers to
model selection based on the lowest AIC value. MA estimates were based on all eight models included in the analysis. The Diversity Index (DI) was
used for model space selection for different values of (4, y). Two different Fractional Polynomial models (FPL) were removed from the model space by
application of the DI. The stacking weights were estimated based on three-fold cross-validation.

MA type w Model space A y BMD BMDL
Single model — min(AIC) — — 58.16 43.29
Post AIC M — — 66.49 45.16
Curve WAIC M — — 66.82 45.19
Post Stk M — — 66.76 47.50
Curve wStack M — — 67.67 48.33
Curve (DI) wAIC M\ {FPL(-2,0.5)} 1 1 66.82 44.09
Curve (DI) wAIC M\ {FPL(-2,0.5); FPL(-1,1)} 3 1 66.39 45.08
Curve (DI) wAIC M\ {LN;FPL(-2,0.5); FPL(-1,1)} 5 1 64.70 44.04
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4 | Data Example II: Mixture Experiment With
Lemna Minor Treated With Mixtures
of Aciflourfen and Diquat

The data used for the analysis in Section 3 was a subset of the
data from a herbicide mixture experiment, including herbicides
with Aciflourfen and Diquat as their active ingredients. In the full
mixture experiment, seven mixtures of the two herbicides were
included in eight dilutions. Since different herbicides require dif-
ferent concentrations to achieve the same effect on the consid-
ered endpoint, the original unit (ug a.i.1™") for each herbicide is
often transformed to a common scale for both herbicides, based
on an exchange ratio, which is usually derived from previously
estimated ED50 (dose resulting in 50% effect) levels for each her-
bicide (Serensen et al. 2007). In this data set, the Diquat concen-
trations were multiplied by an exchange ratio of 10, resulting in
adose givenin ug a.i. 1™ Aciflourfen + 10 pg a.i. 1"! Diquat. The
mixtures were given as the percentage of the mixture composed
of Aciflourfen, meaning that for a dose of 10 with a 50% mix-
ture of Aciflourfen, it consisted of 5 pg a.i. 17! Aciflourfen and
50 pg a.i.1”! Diquat.

4.1 | Analysis

The same set of models that was used in Section 3 was used for
analyzing the full data set, meaning the following set of models
was fitted

M = {LL, LN, W1, W2, FPL(=2,0.5),
FPL(~1,0.5), FPL(—2, 1), FPL(-1, 1)}

For each of the seven mixtures, a joint model was fitted with a
separate dose-response curve for each mixture. All models were
fitted with different b, ¢, e parameters for each mixture and a com-
mon d (upper asymptote) parameter for all mixtures. A common
upper asymptote was chosen since the upper asymptote corre-
sponds to the response at dose 0, where the mixture is irrelevant.
The fitted curves for all models in the model space can be seen in
Figure 2.

The AIC weights and the stacking weights based on three-fold
cross-validation are listed in Table 5. Once again, three-fold
cross-validation was chosen since there were three replicates per
treatment, so this choice ensures a fixed design for each data split.
For the models on the mixture data, the AIC weights were close
to 1 for the Weibull 2 model and near 0 for the remaining mod-
els, while the stacking weights favored the Weibull 1 and 2 mod-
els and the fractional polynomial model with fixed parameters

P = _271’2 =1

The resulting BMD and BMDL estimates are listed in Table 6.
For each mixture, the BMD and BMDL estimates were relatively
similar for all applied estimation procedures. The BMD estimates
based on the AIC weights were almost identical to the BMD esti-
mates taken from the model with the lowest AIC value, since the
weight for one single model was close to 1 (Table 5). However,
the corresponding BMDL estimates differed. The BMD estimates
based on MA with the stacking weights were lower than the MA
BMD estimates using the AIC weights. The BMD and BMDL esti-
mates were quite different between the different mixtures, with

the largest values seen for the mixture percentages 33 and 50, sug-
gesting an antagonistic effect of the two herbicides (Table 6).

5 | Simulation Study I

A small simulation study was conducted to see the effect of vary-
ing the number of data splits used in the cross-validation part of
the stacking weights.

The true curve was chosen as the four-parameter Log-Logistic
curve fitted to the Aciflourfen data in Section 3. The observations
were simulated with independent normally distributed residu-
als with a standard deviation of 0.0015, which is similar to the
observed standard deviation in the Aciflourfen data in Section 3.
Two dosing scenarios were considered. In the first scenario, n,, =
5 repetitions per dose level were simulated, with the dose levels
being

x5 =(0,78.125, 312.5, 1250, 5000)

In the second scenario, n,,, = 10 repetitions per dose level were
simulated, with the following dose levels

X0 = (0,0, 39.0625,78.125,156.25, 312.5, 625, 1250, 2500, 5000)

The dose levels included in x;, were the same levels as in the Aci-
flourfen data analyzed in Section 3.

The BMD value based on the “relative risk” definition (3) with
BMR = 10% was estimated based on a total of 17 models, includ-
ing three- and four- parameter versions of the Log-Logistic,
Log-Normal, Weibull 1, and Weibull 2 models, as well as
Fractional polynomial models with all combinations of p, €
{—2,-1,-0.5}and p, € {0.5,1,2}. The true BMD value was 71.98
in this simulation study.

MA estimates of the BMD value were considered based on
the stacking weights using two-fold, five-fold, ten-fold, and
leave-one-out (LOO) cross validation. Post-MA estimation as well
as curve MA estimation were applied.

For each configuration, R =500 data sets were simulated.
The confidence intervals were computed by percentile
non-parametric bootstrapping, where the data set was resampled
B =500 times, and for each resampled data set, all strategies
were employed to estimate the BMD. Then, the BMDL value was
computed as the 5% quantile in the estimated BMD values on
the resampled data sets. The weights were considered as a part of
the model, and were recomputed for each resampled data set. All
resampled data sets were found by resampling within the dose
levels to obtain new data sets within the fixed design framework.
The performance of the various strategies was assessed by con-
sidering the mean bias and the root mean squared error (RMSE)
of the BMD estimates, as well as the coverage of the one-sided
confidence intervals defining BMDL.

51 | Results

Overall, the stacking weights outperformed the AIC weights in
terms of bias, RMSE, and coverage of BMDL (Figure 3). The
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FIGURE2 | Curves fitted to herbicide mixture data. The plotted points are the mean values for each dose and mixture. For all models, the curves

are fitted with a common upper asymptote, while the remaining parameters in the model depend on the mixture.

TABLE 5 | AIC and stacking weights on the full mixture data example. The model abbreviations are explained in Table 1.
LL LN W1 w2 FPL(-2,0.5) FPL(-1,0.5) FPL(-2,1) FPL(-1,1)
WAIC 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
Stk 0.00 0.00 0.13 0.82 0.00 0.00 0.05 0.00

only exception being when the stacking weights were based on
two-fold cross-validation, in which case, the resulting RMSE
of the BMD estimates was slightly larger than the BMD esti-
mates based on the AIC weights. The overall best performance
was observed for the stacking weights based on LOO cross
validation.

As expected, lower bias and RMSE were observed for all meth-
ods in the scenario with the highest number of observations. The
coverage of BMDL was below the nominal level in both scenar-
ios. For several estimation methods, BMDL coverage was higher
for the scenario with five repetitions and five dose levels than for
the scenario with ten repetitions and ten dose levels.
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TABLE 6 | Benchmark dose (BMD) and benchmark dose lower limit (BMDL) estimates on mixture data for the different model averaging (MA)
methods included in the analysis. The BMD based on the “relative risk” definition (3) with BMR = 10% was estimated. BMD and BMDL estimates are
listed for each mixture denoted as the percentage of the mixture composed of Aciflourfen. Single model refers to model selection based on the lowest

AIC value. MA estimates were based on all eight models included in the analysis. The stacking weights were estimated using three-fold cross-validation.

17 33 50 67 83 100
MA type w BMD BMDL BMD BMDL BMD BMDL BMD BMDL BMD BMDL BMD BMDL BMD BMDL
Single model = —  171.52 14395 180.19 164.68 252.35 231.57 235.62 214.76 208.71 191.37 132.59 110.35 69.42 50.52
Post wAC 17149 12451 180.18 160.94 252.33 222.67 235.60 195.92 208.69 178.16 132.58 104.79 69.43 49.49
Curve wAC 171.50 12452 180.19 161.03 252.33 222.98 23560 196.01 208.69 178.55 132.58 104.79 69.43 49.49
Post WK 164.09 8713 176.44 161.96 247.98 19823 226.15 203.70 200.19 173.78 12525 117.71 66.14 42.38
Curve WSk 166.25 88.07 177.54 162.82 249.32 198.49 228.80 206.84 20248 176.09 126.84 11897 66.71 4293
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FIGURE 3 | Observedbias, RMSE, and BMDL coverage in simulation study I. Blue points are estimators based on a single model, while green points
are MA estimators based on AIC weights, and red points are MA estimators based on the stacking weights.
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Generally, a larger number of folds for the stacking weights led
to smaller bias and RMSE. However, this came at the expense of
longer computation times, since more splits of the data set meant
more models needed to be fitted to larger data sets. This was par-
ticularly intense for LOO cross-validation.

6 | Simulation Study II

To assess the performance of the various strategies for estimat-
ing the BMD, a simulation study was conducted. The strategies
included different MA strategies, such as different choices of
weights, post vs. curve MA, as well as different choices of model
spaces. The parameter of interest was the BMD from the “relative
risk” definition (3) with BMR = 10%.

6.1 | Simulation Setup

Four different data-generating models were considered in this
simulation study. In all four setups, data were simulated with five
and ten repetitions per dose level from the two dose vectors x; and
X;, used in simulation study I.

The four setups were:

« Setup A: The true curve was the four-parameter
Log-Logistic model fitted to the Aciflourfen data in Section 3.
Residuals were independent and normally distributed with
standard deviation ¢ = 0.015. The true BMD value in this
setup was 71.98.

« Setup B: The true curve was the MA curve based on the
AIC weights and all models fitted to the Aciflourfen data
in Section 3. Residuals were independent and normally dis-
tributed with standard deviation ¢ = 0.015. The true BMD
value in this setup was 70.25.

« Setup C: The true curve was a monotonic spline function
based on an I-spline basis (Wang and Yan 2021) with coeffi-
cients chosen based on the Aciflourfen data. Residuals were
independent and normally distributed with standard devia-
tion ¢ = 0.015. The true BMD value in this setup was 52.62.

