
CHAPTER NINE

Selective review of penalized 

learning methods for event 

processes
Myrto Limniosa and Niels R. Hansen
University of Copenhagen, Department of Mathematical Sciences, Copenhagen, Denmark

9.1. Introduction
Temporal event processes are ubiquitous in many applications, with 

their instantaneous evolution being dependent on past events. Such pro
cesses are traditionally modeled as point processes. One early important 
model was introduced in seismology for analyzing the temporal propaga
tion of earthquakes, see, e.g., (Ogata, 1988), and more recently, a series of 
works consider applications in mathematical finance (Bacry et al., 2015), 
neuroscience (Paninski, 2004), social science (Park et al., 2021; Mohler et 
al., 2011), etc.

One can consider temporal event processes through their time-stamps 
only, which results in temporal point processes or, equivalently, counting pro
cesses. It is also possible to consider temporal event processes, where each 
event is associated with a mark characterizing the event. Marks can be cat
egorical, which results in multivariate point processes, but they can also be 
continuous, encoding, e.g., earthquake magnitudes. Marks can, further
more, be multivariate (spatial) giving spatio-temporal point processes.

Seminal works developed probabilistic frameworks, allowing for, e.g., 
self-exciting models, which can provide a mechanistic description of the 
temporal dynamics of the underlying system. We refer for instance to 
Hawkes (1971a) for Hawkes processes, and more generally to the clas
sic books (Daley and Vere-Jones, 1998; Brémaud, 2020; Jacobsen, 2005). 
However, classic statistical procedures for estimating parameters in a model 
suffer from the intrinsic memory of the system, which results in complex 
forms of empirical loss functions, which are difficult to compute and op
timize. For instance, the likelihood function will generally not have an 
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analytically tractable expression, and it may require numerical integration 
over multivariate sets. Moreover, to express complicated dependencies, the 
models need to be flexible, which often leads to a high-dimensional pa
rameter, which we need to estimate from data.

In the present chapter, we focus on penalized statistical methods tailored 
for dealing with both high-dimensional parameters and for being compu
tationally attractive, even for large datasets and complex models. Some of 
these solutions involve replacing the log-likelihood with another loss func
tion, the quadratic contrast, which can sometimes be computationally and 
theoretically attractive.

We highlight that our review is not exhaustive, and rather intends to 
provide a general perspective of the existing literature. For additional de
tails, we thus refer to some of the excellent existing reviews, specific to 
particular models, e.g., to González et al. (2016) for environmental and 
epidemiological models; Renner et al. (2015) for models describing species 
distribution with point processes dynamics; Rommel et al. (2022) for data
augmentation approaches specific to electroencephalogram signals (EEG), 
or statistical methods; Banerjee et al. (2014) for a summary of statistics 
applied to purely spatio-(temporal) point processes; Reinhart (2018) for a 
general review, and Rommel et al. (2022) reviewed data augmentation ap
proaches based on deep learning algorithms and testing of their efficiency 
with a systematic approach.

The chapter is organized as follows: Section 9.2 states the general frame
work and exposes prototypical examples of temporal point processes. Sec
tion 9.3 describes the general framework for statistical methods based on 
penalized loss functions first, then reviews the proposed methods in the 
literature for two specific cases: likelihood-based and least-squares-based 
losses.

9.2. Event processes: definitions, fundamental 
properties, and prototypical examples

This section introduces the notations used throughout the chapter, exposes 
general types of evolutionary point processes considered as event processes, of 
which prototypical examples are then described.

Notation
For any nonempty set A, we denote the corresponding indicator function 
by 1A and its closure by A. For the half-line R+ = [0,∞), the corresponding 
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Borel σ -algebra is denoted by B+. We denote by L2(I), with I a compact 
set, the Hilbert space of functions f : I → R equipped with the norm ‖f ‖2

I =∫
I f (t)2dt. The positive part of x ∈ R is denoted by (x)+ = max{x,0}.

9.2.1 General framework
We introduce in this section the general framework of marked temporal 
point processes, which is used throughout the chapter, and that forms the 
foundation for the statistical methods reviewed in Section 9.3.

Let (Ω,F,F,P)1 denote an abstract probability space equipped with a 
right-continuous filtration F = (Ft)t≥0. Let (K, K, η) be a Borel measure 
space equipped with a probability measure η. We refer to Protter (1992), 
Section I.1 therein, for basic definitions and properties. We will consider 
stochastic processes dfined on Ω, which represent event times, and we will 
use elements in K to denote the type of an event. The space K is called the 
mark space to signify that elements in K are marks of the event types.

A marked temporal point process (MTPP) X is dfined on Ω and takes 
values in the set of counting measures on the space (R+ × K,B+ ⊗ K). 
That is, for any set B ∈ B+ ⊗ K, the random variable X(B) takes values in 
{0,1,2, . . . ,∞}, and it counts the number of points in B. For any set A ∈ K
and all t ∈ R+, we introduce the counting process Nt(A) = X([0, t] × A), 
which counts the number of events up to time t and with marks in A. We 
let Nt = Nt(K) = X([0, t]× K) denote the counting process of all events up 
to time t, and we say that N is nonexploding if Nt < ∞ for all t ∈ R+. Note 
that if N is nonexploding, then Nt(A) < ∞ for all A. We will throughout 
assume that N is nonexploding and that the counting processes Nt(A) for 
A ∈ K are F-adapted.