« Setup D: The true curve was a monotonic spline function
based on an I-spline basis with coefficients chosen to obtain
a steeper and more irregular dose-response curve than in
setup C. Residuals were independent and normally dis-
tributed with standard deviation ¢ = 0.03. The true BMD
value in this setup was 71.98.

The models fitted to the simulated data sets included three- and
four-parameter versions of the Log-Logistic, Log-Normal, and the
two types of Weibull models, as well as a total of nine Fractional
Polynomial models with all combinations of p; € {-2,-1,-0.5}
and p, € {0.5,1,2}. The true dose-response curves and all models
fitted to data with no residual variance are shown in Figure 4. The
bias of the BMD estimate from each model fitted to data from
each of the four scenarios with no residual variance can be seen
in Table S1 in the Supporting Information.

6.1.1 | Model Averaging Strategies

A range of strategies were examined in this simulation study,
including strategies currently used in available software

packages, strategies recommended in the literature, as well
as strategies based on the stacking weights and the DI (which
has not been used before in BMD estimation with a continuous
response). The full list of investigated strategies is described
below.

Single Model

« min(AIC): The best-fitting model was selected based on the
lowest AIC value.

» Best Model: The model for which the BMD in the optimal
parameters was closest to the true BMD (see Table S1) was
identified as the best model. In setup A, this model was also
the true model.

» Worst Model: The model for which the BMD in the opti-
mal parameters was furthest away from the true BMD (see
Table S1) was identified as the worst model.

Weight Choice on Full Model Space
* MA,c(post): The BMD in all fitted models was computed,

and the AIC weights were used to construct the MA estimate.

* MA,c(curve): The MA curve based on all models weighted
with the AIC weights was constructed, and the BMD was
estimated from this curve.

MAg, . (post): The BMD in all fitted models was computed,
and the stacking weights were used to construct the MA esti-
mate.

o MAg,,(curve): The MA curve based on all models weighted
with the stacking weights was constructed, and the BMD was
estimated from this curve.

Model Space Selection

Classical Models: The BMD was estimated by post and curve
MA on the model space M, consisting of three- and
four-parameter versions of the Log-Logistic, Log-Normal,
and Weibull 1 and 2 models, using the AIC weights as well
as the stacking weights.

Fractional Polynomials: The BMD was estimated by post
and curve MA on the model space Mpgyp; consisting of
four-parameter Fractional Polynomial models with a logistic
link function and fixed parameters p, € {-2,-1,—0.5} and
p, € {0.5,1,2} using the AIC weights as well as the stacking
weights.

o F-Test: An F-test was conducted on the residuals from each
model as described in Section 2.3.1. All models where the
p-value from the F-test was above 0.05 were used in the fol-
lowing curve MA step using the AIC weights.

MA ,;cDI(4, y): For all combinations of 2 € {1,3,5}andy €
{1, 5}, the subset of models with the highest DI based on the
AIC weights was found. The lower and upper limits used in
the DI were 10 and 1000, respectively. The BMD was esti-
mated from the MA curve based on this subset of models
using the AIC weights.
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FIGURE4 | True underlying dose-response curve, dose levels, and optimal fitted curves to data with no residual variance for all types of models

included in simulation study II. The colors on the optimally fitted curves refer to whether each model is in the set of classical dose-response models (CL
M., including three- and four-parameter Log-Logistic, Log-Normal, and Weibull 1 and 2 curves) or in the set of included Fractional Polynomial models
(FPL, models with fixed parameters p; € {—2,—1,-0.5} and p, € {0.5, 1,2} are included).
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¢ MAg;,DI(4, y): For all combinationsof A € {1,3,5}andy €
{1,5}, the subset of models with the highest DI based on
the stacking weights was found. The lower and upper lim-
its used in the DI were 10 and 1000, respectively. The BMD
wass estimated from the MA curve based on this subset of
models using the stacking weights.

For an overview of the strategies, see Table S2 in the Support-
ing Information. Note that identifying the single best and worst
model requires oracle knowledge about the true data-generating
mechanism and is accordingly not a useful strategy in practice.

All stacking weights were estimated by ten-fold cross-validation
(chosen based on the results of Section 5). For each configuration,
R = 500 data sets were simulated. In all configurations, the con-
fidence intervals were computed by percentile non-parametric
bootstrapping, where the data set was resampled B = 500 times,
and for each resampled data set, all strategies were employed to
estimate the BMD. Then, the BMDL was computed as the 5%
quantile in the estimated BMD values on the resampled data sets.
Both types of weights were considered as a part of the model and
were recomputed for each resampled data set. All resampled data
sets were resampled within the dose levels to obtain new data
sets within the fixed design framework. The performance of the
various strategies was assessed by considering the mean bias and
the RMSE of the BMD estimates, as well as the coverage of the
one-sided confidence intervals defining BMDL.

6.2 | Results
6.2.1 | AIC Weights Vs. Stacking Weights on Full
Model Space

Mean bias and RMSE for the methods in simulation study II
can be seen in Table S3 in the Supporting Information, with a
selection of the methods illustrated in Figure 5. Across nearly all
setups and combinations of n,, and X5 or X,,, the MA estimators
based on the full model space using the stacking weights had bias
and RMSE smaller than or comparable to the corresponding MA
estimators using the AIC weights.

In setup A, the bias for the best model was smaller than that of
the MA estimators in all cases except for the post-MA estimate
using the stacking weights in the case with most observations. In
setup B, the bias of the MA estimators and the best model were
comparable. The lowest bias was obtained by MA with the stack-
ing weights. In Setup C, the bias and RMSE for the best model
were smaller than the MA estimators in the two scenarios with
five dose levels, but similar in the scenarios with ten dose levels.
In setup D, the best model had the lowest mean bias and RMSE
in all cases.

In all cases, choosing the model with the lowest AIC value for
each data set resulted in an estimator with RMSE similar to the
MA estimators based on the full model space. The mean bias for
the BMD estimate from the model with the minimum AIC value
was smaller or similar to that of the MA estimators.

Coverage of BMDL (see Figure 6 and Table S4) was observed
to be below the nominal level of 0.95 for nearly all strategies in

all scenarios. In setups A and B, and C (excluding setup C with
N, =5 and the dose vector x,,), the coverage of the MA esti-
mators using the stacking weights was higher and closer to the
nominal level than the MA estimators using the AIC weights. In
setup A, the observed coverage of BMDL based on the best (true)
model was closer to the nominal level than the MA estimators in
all cases. However, in setup B, the observed coverage of BMDL
was better for all the MA estimators using the full model space.
In setup C, the best model had coverage above the nominal level
for the cases with five dose levels (Figure 6).

Excluding setup D, the MA estimators using the full model space
had an observed coverage of BMDL closer to the nominal level
than the estimator based on selecting the model with the lowest
AIC value.

6.2.2 | Effect of Model Space

The mean bias and RMSE of the MA curve estimators based on
the different included model spaces are visualized in Figure 7.

The best overall performance in terms of mean bias and RMSE
was seen on the MA estimators using the full model space or
exclusively the classical models (Log-Logistic, Log-Normal, and
Weibull 1 and 2 models in three- and four-parameter versions).
The included schemes for selecting a subset of the full model
space to use in the MA did not improve the performance of
the MA estimators. The DI affected the performance slightly
for low values of the tuning parameters A and y, resulting in
higher observed mean bias and RMSE. For increasing values of
the tuning parameters, the performance of the MA estimators
was severely affected (Table S2).

In setups A, B, and C, the MA estimators based on the fractional
polynomial models had a larger mean bias and RMSE than the
corresponding MA estimators based on the full model space and
the space of classical dose-response models (Figure 7). Addition-
ally, the classical model space compared to the full model space
generally resulted in lower mean bas and RMSE. In setup D, all
model spaces resulted in highly biased results.

For the MA estimators using the AIC weights, applying the DI
model space selection resulted in larger RMSE, but comparable,
and in some cases even smaller mean bias. Conversely, for the
MA estimators using the stacking weights, applying the DI model
space selection resulted in larger mean bias and RMSE in most
cases, particularly for larger values of the tuning parameters 4
and y (Table S3 and Figure 7).

In almost all scenarios in setups A, B, and C, the MA esti-
mators based exclusively on the classical models (Log-Logistic,
Log-Normal, and Weibull 1 and 2 models) had an observed cov-
erage of BMDL closer to the nominal level compared to the MA
estimators based on the full model space, and the MA estimators
based on exclusively the fractional polynomial models performed
worse than the full model space (Figure 8).

In all scenarios in setup A and B, the observed coverage of BMDL
was lower for the estimators with the DI applied than for the cor-
responding estimators based on the full model space. In setup
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FIGURE5 | Observed mean bias and root mean square error (RMSE) of the benchmark dose (BMD) estimates of the single model estimating
strategies and the model averaging (MA) estimating strategies using the full model space in Simulation Study II. Blue points are estimators based on a

single model, while green points are MA estimators based on AIC weights, and red points are MA estimators based on the stacking weights.

C, BMDL coverage was slightly closer to the nominal level for
the MA estimators using the stacking weights with the DI model
space selection with the lowest values of the tuning parameters,
compared to using the full model space. In general, the cover-
age of BMDL decreased with the size of the tuning parameters
A and y. The MA estimators based on the stacking weights were
particularly affected by the tuning parameters (Table S4).

Compared to the MA estimator using the AIC weights on the
full model space, there was no observed effect of conducting

the F-test on the models prior to MA on mean bias or RMSE,
and the observed coverage of BMDL was unchanged or slightly
lower.

6.2.3 | Post MA Vs. Curve MA

In nearly all scenarios, the mean bias of the BMD estimates was
slightly larger, and the coverage of BMDL was slightly lower
for the curve MA estimators compared to the post-MA estima-
tors. Otherwise, the two types performed similarly within each

13 of 20

85UB017 SUOWILIOD 3A1I1D) 3|cedl|dde auy Ag pausenob a1e sapie YO ‘88N JO SaINnJ 10} A2eiq18UIIUO AB|IM UO (SUO 3 IPUCD-PUR-SUIR}LI0D A8 | 1M AReAq | BU1|UO//SONY) SUORIPUOD PUe SWLB L 83U} 89S *[5202/20/8T] Uo Ariq1Tauiuo 1M ‘961pBuoy Ba Ad 20002 AUS/Z00T OT/I0p/L0d"AB| 1M Afeq joul JUo//SARY LD pepeojumoq ‘Z ‘S20z XS60660T



nrep =

Setup B

Nrep = 5, x| =5

BMDL Coverage

Setup D

Nrep = 5, ‘x|=5 Nrep =5, x|_10 Nrep = 10, |x|-5 Nrep =10

1.004 — L L o L L L L L L L e e m o
0.75
0.50
s | B | N O

EEESILTHY EEE%‘&‘:{”‘&"’ EEESISTHY EEESITRY

OEB==3= QFB-=23> QFp-=23= QFp-=33

= = = =

FIGURE 6 | Observed coverage of the benchmark dose lower limit (BMDL) of the single model estimating strategies and the model averaging (MA)

estimating strategies using the full model space in Simulation Study II. Note the different range of the y-axis for Setup D. Coverages for the worst model

are not visible on the figure, since they are near zero in most cases (Table S4 in Supporting Information). Blue bars denote estimators based on a single

model, while green bars are MA estimators based on AIC weights, and red bars are MA estimators based on the stacking weights.

MA configuration of weights and model space (Figures 5-8 and
Tables S3 + S4).

7 | Simulation Study III

For a dose-response model of the type (1) and a fixed number of
observations, the AIC weights converge to a fixed set of weights in
the limit ¢ — 0, where ¢ denotes the residual standard deviation
(Lemma S1 in the Supporting Information). However, the AIC
weights in the limit are not necessarily the optimal weights to use
in MA.

Based on this result, a third simulation study was conducted to
assess the performance of the AIC weights compared to the stack-
ing weights in a scenario with decreasing values of the residual
standard deviation.

The true curve was constructed as a convex combination of
Log-Logistic, Log-Normal, and Weibull 1 and 2 curves, such that
the true curve was not in the set of fitted models. Points were sim-
ulated from the dose vector x = (0, 2.5, 5, 10, 20), and residuals
were simulated from a normal distribution with decreasing stan-
dard deviation ¢ € {5,1.58,0.5,0.158,0.05,0.0158}. The number
of repetitions per dose level in this simulation study was fixed at
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FIGURE 7 | Observed mean bias and root mean square error (RMSE) for a subset of the estimation strategies included in Simulation Study II. The

subset was selected to compare the model spaces underlying model averaging (MA). The figure includes curve MA estimation using the full model space,

the classical dose-response models, the fractional polynomial models, and model space selection based on the diversity index (DI) for 4, =1, A; = 5and

71 = 1,7, = 5. Green points are MA estimators based on AIC weights, and red points are MA estimators based on the stacking weights.

six for all values of . The true BMD value in this simulation study

was 3.42.

The model space included the same selection of models as in Sim-

ulation Study II. The true curve and the included models fitted to

a data set with no residual variance can be seen in Figure S1 in

the Supporting Information.

» Best model

e MA ,c(post)
e MA,c(curve)
o MAg;,(post)

* MAg,(curve)

This simulation study included the following five strategies for
BMD estimation also included in simulation study II:
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FIGURE 8 | Observed coverage of the benchmark dose lower limit (BMDL) for a subset of the estimation strategies included in Simulation Study

II. The subset was selected to compare the model spaces underlying model averaging (MA). The figure includes curve MA estimation using the full

model space, the classical dose-response models, the fractional polynomial models, and model space selection based on the diversity index (DI) for

A =1,4;=5and y; = 1,5, = 5. Note the different range of the y-axis for Setup D. Coverages for the worst model are not visible on the figure, since

they are near zero in most cases (Table S4 in Supporting Information). Green bars are MA estimators based on AIC weights, and red bars are MA

estimators based on the stacking weights.

The best model in this setup was the Fractional Polynomial model
with fixed parameters p, = —0.5 and p, = 0.5. All MA methods
used the full model space. The stacking weights were estimated
based on ten-fold cross-validation. For each value of ¢, R = 500
data sets were simulated. The performance of the various strate-
gies was assessed by considering the mean bias and the normal-
ized RMSE (defined as RMSE divided by the residual standard
deviation) of the BMD estimates.

7.1 | Results III

A visualization of summarized results from simulation study III
can be seen in Figure 9. For small values of ¢, the observed mean
bias of the MA estimators based on the stacking weights was
closer to zero than the mean bias of the MA estimators based on
the AIC weights and the mean bias of the best model. The nor-
malized RMSE was similar for large values of ¢, and increasing
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FIGUREY9 | Performance of the five strategies included in simulation study III in terms of empirical mean (left) and normalized root mean squared

error (RMSE, right).

at different rates for the different MA strategies, with the largest
normalized RMSE being observed for the MA estimators using
the AIC weights. The increase in normalised RMSE was a conse-
quence of the bias of each strategy in the limit ¢ — 0.

8 | Discussion

Frequentist MA is a widely used technique in BMD estimation,
and our results generally support the use of this technique,
although some disadvantages of current practice have been high-
lighted in this paper. In frequentist MA, weights based on the AIC
values for each individual fitted model are widely used (Jensen
et al. 2019; Wheeler and Bailer 2009; Aerts et al. 2020). How-
ever, their asymptotic behavior, or, as considered in this paper,
the limit when the residual variance tends to zero, is less than
optimal. If the residual variance tends to zero, the AIC weights
are not guaranteed to converge to the optimal combination of
the models. A similar choice of weights, which are based on the
Bayesian Information Criterion (BIC) values instead of the AIC
values, can be defined. Hoeting et al. (1999) report that these BIC
weights are O(1) estimators of the posterior model probabilities,
which will not converge to the correct model probabilities. This
is partly why the current Bayesian model averaging (Wheeler
et al. 2020, 2022; EFSA Scientific Committee et al. 2022) uses
Laplace or Bridge Sampling estimators for the posterior model
probability as they converge to the correct posterior model prob-
abilities. In contrast, the stacking weights (Breiman 1996) are
defined such that they converge to the set of weights that result
in the optimal MA curve in terms of MSPE. This was illustrated
in simulation study III, which showed that the MA estimators
using the stacking weights performed better than MA estimators
using the AIC weights for low values of the residual standard
deviation. A similar result regarding convergence of the AIC
weights can be shown for the number of observations tending
to infinity. However, the number of observations needed for this
effect to set in is very large and certainly much larger than the
number of observations usually seen in dose-response modeling.
If the asymptotic behavior is considered, it can even be shown
that if one model in the model space has lower Kullback-Leibler
divergence to the true model in the Kullback-Leibler optimal

parameters than the rest of the models, the AIC weight for this
particular model will converge to one, while the AIC weights for
the remaining models will converge to zero. This is not exactly
the case when the convergence of the residual variance to zero is
considered, as was done here, since the number of observations
is assumed to stay the same. However, in the design stage of
simulation study III, it was found that even for a small number of
observations (~ 25), the AIC weights in cases with zero residual
variance were practically one for the best-fitting model and zero
for the remaining models (results not shown).

We have focused on assessing and comparing frequentist MA esti-
mators of BMD for continuous response variables and in settings
where residual variances are constant. This is the most appropri-
ate setting for applying stacking weights. If the residual variances
are not constant on the original scale of the responses, it is often
possible in practice to transform the responses to a scale where
the residual variances are approximately constant, for example,
by a log-transformation. In such cases, we recommend applying
MA using stacking weights on the transformed scale. A different
approach, which we have not investigated, is a full model specifi-
cation of multiple error distributions, which can be leveraged by
frequentist AIC weights as well as in Bayesian MA. For a detailed
investigation of Bayesian MA with multiple error distributions,
we refer to Wheeler et al. (2022).

Nair et al. (2022) and Gomes et al. (2012) applied stacking
to binary classification, using a modified approach where the
weights are optimized through cross-validated logistic regression
models rather than the cross-validated ordinary least squares
method used for stacking weights in this paper. With this mod-
ification, stacking weights could potentially be applied to BMD
estimation in cases involving binary response variables. However,
this approach has not yet been implemented, and no comparisons
between AIC weights and stacking weights have been conducted.

In simulation study II, several frequentist MA estimators of the
BMD were evaluated across a range of scenarios, from realis-
tic setups inspired by actual experiments to more challenging
conditions. In setups A, B, and C, where the true dose-response
curve was based on real experimental data, various MA strategies
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demonstrated performance comparable to the best or true model,
and in some cases even exceeded it in terms of bias, RMSE, and
coverage of BMDL. However, in a fourth setup, D, where the
true dose-response curve was generated using an I-spline basis
designed to differ from any of the models in the model space,
all methods, including the best individual model, showed poor
performance. The satisfactory performance of MA in the realis-
tic scenarios aligns with previous studies and supports its use in
risk assessment (EFSA 2011; Jensen et al. 2019; Aerts et al. 2020;
Ritz et al. 2013; Wheeler and Bailer 2009). Nevertheless, the poor
performance in the adverse scenarios highlights the importance
of evaluating the individual model fits, even when using MA
(OECD 2006).

It was expected that for a fixed number of observations, more dose
levels would be preferred over more repetitions per dose level,
since more dose levels would entail a more accurate descrip-
tion of the dose-response curve (Ringblom et al. 2018; Shao and
Small 2012). This was confirmed for the MA estimators in setups
A, B, and C, where scenarios with five repetitions and ten dose
levels resulted in slightly lower bias and RMSE compared to the
scenarios with ten repetitions and five dose levels. This difference
highlights the need for careful consideration of the experiment
design in order to obtain a reliable BMD estimate.

The included MA strategies were based on 17 different
dose-response models. Overall, the best MA performance was
observed for strategies using the full model space or strategies
only including the Log-Logistic, Log-Normal, and Weibull mod-
els. MA strategies based exclusively on the fractional polynomial
models did not perform satisfactorily in this simulation study.

In setups A, B, and C, the stacking weights showed a promising
performance, which, in terms of the mean bias of the MA estima-
tor and coverage of BMDL, was observed to be slightly better than
the AIC weights in several scenarios. While the stacking weights
outperformed the AIC weights in several scenarios in the simu-
lation studies conducted in this paper, it is difficult to determine
a set of criteria where one set of weights is guaranteed to outper-
form the other. The performance will depend on various factors,
such as the endpoint under consideration and factors related to
the data-generating model, including the variance structure, the
true dose-response curve, and the specific dose values considered.

Two-, five-, and ten-fold and LOO cross-validation were applied
for the estimation of the stacking weights in simulation study I.
By Arlot and Celisse (2010) and Zhang and Yang (2015), the low-
est variance and bias can be expected for LOO cross validation
compared to V-fold cross validation, if the optimisation procedure
satisfies a certain stability condition. While it is out of the scope of
this paper to show that stacking satisfies this stability condition,
our results are consistent with this result, with the lowest bias
and normalized RMSE observed when LOO cross-validation was
applied. However, due to the excessive computation time of fit-
ting models a large number of times, it can be impractical to use
LOO cross-validation when the stacking weights are combined
with confidence intervals obtained by bootstrap. In order to do
this, all models need to be fitted, and weights need to be estimated
by convex optimization a total of n - (R, + 1) times (here nis the
number of observations, and Ry, is the number of resampled
data sets used for bootstrap).

Relying on cross-validation when estimating the stacking weights
means that a full data set of the individual experimental units is
required. As a result, they cannot be estimated for dose-response
analyses based on sufficient statistics. Bayesian stacking, on the
other hand, does not have this issue (Yao et al. 2018). However,
Bayesian stacking has so far not been applied to dose-response
analysis.

Van der Laan et al. (2007) showed that MA using the stacking
weights results in a model that works at least as well asymptoti-
cally for prediction (in terms of mean square prediction error) as
the single best model in the set of initial models. This does, how-
ever, not imply that the BMD estimate from the stacked model
results in an estimate, which is at least as good asymptotically as
estimating the BMD based on the best model for this purpose.
Nonetheless, the results from the conducted simulation study
indicate that this is the case.

In simulation studies I and II, the coverage of BMDL was below
the nominal level in most cases. It is suspected that this was
caused primarily by the bias of the estimators. The cases where
the coverage of BMDL was below the nominal level coincide with
the cases where the MA estimators of the BMD were positively
biased. It is also suspected that this was caused by the nature
of percentile bootstrap confidence intervals, which are known to
assert this kind of behavior, in particular when the distribution
of the estimator is skewed (Diciccio and Romano 1988). As an
alternative, bias-corrected bootstrap intervals can be considered,
although no improvement in performance is guaranteed (Jensen
et al. 2020b).

MA, in particular when constructing an MA curve, can be
thought of as a way to combine the initial models into one MA
model, which (hopefully) inherits the best traits of the individual
models. This is the general concept behind the stacking weights
(Breiman 1996), which are defined such that they actively seek
to combine the initial models in an optimal way in terms of
the MSPE. Unlike the stacking weights, the AIC weights are not
designed to take the fit of the resulting MA curve into account.
This might result in too much weight being assigned to models
that do not improve the fit of the MA curve. These considera-
tions were the motivation behind investigating the influence of
the model space. A quite large effect of the choice of model space
was observed. The best overall performance across all scenarios
was seen for the MA estimators using either the full model space,
or only the classical models.

The AIC weights in particular were suspected to be affected by
the presence of poor-fitting models in the model space. For this
reason, an adaptation of a model space selection scheme used in
Wheeler and Bailer (2009) was considered. However, no improve-
ment in performance was observed when applying this model
selection scheme prior to applying MA compared to using the
full model space. Also not in scenario D, where this model space
reduction was expected to have the largest effect. This model
selection scheme also has the built-in disadvantage that if all the
models are wrong, asymptotically they would all be rejected.

Finally, model space selection based on a DI was examined. The
DI was proposed by Kim et al. (2014) for dose-response models
on quantal data to aid in selecting a model space with diverse
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model fits. In this paper, their proposed DI was modified to work
with continuous response data as well. However, the results in
the simulation study were less than promising. At best, the MA
strategies involving model space selection by the DI performed
similarly to the corresponding strategies including the full model
space, and in several cases, they resulted in higher bias of the
BMD estimate and lower coverage of BMDL. It is suspected that
this is caused by the fact that model space selection based on the
DI by design favors the “extreme” models in the model space and
discards similar models. Consequently, a subset of models pro-
viding good (and therefore also similar) fits to the observations
might be discarded, resulting in a model space that only includes
models that do not fit the data well.

81 | Conclusion

The stacking weights are a new addition to BMD estimation
by frequentist MA, and the results in this paper warrant more
research in the application of the stacked regression approach
in frequentist dose-response MA. The MA estimators using the
stacking weights had a lower mean bias and a coverage of BMDL
slightly closer to the nominal level compared to the estimators
using the AIC weights. For small values of the residual variance,
the stacking weights outperformed the AIC weights. Due to the
promising performance of the stacking weights, they have been
added as an option in the bmd R package.
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Convergence of AIC weights

In the following, it is shown that if the residual variance in the true model tends to zero, the Gaussian AIC
weights converge to a non-random set of weights. We identify these limit weights and note that they are not
generally the set of weights resulting in the optimal MA curve.

The setup is as follows: we let z1,...,z, denote a fixed set of dose values, and we assume that the true
model is given as
Yo = g(xm) + oem (1)
where €1,...,¢&, are i.i.d. with mean 0 and variance 1. We let M = {My, ..., M} } be the set of models, and
for a curve g; € M; we introduce
1 < )
R(gz) - Z(gl(xm) - Ym)
m=1
* 1 -
() == 3 (g:(om) — gem))-
m=1

Now §; denotes the least squares estimate in M;, which is a minimizer of R(g;) within model M;. Likewise,
g7 denotes a minimizer of R*(g;) within model M;. With these definitions we note that

is the Gaussian maximum-likelihood estimate of the variance within model M;. We suppose that 62 > 0 for
i =1,...,k to make the AIC weights well defined.

Lemma S1. Within the setup above, suppose that

sup |R(g:) — R*(g:)] = 0 (2)

g:€M;

foro—0andi=1,...,k, and that there is at most one model with R*(gf) = 0, then
-1

NEUAY

~ AIC i _—

W = [ 1+ " ePi~Pi (3)
Z(‘R*(gj))

J#i

for o — 0. A sufficient condition for (2) to hold is that there is a constant C such that |g;(zy)| < C for
m=1,...,n and g; € M;.
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Proof. Since g; and §; are minimizers in M; of R* and R, respectively, we have
0 < R*(9:) — R"(97)
= R*(9:) — R(3:) + R(9:) — R (g7)
< R*(9:) — R(3:) + R(g;') — R*(97)

<2 sup |R(g;) — R*(g:)|-
gi€EM;

It follows by assumption (2) that |R*(g;) — R*(g;)| — 0 for 0 — 0. We then get that
|67 — R*(g)] = [R(g:) — R*(g7)]
< [R(9:) — R™(9:)| + [R™(9:) — B (97)]

< sup |R(g:) — R*(g:)| + |[R*(9:) — R*(g;)| — 0.
gi€M;

We generally have that

(@20 =14 Y (U) eip (4)

J#i
and if R*(g;) > 0 for all models, then (3) follows by continuity. If R*(g;)) = 0 and R*(g;) > 0 for j # io,
the sum in (4) converges to 0 for i = ip and WA'C — 1. If i # i, then 6; — /R*(g}) > 0 while one of the

denominators in the sum in (4) tends to 0, and the entire sum tends to co. Consequently, wAC — 0 for
1 # ig. This is all in accordance with (3) with the convention that 1/c0 = 0.

To establish (2) under the boundedness assumption, we compute

1 n
R(gi) = > (gi(@m) = g(wm) — oEm)?
m=1
1 n ) 20 n
= - (9i(zm) — g(xm))” — W Z (9i(zm) — g(xm))em + Z Em
m=1 m=1
* 20 - 20 n g
= R"(9:) — — Z 9i(Tm)em + — Z g(Tm)em + — Z g2
" "=t " o=

This gives

|R(gi) - R* <?27, Z |gz xm ‘€m| + — Z |g l‘m |5m| + - Z 9 )

g; and tends to 0 for 0 — 0, and this shows (2). O

Note that R*(g}) = 0 is equivalent to the model M; containing a function identical to the true dose-response
curve in the chosen dose values. If this holds for more than one model it becomes more subtle to determine
if the AIC weights converge, as this will require detailed knowledge of the rates of convergence to 0 of each
of the corresponding &;-s

Note also that the first part of the proof above is a standard argument for establishing convergence of
empirical risk, which is usually studied for n — oo instead of & — 0. By replacing R*(g;) with R*(g;) + o2,
the above analysis could also be modified to obtain convergence of the AIC weights for n — oco. The
conditions for (2) to hold would be more subtle, the convergence would be “in probability”, and the limit
weights would be degenerate at the model with the smallest R*(g})-value. Since n is moderate in typical
dose-response experiments, we found the “small noise asymptotics” more interesting, and even if the limit
weights (3) are more complicated, it is clear from the formula that the weights will concentrate sharply on
the models with the smallest values of R*(g}) due to the n-th power.



Tables

Setup A Setup B Setup C Setup D
Model X5 X10 X5 X10 X5 X10 X5 X10
LL.3 —7.00 —6.18 —5.48 —-4.73 —5.47 —2.06 56.38 49.92
LLA4 10.00 10.00 3.04 1.36 —7.15 —5.56 12.00 17.43
LN.3 —4.42 —3.21 —3.08 —1.82 —2.70 0.95 64.18 62.37
LN.4 4.04 4.76 6.78 6.22 1—2.00 10.09 32.17 35.89
W1.3 —28.29 -—-29.79 —-26.30 —28.00 —26.78 —22.99 —-23.32 —16.63
W14 —-19.09 -15.18 -16.30 —13.40 —20.08 —16.50 t4.21 1-0.82
W23 21.54 24.86 22.66 25.91 18.82 24.33 120.02 1128.90
W2.4 11.77 16.55 13.79 17.53 7.80 10.85 69.62 58.64
FPL.4(p1 =—2,p2 = 0.5) 141.75  136.10 145.38 27.14  142.01 140.87 114.98 115.22
FPL.4(p; = —1,p2 = 0.5) 20.31 22.27 21.26 24.27 20.00 25.23 102.50 94.53
FPL.4(p1 = —0.5,p3 = 0.5) 7.62 9.24 9.09 11.29 11.01 9.48 69.38 52.92
FPLA(p1 = —-2,pa =1) 31.51 28.14 34.26  130.06 32.24 3220 1121.30 89.68
FPL.4(p1 =—1,p2 = 1) 12.79 13.39 15.19 14.55 11.58 15.41 88.15 87.05
FPLA4(p; = —0.5,p2 = 1) 4.16 4.94 4.13 6.24 3.72 2.04 75.40 62.02
FPL.4(p1 = —2,p2 = 2) 14.51 15.42 16.42 17.60 13.27 15.37 95.60 79.41
FPL.4(p1 =—-1,p2 = 2) —1.07 1.24 11.62 11.26 2.89 0.31 50.06 57.27
FPL.4(p1 = —0.5,p3 = 2) —10.25 —5.90 —-9.50 —6.14 —12.61 —-9.21 34.29 22.06

Table S1: Asymptotic bias of all models included in the simulation study. The number marked with  and
written in bold, was the asymptotic bias of the model with the lowest absolute bias for each scenario (referred
to as the best model). The number marked with { and written in italics, was the asymptotic bias of the
model with the largest absolute bias for each scenario (referred to as the worst model in the set). ".3" and

".4" refer to 3- or 4-parameter versions of each model.



Strategy M w

min(AIC) Model with smallest AIC value -
Best model Single best model -
Worst model Single worst model -

MA ¢ (post) Full AIC
MA ¢ (curve) Full AIC
MAgtack (post) Full Stacking
MAgiack (curve) Full Stacking
ClL.Maic (pOSt) Maw AIC
Cl.Ma1c (curve) Mo AIC
Cl.Mstack (post) Maem Stacking
Cl.Mggack (curve) Maem Stacking
FPLa1c (pOSt) MeEppL, AIC
FPLa1c (curve) MeEpL, AIC
FPLstack (post) MEpL Stacking
FPLgtack (curve) MeEppL, Stacking
F-Test F-Test selection AIC
MAaicDIA=1,7v=1)  Mg(@*° 1,1) AIC
MAAcDIA=3,y=1) MG (AC)3,1) AIC
MAAIC DI(A = 577 = 1) MS(,&}AIC’ 5, 1) AIC
MAAIC ])I(A = 177 = 5) MS(wAICa 17 5) AIC
MAAIC ])I(A = 37 Y= 5) MS(wAICa 37 5) AIC
MAAIC ])I(A = 57 Y= 5) MS(wAICa 57 5) AIC
MAgiaa DIA = 1,7 =1) M (wStak 1,1) Stacking
MAgiaa DIA = 3,7 =1) Mg (wStak 3,1) Stacking
MAgiaa DIA =57 =1) Mg (wStak 5 1) Stacking
MAgaek DII(A = 1,7 =5) M (w5tak 1, 5) Stacking
MAgiaek DI = 3,7y =5) M (wStak, 3,5) Stacking
MAgaek DIOA = 5,7y =5) M (wStak 5,5) Stacking

Table S2: Overview of model averaging strategies with model space (M) and weight type (w) included in
simulation study I.



‘T ApnjJs UOI)R[NUIS UI POAISSO (SIsorjuoled Ul son[eA) I0LI0 Polenbs Ueoul j00I puR seIq U\ €S O[(R],
(ze" ﬁ: 2rott  (60°6pT) 16921 (p29S1) L6961 (PLo2L1) 2Lpel  (T°OT) 89T (p261) ¥8°6 (1021 PT'L  (P9°22) 10T (R0°GT) ¥9°¢  (22°€8) ge'eT  (T2°02) LL'OT  (9p°92) 8201  (81°91) ev'2  (IT°€2) 0671  (€8°T2) 9821  (88'¢e) €601 *PUIS(2L‘ey)1q
( ) ILGTT  (62°€ST) €T°GET  (96'79T) G0°GrT  (6€7281) 28651 (£0°6) T0°'T (89°L1) ﬁ » (v6'c1) €9 (e212) 668 (e€71) oF  (v62e) 18°€T  (0P61) LT'6  (£9°22) 99°0T  (g2'6T) €6'¢  (12°22) 0€'€T  (P6°02) 8OTT  (L€92) €6 PS(%L 2\
(07L1) SF°SCT (99°181) L&'89T  (6LF61) GL221  (96°008) 19881 (2°2) 96T (1611) 6 (reer) 066 (8721 089 (POTT) 221 (L1718) 2701 (26'91) L1'9  (02°62) 901 (2021) L&C  (1€°02) 666 (1p81) 1L (€9°22) L6 PUS(AL TV
(€2°601) 7686 (8¢'821) STETT  (€2'TPT) 0£¥2l  (9€991) €V 1PT  (1¥'8) 190 (1271) 209 (90%D) €' (96°21) ¥5°9  (L¥ 5 60c  (29°61) cror  (02'91) 2009 (1122) 879 (1¥7'el) 682  (L0°61) €96 (00°L1) 269 (L0°€E) 86°G  PHS("Lfy)I@
(09°60T) 20°00T  (86°221) L0PIT  (96'8€T) 96221  (SFF9T) L&6€T  (99°2) 00T (60°21) 667  (6¥2D) v1'¢  (rgr) 8¢ (106) 260 (€291) ar > (6z°€1) 107 (96°61) €06 (rom) et (16°¢T) €89 (€pD) P9F  (00°61) 8L'E  PUS(L 2\
(L2°€TT) 1¢°90T  (69°221) GL°GTT  (9L°LET) ¥6°€2T  (ST°091) TS'9ET  (8T°L) 16T (LLor) e8F% (P10 2  (L8'€D) $G°C  (8T'8) 10 (zze1) 09 (gg1r) 9z (L9°21) €% (8¥'8) 970 (tgen) 8py - (99°11) T8¢ (99°91) €e PUS(ILIV)1a
(67711) #°00T  (€2°9€T) PT'GTT  (P6LET) €T°G (€¢'8¢T) 00221 (69'8) 19°F (06°T1) 086 (28°11) €27 (£€L1) 199 (10°6) 96°0 (teen) e (1Le1) 08T (L0g) 68°¢  (6€8°6) 8T (e9er) sre  (9UF1) 6e°¢  (9T°08) PG PIV(LEY)Ia
(62°7T1) 927001 (90°2€T) 99°GTT  (€0°6€T) L'GTT  (L0°T9T) 20621  (89'8) 89°F L) g6 (ertn) srv (79°91) €779 (90°6) L&°T (9gen) o1y (6v€1) 162 (22°02) 809 5 6) GL'T (Fren) eve  (e6e1) e (19°61) 8g'¢  PIV(eLey)1q
(00'121) 06701 (9€°0ST) 18921 (1€°64T) 08°22T  (ST°GLT) L9GPT  (L88) TT'¢  (€211) 09 (9T°TD) L8F  (8e¢1) 169 (96'8) 06z (poer) oge  (eren) 2ov  (zeoe) Lo, (L96) €2c  (eren) evy  (ecen) eer  (1¢61) 96°¢  OWV(AL V)1
(68°T11) 6686 (zL2er) 9L2IT  (€0°€eT) 68° 11T (18°€51) 9922l (19'8) 297 (69°11) 88 (eg1r) erv (8e91) 9¢°9  (00°6) 1€'T  (eger) eo¥  (€2€1) ¥6T  (99°61) 88'G  (09°6) 08°T (ogen) 6v'e  (8ger) vee  (1U61) 667 PIV(ILE)1q
(T9°T11) 62766 (8°2€T) FO€TT  (61°2€T) SRTIT  (P0'esT) 1222l (¢9°8) &8°F (6£°11) 10" c (sz1n) 8¥ % (e9s1) 229 (268) 18T (cren) ¥&7  (00€T) 0¥ (21°61) €89 (S9°6) L2T (66'21) 96'¢  (9g7€T) L1 (8¢'8T) €€°¢ OV (IL ey )1
(g8211) €7'80T  (T1€F€T) 20611 (60°P€T) L6211 (5°2ST) T1°921  (09'8) 9T°G (L6'01) 266 (16'01) 267 (SL71) 609 (I8'8) 8T (reen) ge'e (1921 vov  (PS81) €99 (82°6) 92T (togn) sov (82D vy (oLL1)81°¢ PV V)1
(80°8TT) ¥P1°60T  (20°€€T) CT'8TT  (P6'€€T) TH'SIT  (£9°71ST) 1€°G62T  (29'8) 60°G (¥6°01) 06 (16'01) 887 (0L71) 909 (6L'8) ¥¥'C (2ren) g¢ (rger) 26'¢ (F9'81) 299 (52°6) 12T (ggen) 617 (L21) 207 (6SLT) TT°G 1594
(gererT) 8v°LeT  (T7°€ST) 67°€FT  (GV'64T) €T6FT  (€£°04T) 28FST (2 N: 8P0T  (88°¢T) 62T (98°2T) 87T (L'T2) 0€°2T  (2¢€1) 16501 (07'T) 29LT  (G2'8T) Ge'aT  (67°92) 9270z  (60°€T) 2€'0T  (96'8T) T0°GT  (TT'ST) €471 (40°7) 29'LT msTdd
(182r1) 96°9¢T  (ST°€ST) 2eerl  (60°64T) 98°8FT  (00°1L1) 2€'6ST  (1221) 8201 (99°¢T) G2l (0421) vL¥1  (e€712) pT°LT (12" Ev geor  (81°12) veLT  (vp81) 20gT  (1€°92) €002 (L2°21) ¥6°6  (1L°81) &LFT  (6L°LT) ST : (98°€2) 6¢°L1 Hod1dd
(Lgzer) Loger  (GLoevl) 66°06T  (S€°9PT) T0°€ET  (92°65T) 61°LET  (19°6) 0€°9 (02" N: €08 (g611) ceL  (LLGT) 068 (F26) 16°€ (oser) 9pL  (sT€1) 669 (98°61) 6601 (€9°6) 12°F (66:21) L1'9  (12°€1) 829 (LP'81) TF'8 oy 1dd
(e6'1€1) 96721 (92°€PT) €506T  (18°GPT) 26eel  (2e681) 62LET  (L&'6) 019 (poeD) L2 (821D 002  (09°61) 098 (21°6) 02'¢  (¢9€1) 612  (86:721) 60°9  (69°61) 00T  (09'6) 86'¢  (¢8°1) 68'¢  (FO'eT) 66'¢  (2€'8T) 0T'8 Q01da
Amm 611) 92211 (99°921) LL7TT  (¥8°1€1) 89811 (1T8¥1) 2e'1el  (60'8) 07 (L2'6) L& (9z01) 8¢ (0ger) 1ee  (€28) 16c  (9o11) 882 (16°01) 8¢ (6v'91) ce'e  (v€'9) (re1) 161 (20°11) 612 (L1°91) 90°T T I
(L6°911) 86'601  (S072T) LLEIT  (69°821) 60°9TT  (09°9¥1) €1°021  (¢v2) o€ (91°6) 26T (L96) se'e (092D 2tz (oLL) 621 (1) eor (oD prr  (@rop 1ot (6LL) (28°01) 260 (g501) €60 (98°GT) G€°0- Teod
(82°011) TO'TOT  (89°62T) 06'60T  (€2°921) T6°'60T  (86°9¥T) 62811  (99°L) ¢6'¢  (69'6) c0'e  (90°01) 862  (e6°¢1) €ve  (€e8) eL0  (L&21) €6T  (01°21) 06T (80°LT) 0€°€ 6°3) (¢rer) L91  (6¥2r) 06T (92°91) S0°T By (yie]
(72'601) 2L°00T  (627721) €F'60T  (96'72T) 60°60T  (F29FT) 2&'LIT  (67°L) ¥8°€ (v5'6) 28°C (26'6) £8°C (89€1) TI'e (22'8) 64°0 (0zer) 697 (1611 19T (98°91) 16'C 2'8) (2eTtn 6e1  (Leer) 26T (99°9T) €9°T DNINTD
(2getr) Ly8oT  (28°921) LLGTT  (L6°66T) eveel  (bO9ST) 99¢eT  (L12) 16T (GL01) e8F  (ev1D) 2¢'s  (p8°€1) €9¢  (918) 0v'0  (pT€l) 9¢ (1g1r) sze (1e21) aLv 7'8) (er) evy (0911) 21¢ (2991) 8T°€¢ TS VIN
(0L°€TT) €0°20T  (99°62T) 66'FTT  (G9°€€T) PL TRl  (99°gsT) 9€°¢6T  (99'9) 62T (ST0T) 6%  (92°01) 60°¢  (82°€1) 90°¢  (98'L) 190~ (2921) 997  (28°01) 06T  (96°9T) ¥8°€ 18) (t6'tn) e (26'01) 08C  (66'GT) ¥2°T Tl VIN
(97'811) €960 (66°€61) 98T (66°66T) £48TT (LL716T) £9°G2L (67°8) 616 (#6°01) 06" m (88°01) 167 (0471 <0 w (8L 3 sve  (Lren) pere  (9931) 07 (PST) €99 6) (sg°21) 02 (82721) 607 (8¢LT) &T'G VI
(16°L11) €2°60T  (82°2€1) €18TT  (90°€€T) G8°LIT  (9F°1GT) LP°Gel  (8€'8) 00°¢  (LL'0T) €9 (r2or) oLv  (6V¥1) €L (299) 0z (eoen) 11 (6ger) ere  (9281) 0€9  (21°6) (tren) e6e (0921) 62°¢  (@PLT) LLT eodVIN
(0£'102) 96961 (02°08T) 9TFLT 5..%@ ¢8'86T  (10°96T) GF°G8T ?m,ma Lege (8€9¢) 16'7¢  (LOTP) 6F°0F  (L¥OF) 8926 (20°62) L0¥T  (6S°6€) :ﬁ% (0g'1¢) €108 (9¥°er) PT6€  (19°L2) 69°92  (09°9€) 9TFE  (L0FE) €7'Ce  (9¢°0F) €29 PO JSIOA\
(6€79) L9°28 (zg'0L) 807G (98°LL) G8°€9 (€2°6T1) L&PL  (80°8) 61°9 (Lg2) 08T (61°01) P79 (1eTD) 117 (60" wv 66°¢ (0g°tr) 2 (L801) 98¢ (66°61) L0°9  (2€°2) 20'0-  (1€°01) 870 (SP01) 200 (89°F1) 10T ‘pout jsog
(92°901) 8276 (0°2z1) 60°T0T  (62'181) 0466 (06°6VT) 09°80T  (L9°8) L¥F  (€T'T1) ¥9F  (9eTD) L9°¢  (ev'91) 067 (98) gz0  (121) 81T (9221) 180  (9L'81) 8¢c  ($4'6) 290 (9921) 82T (e€€1) OT'T  (LL'8T) 69°T ‘pow DIV
[115'¢ ox 0Tx Sx 0lx 159 [115'¢ ox 0lx Sx 0Tx ox 0Tx ox 0Tx ox POYPRN
01 = % ¢ = doyy 01 = 9o ¢ = doiy 01 = % ¢ = doyy 01 = % ¢ = doyy
 dnyog 0 dnjeg g dnjeg v dujog




Setup A Setup B Setup C Setup D

Nrep = Nrep = 10 Nrep = Nyep = 10 Nyep = O Nrep = 10 Nrep = Neep = 10
Method X5 X109 X5 X190 X5  X10 X5  X10 X5 X109 X5  X10 X5  X10 X5  X10
AIC mod. 082 084 085 085 081 08 0.8 0.87 0.73 0.75 0.74 0.68 0.36 0.24 0.25 0.10
Best mod. 091 092 093 094 08 084 083 085 096 0.88 096 0.80 0.54 0.34 043 0.15
Worst mod. 0.17 0.00 0.05 0.00 0.13 0.01 0.03 0.00 0.15 0.00 0.00 0.00 0.01 0.01 0.00 0.00
MAZ‘% 0.88 0.88 0.88 090 0.87 0.88 0.87 091 0.84 0.87 0.81 0.81 0.32 0.19 0.17 0.06
MARE® 0.88 0.88 0.88 090 0.87 0.88 087 091 0.83 0.86 0.81 0.80 0.33 0.19 0.18 0.06
MAg?jgk 091 089 089 094 089 088 0.88 094 0.86 0.82 0.84 0.87 0.16 0.07 0.04 0.02
MAg T 090 087 088 091 0.89 087 087 091 0.86 0.82 0.83 0.86 0.21 0.08 0.07 0.02
Cl.l\{&?‘g 091 091 093 094 090 090 091 094 0.89 0.89 0.88 0.85 0.37 0.21 0.22 0.06
CLM.41c° 091 090 092 094 089 090 091 094 0.8 0.89 0.88 0.85 0.37 0.21 0.22 0.06
Cl.M.IS’?:zk 093 091 093 092 092 091 092 092 091 0.87 0.88 0.88 0.30 0.12 0.12 0.02
CLM.§en 093 089 092 090 092 089 091 091 0.89 0.8 0.87 0.85 0.31 0.14 0.13 0.02
FPLPA?ZE 0.84 083 084 086 081 0.83 0.83 0.87 0.78 0.81 0.76 0.76 0.22 0.10 0.09 0.02
FPL}1c¢ 0.83 083 084 085 080 0.83 0.82 0.8 0.77 0.80 0.75 0.75 0.23 0.10 0.09 0.02
FPLg(Z:Zk 0.64 0.56 0.58 058 057 054 0.52 0.53 0.48 0.40 0.48 0.44 0.06 0.01 0.00 0.00
FPLS o 0.63 0.55 0.57 055 057 052 051 052 049 0.40 0.48 0.44 0.07 0.02 0.01 0.00
F-test 0.88 0.87 0.87 0.89 0.87 087 0.8 090 0.83 0.86 0.80 0.78 0.33 0.19 0.18 0.06
DI(A1, 71)arc 0.86 086 086 089 085 086 0.84 090 0.82 0.84 0.80 0.77 0.33 0.19 0.18 0.06
DI(A2, 71)alc 084 085 084 086 082 086 0.83 0.8 0.78 0.81 0.77 0.72 0.33 0.21 0.24 0.08
DI(As3,71)alc 0.82 084 084 085 080 086 0.82 087 0.74 0.78 0.75 0.70 0.32 0.22 0.24 0.09
DI(A1, v2)arc 0.83 085 084 086 081 086 0.82 0.8 0.79 0.82 0.78 0.75 0.28 0.21 0.22 0.09
DI(A2, v2)arc 081 084 084 084 079 08 0.83 087 0.74 0.77 0.74 0.69 0.31 0.22 0.23 0.09
DI(A3,v2)alc 0.78 083 083 084 079 084 0.83 0.8 0.71 0.76 0.73 0.67 0.31 0.21 0.23 0.09
DI(A1,71)stack 091 0.87 0.88 091 0.90 0.87 0.87 0.91 0.86 0.83 0.84 0.87 0.20 0.08 0.08 0.03
DI(A2,v1)stack 0.88 0.82 0.79 0.85 0.88 0.83 0.81 0.88 0.86 0.82 0.82 0.88 0.21 0.13 0.09 0.05
DI(A3,7v1)stack 0.81 0.73 0.68 0.77 0.83 0.76 0.69 0.82 0.81 0.81 0.78 0.86 0.21 0.13 0.10 0.06
DI(A1,72)stack 0.76 0.75 0.70 0.81 0.76 0.77 0.72 0.85 0.85 0.82 0.83 0.88 0.09 0.05 0.03 0.03
DI(A2,v2)stack 0.71 0.60 0.56 0.68 0.73 0.67 0.59 0.75 0.74 0.77 0.72 0.85 0.16 0.11 0.10 0.06
DI(A3,72)stack 0.69 0.53 0.50 0.64 0.72 0.62 0.54 0.71 0.69 0.74 0.64 0.81 0.18 0.11 0.12 0.06

Table S4: Coverage of benchmark dose lower limit (BMDL) observed in simulation study II.
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Figure S1: True underlying dose-response curve, dose levels and optimal fitted curves to data with no
residual variance for all types of models included in simulation study III. The colors on the optimal fitted
curves refer to whether each model is in the set of classical dose-response models (Cl. Mods, including
three- and four-parameter Log-Logistic, Log-Normal, and Weibull 1 and 2 curves) or in the set of included
Fractional Polynomial models (FPL, models with fixed parameters p; € {—2,—1,—0.5} and ps € {0.5,1,2}
are included).



Aciflourfen data example

Required packages

# install.packages ("tidyverse")

library(tidyverse)

# install.packages("latez2ezp")

library(latex2exp) # for nice axes on plots

# install.packages("CVXR",repos = "https://cloud.r-project.org/")
library(CVXR)

# install.packages("devtools",repos = "https://cloud.r-project.org/")
library(devtools)

# install_github("doseResponse/drcData")

# install_github("doseResponse/drc")

# install_github("doseResponse/bmd")

library(drcData)

library(drc)

library (bmd)

Functions for DI model space selection

# Diversity Index ————————————————-—-————-—— - - - ——————————————
DI_single_subset <- function(subset, KL_div, w, lambda = 1, gamma = 1, data){
kO <- length(subset)
k <- length(KL_div)

g <- sum(w[subset] "lambda)
value <- g~ (1/gamma) * k/kO * sum(KL_div[subset])
value

}

KL_div_est <- function(f0, f1, lower = 1, upper = 5){
int <- try(integrate(f = function(d){
abs(log(abs(£f0(d))) - log(abs(£f1(d)))) * abs(f0(d))},
lower, upper), silent = TRUE)
if (inherits(int, "try-error")){return(0)}
else{return(int$value)}

}

get_all KL_div <- function(model_fit_list, fct_derivx_list, w, lower, upper){
n_models <- length(model_fit_list)
derivx_MA <- function(x) sum((sapply(fct_derivx_list,
function(fct) fct(x))) * w)
vals <- sapply(fct_derivx_list, function(df){
KL_div_est(f0 = derivx_MA,
f1 = df,
lower, upper)

)

vals



}

DI_model_space <- function(modelList, w, lambda = 1, gamma = 1,
lower = 2, upper = 4, data){
k <- length(w)
fct_derivx_list <- lapply(modellist, curveDerivx)
KL_div <- get_all_KL_div(modellList, fct_derivx_list, w, lower, upper)

subsets <- lapply(2:k, function(setsize){
combn(l:k, setsize, simplify = FALSE)}) [>
unlist(recursive = FALSE)
# combn returns combinations of size setsize of 1:J
# previous output s a list of lists, this makes sure we just have a list of the sets.

DI_vals <- sapply(subsets, function(subset){
DI_single_subset(subset, KL_div, w, lambda, gamma, data)})
return(subsets[[which.max(DI_vals)]])

# Curve functions derived in T ———————————— - - - - ————————————————————————————
curveDerivx <- function(model){
fctName <- model$fct$name

if (fctName == "LL.3") LL3_derivx(model$fit$par)
else if (fctName == "LL.4") LL4_derivx(model$fit$par)
else if (fctName == "LN.3") LN3_derivx(model$fit$par)
else if (fctName == "LN.4") LN4_derivx(model$fit$par)
else if (fctName == "W1.3") W13_derivx(model$fit$par)
else if (fctName == "W1.4") W14_derivx(model$fit$par)
else if (fctName == "W2.3") W23_derivx(model$fit$par)
else if (fctName == "W2.4") W24_derivx(model$fit$par)
else if (substr(fctName, 1,5) == "FPL.4") get_FP_derivx(
eval (parse(text=paste('c", substring(fctName, 6), sep = ""))) # extract c(pl,p2)

) (model$fit$par)

}

# LLJ

LL4_derivx <- function(par){
function(x){

b <- par[1]
c <- par[2]
d <- par[3]
e <- par[4]
dmc <- d-c

exp_bxme <- exp(b*(log(x)-log(e)))
-dmc * b * exp_bxme / (1 + exp_bxme) 2 / x



LL3_derivx <- function(par){
LL4_derivx(par = c(par([1], 0, par([2], par[3]))
}

# LN
LN4_derivx <- function(par){
function(x){

b <- par[1]
c <- par[2]
d <- par[3]
e <- parl[4]
dmc <- d-c
dmc * dnorm(b*(log(x)-log(e))) * b/x

X
3

LN3_derivx <- function(par){LN4_derivx(c(par[1], O, par([2], par[3]))}
# Wiy

W14_derivx <- function(par){
function(x){

b <- par[1]
c <- par[2]
d <- par[3]
e <- par[4]
dmc <-d - ¢

log_xme <- log(x) - log(e)
exp_bxme <- exp(b*(log_xme))
exp_mexp_bxme <- exp(-exp_bxme)

- dmc * b * exp_bxme * exp_mexp_bxme / x
X
}

W13_derivx <- function(par){W14_derivx(c(par[1], 0, par[2], par[3]))}
# W24

W24_derivx <- function(par){
function(x){

b <- par[1]
c <- par[2]
d <- par([3]
e <- par[4]

dmc <- d - ¢

log_xme <- log(x) - log(e)
exp_bxme <- exp(b*(log_xme))
exp_mexp_bxme <- exp(-exp_bxme)

dmc * b * exp_bxme * exp_mexp_bxme / x

10



}
W23_derivx <- function(par){W24_derivx(c(par[1], 0, par[2], par[3]))}

# FPJ

get_FP_derivx <- function(p){
FP_derivx <- function(par){

function(x){

b <- par[1]

c <- par[2]

d <- par[3]

e <- par[4]

dmc <-d - ¢

xpl <- x + 1

log_xpl <- log(x + 1)

exp_tmp <- exp(b * log_xpl p[1l] + exlog_xpl-pl[2])
fracl <- b * log_xpl pl[1l*p[1] / (xpl*log_xpl)
frac2 <- e * log_xpl pl[2]*p[2] / (xpl*log_xpl)

- dmc * (fracl + frac2) * exp_tmp / (1 + exp_tmp) 2
}
}
FP_derivx

}

Fit models

# Load data, choose models ————————————————————\——\——\——(—\—(—(—(—(—(—(—(—(—(————————————

data("acidiq")
exData <- subset(acidiq, pct %in’% c(999,100))

pls <- c(-2, -1)
p2s <- c¢(0.5, 1)
FPs <- outer(X = pls, Y = p2s, FUN = function(pl,p2){
paste("FPL.4(pi=", p1, ",", " p2=", p2,")", sep = "")}) |> as.character()
modelFcts <- c("LL.4()", "LN.4Q)", "W1.40", "W2.4(0)", FPs)

# Set BMD definition and BMR -————-—————————————————————————————————————————
def <- "relative"
bmr <- 0.1

# Parameters for confidence intervals —————————————————————————————————————
bootR <- 500
level <- 0.95

# Fit models ————————————————— - -
modelList <- lapply(modelFcts,
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function(modelString) drm(rgr ~ dose, data = exData,
fct = eval(parse(text = modelString)),
type = "continuous"))
# Plot
colours <- c("black", "#A6CEE3", "#1F78B4","#99cf95", "#33A02C", "#FB9A99", "#E31A1C",
"#FDBF6F", "#FF7F00", "#CAB2D6", "#6A3DOA", "#FFFF99", "#B15928")
appl_plot <- ggplot(exData) +
lapply(modelList[8:1], function(x){
geom_function(aes(col = x$fct$name), fun = x$curvel[[1]])
P+
geom_point (aes(x = dose, y = rgr), col = colours[1]) +
scale_color_manual (breaks = sapply(modellList, function(x) x$fct$name),
values = colours[2:9]) +
scale_x_continuous(transform = scales::pseudo_log_trans(sigma = 10),
breaks = ¢(0,10,100,1000,5000)) +
labs(col = "Model", x = TeX("$\\mu g$ A.I. $1°{-1}$ Aciflourfen"),
y = TeX("Relative growth rate (cm $cm”{-1}$ $week {-1}$)")) +
theme_bw() +
theme (legend.position = ¢(0.85,0.7))

appl_plot
Model
0.37 LL.4
E — LN.4
® W1.4
(O]
= — W24
T
£ FPL.4(-2,0.5)
© 0.2
£ — FPL.4(-1,0.5)
:.; FPL.4(-2,1)
e — FPL.A4(-1,1)
E
o
(@]
[} Ol'
=
IS,
(O]
x
0.0

0 10 100 1000 5000
pg A.l. I Aciflourfen
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BMD estimation

# BMD Estimation —————————————-————-——— -~ -~ - ————————
# minitmum AIC value
whichAICMin <- which.min(sapply(modellList, function(model) AIC(model)))

set.seed(2023)

bmdAICMin <- bmdBoot (modelList[[whichAICMin]], bmr = bmr, backgType = "modelBased",
def = def, bootType = "nonparametric",
bootInterval = "percentile", R = bootR, level = level)

## BMD BMDL
## 58.16225 43.28719

# Compute weights

AICWeights <- exp(-(sapply(modelList,AIC)-min(sapply(modelList,AIC))))/
sum(exp (- (sapply (modelList,AIC) -min(sapply(modelList,AIC)))))

set.seed(2023)

StackWeights <- getStackingWeights(modelList, nSplits = 3)

print (StackWeights)

## [1] 3.134158e-01 1.815964e-21 5.066936e-01 7.902277e-20 2.215077e-02
## [6] 4.799909e-20 1.577399e-01 2.449790e-20

# bmdMA

set.seed(2023)

bmdMAAICPost <- bmdMA(modellList, modelWeights = "AIC", bmr = bmr,
backgType = "modelBased", def = def, type = "bootstrap",
bootstrapType = '"nonparametric",
bootInterval = "percentile", R = bootR, level = level,
progressInfo = FALSE)

## BMD_MA BMDL_MA
## 66.48764 45.16161

set.seed(2023)

bmdMAAICCurve <- bmdMA(modellList, modelWeights = "AIC", bmr = bmr,
backgType = "modelBased", def = def, type = "curve",
bootstrapType = '"nonparametric",
bootInterval = "percentile", R = bootR, level = level,
progressInfo = FALSE)

##  BMD_MA BMDL_MA
## 66.8208 45.1868

set.seed(2023)

bmdMAStackPost <- bmdMA(modelList, modelWeights = "Stack", bmr = bmr,
backgType = "modelBased", def = def, type = "bootstrap",
bootstrapType = "nonparametric",
bootInterval = "percentile", R = bootR, level = level,
stackingSplits = 3, progressInfo = FALSE)

13



## BMD_MA BMDL_MA
## 66.76402 47.5012

set.seed(2023)

bmdMAStackCurve <- bmdMA(modelList, modelWeights = "Stack", bmr = bmr,
backgType = "modelBased", def = def, type = "curve",
bootstrapType = "nonparametric",
bootInterval = "percentile", R = bootR, level = level,
stackingSplits = 3, progressInfo = FALSE)

##  BMD_MA BMDL_MA
## 67.67184 48.32985

Apply DI

# Apply DI
lambda <- c(1,3,5)
gamma <- 1

(AICDILambdal <- DI_model_space(modellList, AICWeights, lambda = lambda[1],

gamma = gamma, lower = 10, upper = 100, data = exData))
## [1] 1234678
(AICDILambda2 <- DI_model_space(modelList, AICWeights, lambda = lambdal[2],

gamma = gamma, lower = 10, upper = 100, data = exData))

## (11 123467

(AICDILambda3 <- DI_model_space(modelList, AICWeights, lambda = lambdal[3],
gamma = gamma, lower = 10, upper = 100, data = exData))

## [1]1 13467

AICModelSubspacelList <- list(AICDILambdal,
AICDILambda?2,
ATICDILambda3)

set.seed(2023)

bmdMAAICCurveDILambdal <- bmdMA(modelList[AICDILambdal], modelWeights = "AIC",
bmr = bmr, backgType = "modelBased", def = def,
type = "curve", bootstrapType = '"nonparametric",
bootInterval = "percentile", R = bootR, level = level,
progressInfo = FALSE)

## BMD_MA BMDL_MA
## 66.8196 44.08511

14



set.seed(2023)

bmdMAAICCurveDILambda2 <- bmdMA (modelList [AICDILambda2], modelWeights = "AIC",
bmr = bmr, backgType = "modelBased", def = def,
type = "curve", bootstrapType = "nonparametric",
bootInterval = "percentile", R = bootR, level = level,
progressInfo = FALSE)

## BMD_MA BMDL_MA
## 66.38595 44.08293

set.seed(2023)

bmdMAAICCurveDILambda3 <- bmdMA(modelList [AICDILambda3], modelWeights = "AIC",
bmr = bmr, backgType = "modelBased", def = def,
type = "curve", bootstrapType = '"nonparametric",
bootInterval = "percentile", R = bootR, level = level,
progressInfo = FALSE)

#%  BMD_MA BMDL_MA
## 64.69567 44.04452

5 RSB B8 P e e e e e e e O O O OO
methodNames <- c("min(AIC)", "MA_AIC(post)",
"MA_AIC(curve)", "MA_Stack(post)", "MA_Stack(curve)",
"MA_AIC DI lambdal", "MA_AIC_DI lambda2", "MA_AIC_DI_lambda3")
bmdList <- list(bmdAICMin, bmdMAAICPost, bmdMAAICCurve,
bmdMAStackPost, bmdMAStackCurve,
bmdMAAICCurveDILambdal,
bmdMAAICCurveDILambda2,
bmdMAAICCurveDILambda3)
MABmdEst <- sapply(bmdList, function(x) x$Results[1])
names (MABmdEst) <- methodNames
MABmdLower <- sapply(bmdList, function(x) x$Results[2])
names (MABmdLower) <- methodNames

appRes <- list(modelFcts = modelFcts,
methodNames = methodNames,
lambda = lambda,
gamma = gamma,
AICWeights = AICWeights,
StackWeights = StackWeights,
MABmdEst = MABmdEst,
MABmdLower = MABmdLower,
AICDILambdal = AICDILambdal,
AICDILambda2 = AICDILambdaZ2,
AICDILambda3 = AICDILambda3)
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Full mixture data example

Fit models

# Analysis of full mizture experiment —————————————————————————————————————
acidiq <- transform(acidiq, pct = factor(pct))

I L I O ]S I e
modelList2 <- lapply(modelFcts,
function(modelString){
if (!substr(modelString, 1,3) == "FPL"){
drm(rgr ~ dose, data = acidiq, curveid = pct,
pmodels = list(~ pct, ~ pct, ~ 1, ~ pct),
fct = eval(parse(text = modelString)),type = "continuous")
} else {
drm(rgr ~ dose, data = acidiq, curveid = pct,
pmodels = list(~ pct, ~ pct, ~ 1, ~ pct),
fct = eval(parse(text = modelString)),
start = c(rep(-50,7), rep(0,7), 0.3, rep(3,7)),
type = "continuous")
}
1)

## Control measurements detected for level: 999
## Control measurements detected for level: 999
## Control measurements detected for level: 999
## Control measurements detected for level: 999
## Control measurements detected for level: 999
## Control measurements detected for level: 999
## Control measurements detected for level: 999
## Control measurements detected for level: 999

xx <- c(0,exp(seq(log(0.8), 1log(5000), length.out = 300)))

app2_curves <- function(x,model){
df <- as.data.frame(model$curve[[1]](x))
colnames(df) <- c("Model",levels(acidiq$pct) [c(7:1)])
df$Model <- model$fct$name

df$x <- x

df_long <- df 7>} pivot_longer(cols = all_of(levels(acidiq$pct) [c(7:1)]),
names_to = "pct")

df_long

}

curve_values <- do.call(rbind, lapply(modelList2, function(mod) app2_curves(xx, mod))) %>’
mutate(Model = factor(Model, levels = sapply(modellList2, function(x) x$fct$name)))

colorRamp <- colorRampPalette(colours[c(7,8,5)]1)(7) # colours used for mizture curves
app2_plot <- ggplot(acidiq) +

geom_line(aes(x = x, y = value, col = pct), data = curve_values) +
stat_summary(aes(x = dose, y = rgr, col = pct), fun = mean, geom = "point") +
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facet_wrap(~Model, scales = "free", nrow = 3) +
scale_color_manual (breaks = levels(acidig$pct) [c(8,1:7)],
values = c(colours[1], colorRamp),
labels = c("Control", levels(acidiq$pct) [1:7]1)) +
scale_x_continuous(transform = scales::pseudo_log_trans(sigma = 10),
breaks = ¢(0,10,100,1000,5000)) +
labs(x = TeX("$\\mu g$ A.I. $1°{-1}$ Aciflourfen"),
y = TeX("Relative growth rate (cm $cm™{-1}$ $week {-1}$)"),
color = "Mixture") +
theme_bw() +
theme (legend.position = "bottom") +

guides(col = guide_legend(nrow = 4)) + theme(legend.position = c(0.85,0.15))

app2_plot
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BMD estimation

# BMD Estimation ———————————— - - - -
# minimum AIC value
whichAICMin2 <- which.min(sapply(modelList2, function(model) AIC(model)))

set.seed(2023)

1000 5000

50
—-0— 67
-o— 83

—e— 100

bmdAICMin2 <- bmdBoot (modelList2[[whichAICMin2]], bmr = bmr, backgType = "modelBased",

def = def, bootType = "nonparametric",
bootInterval = "percentile", R = bootR, level = level)
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## BMD BMDL
## 100 69.42293 50.51751
## 83 132.59369 110.35202
## 67 208.71374 191.37198
## 50 235.62305 214.75666
## 33 252.35091 231.57478
## 17 180.19215 164.68192
## 0O 171.52023 143.94582

# Compute weights

AICWeights2 <- exp(-(sapply(modelList2,AIC)-min(sapply(modelList2,AIC))))/
sum(exp (- (sapply (modelList2,AIC) -min(sapply(modellist2,AIC)))))

AICWeights2

## [1] 7.835780e-07 4.695745e-07 2.773048e-22 9.973555e-01 1.593816e-03
## [6] 5.871684e-04 3.646200e-04 9.761762e-05

set.seed(2023)
StackWeights2 <- getStackingWeights(modelList2, nSplits = 3)
StackWeights2

## [1] 3.757920e-23 0.000000e+00 1.317828e-01 8.215317e-01 5.078453e-22
## [6] 0.000000e+00 4.668556e-02 2.583136e-22

# bmdMA
set.seed(2023)
bmdMAAICPost2 <- bmdMA(modellList2, modelWeights = "AIC", bmr = bmr,
backgType = "modelBased", def = def, type = "bootstrap",

bootstrapType = '"nonparametric",
bootInterval = "percentile", R = bootR, level = level,
progressInfo = FALSE)

#i# BMD_MA  BMDL_MA

## 100 69.4318 49.49182
## 83 132.5781 104.78683
## 67 208.6855 178.16338
## 50 235.5963 195.91563
## 33 252.3281 222.67002
## 17 180.1846 160.93537
## 0 171.4948 124.51468

set.seed(2023)

bmdMAAICCurve2 <- bmdMA(modellList2, modelWeights = "AIC", bmr = bmr,
backgType = "modelBased", def = def, type = '"curve",
bootstrapType = '"nonparametric",
bootInterval = "percentile", R = bootR, level = level,
progressInfo = FALSE)
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##
##
##
##
##
##
##
##

BMD_MA
100 69.43216
83 132.57950
67 208.68933
50 235.60069
33 252.33251
17 180.18591
0 171.49895

set.seed(2023)
bmdMAStackPost2 <- bmdMA(modelList2, modelWeights = "Stack", bmr = bmr,

##
##

##
##
##
#
##
##
##
##

BMDL_MA

49
104
178
196
222
161
124

.49229
.79378
.54598
.00994
.97545
.02768
.51844

backgType = "modelBased", def = def, type = "bootstrap"
bootstrapType = "nonparametric",

bootInterval = "percentile", R = bootR, level = level,
stackingSplits = 3, progressInfo = FALSE)

B

Error in optim(startVec, opfct, hessian = TRUE, method = optMethod, control = list(maxit
non-finite finite-difference value [22]

BMD_MA
100 66.13601
83 125.25277
67 200.19203
50 226.14878
33 247.97640
17 176.43558
0 164.09396

set.seed(2023)
bmdMAStackCurve2

##
##

##
##
##
##
##
##
##
##

BMDL_MA

49
101

.06942
.03697

174.74233

195
217
161
121

.75679
.74103
.455647
.49850

<- bmdMA (modellList2, modelWeights = "Stack", bmr = bmr,

backgType = "modelBased", def = def, type = "curve",
bootstrapType = '"nonparametric",

bootInterval = "percentile", R = bootR, level = level,
stackingSplits = 3, progressInfo = FALSE)

Error in optim(startVec, opfct, hessian = TRUE, method = optMethod, control
non-finite finite-difference value [22]

BMD_MA
100 66.71447
83 126.83799
67 202.48457
50 228.79535
33 249.32155
17 177.53925
0 166.24587

Results

BMDL_MA
49.29788

102.
176.
199.
218.
161.

121

42069
88400
24606
30074
94172
.36773
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2 LB R8I BE S e e e e e e e e e e e e e e e e e e O O O OO OoCOs
methodNames2 <- c("min(AIC)", "MA_AIC(post)","MA_AIC(curve)",
"MA_Stack(post)", "MA_Stack(curve)")
bmdList2 <- list(bmdAICMin2, bmdMAAICPost2, bmdMAAICCurve2,
bmdMAStackPost2, bmdMAStackCurve2)
names (bmdList2) <- methodNames2

appRes2 <- list(modelFcts = modelFcts,
methodNames2 = methodNames2,
AICWeights2 = AICWeights2,
StackWeights2 = StackWeights2,
bmdList2 = bmdList2)
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