The homogeneous Poisson random measure is a special MTPP, which 
will serve as a baseline for the construction of other MTPPs. If X is a homo
geneous Poisson random measure, there is a λ0 > 0 such that the counting 
processes Nt(A) are homogeneous Poisson counting processes with inten
sity λ0η(A) with regard to the abstract filtration F for all A ∈ K. Since η
is a probability measure, Nt is then a homogeneous Poisson process with 
intensity λ0, and it is, in particular, nonexploding. For any t > s ≥ 0, the 
increment Nt(A) − Ns(A) is Poisson distributed with mean λ0(t − s)η(A)

and independent of Fs. Moreover, for any disjoint sets A1, . . . ,Ar of K, the 
counting processes Nt(A1), . . . ,Nt(Ar) are independent.

1 We suppose Ω to be nonempty and F to be a σ -algebra composed of the subsets of Ω.
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We will throughout assume that there is a probability measure Q on Ω
and a random counting measure X such that X is a homogeneous Poisson 
random measure under Q. By the following definition and theorem, we 
will be able to dfine other distributions of X by a change-of-measure.

Definition 9.1. Let X be a homogeneous Poisson random measure on 
(R+ ×K,B+ ⊗K) dfined on the filtered probability space (Ω,F,F,Q). Let 
t �→ λt(x) denote a nonnegative, locally finite, and Ft-predictable process for 
all x ∈ K and dfine the likelihood process:

Lt = exp

{∫
K

∫ t

0
log

λu(x)

λ0 X(du,dx) −
∫

K

∫ t

0
(λu(x) − λ0)du η(dx)

}
. (9.1)

The condition that λt(x) is locally finite, meaning that sups≤t,x∈K λs(x) <

∞, implies that the second integral in (9.1) is finite and that the likelihood 
process Lt is well dfined. We see from the definition that Lt is a nonneg
ative and Ft-adapted process, and that Lt > 0, unless X has a point mass in 
a point (u,x) with λu(x) = 0. Generally, the process Lt is a local martingale 
and a supermartingale with regard to Ft so that

EQ[Lt | Fs] ≤ Ls .

Since L0 = 1, this implies that EQ[Lt] ≤ 1. If the process is a martingale, 
the theorem that follows allows us to construct another distribution of the 
random counting measure X by a change-of-measure.

Theorem 9.1. With the same setup as in Definition 9.1, and if the likelihood 
process Lt is a martingale, we can dfine a measure Pt on (Ω,F) such that the 
likelihood process is the Radon–Nikodym derivative:

dPt

dQ 
= Lt . (9.2)

We refer to Jacobsen (2005) for the sequential construction of canonical
MTPPs, which lead to Corollary 5.1.2 in Jacobsen (2005), which gives a 
constructive proof of the likelihood process as a Radon–Nikodym deriva
tive showing that it is a martingale. For MTPPs dfined on an abstract 
filtered probability space, and with a finite K , see Theorem 2.4 and Corol
lary 2.3 in Sokol and Hansen (2015) for general conditions ensuring that 
the likelihood process is a martingale. Example 4.3 in Sokol and Hansen 
(2015) gives that

λt(x) ≤ α + βNt− , (9.3)



Selective review of penalized learning methods for event processes 163

for some constants α,β ≥ 0, and all x ∈ K is a sufficient condition when K
is finite. Since (9.3) also implies that λt(x) is locally finite, condition (9.3)
guarantees that for any t ≥ 0 there exists a probability measure Pt with the 
likelihood process Lt as Radon–Nikodym derivative with respect to Q.

When Lt is a martingale, the probability measures Pt are consistent in 
the sense that (Xs)s∈[0,t] has the same distribution under Pt as under PT for 
any T ≥ t. We will later fix a maximal time horizon T > 0 and consider 
the observation of X only within the time window [0,T ] and under PT . It 
is nontrivial to extend the family of measures to a T-independent measure 
on an abstract space, but to ease notation, we will usually drop the subscript 
T and just denote the measure by P. The distribution of X under P is then 
determined by the predictable process λ. Thus to dfine a statistical model 
with particular properties, we choose λ, possibly parameterized by θ ∈ Θ

for a parameter space Θ, to yield these desired properties.
To construct models in terms of λ, we need to be able to interpret and 

understand λ. We will usually take λ0 = 1, in which case it holds that

P[X(dt × dx) = 1 | Ft−] ≈ λt(x) dt η(dx) . (9.4)

That is, conditionally on everything up to just before time t, λt(x) is the 
conditional rate of a new event. We refer to λt(x) as the intensity. We can 
further decompose λt(x) by introducing the ground intensity

λg,t =
∫

λt(x)η(dx) , (9.5)

and then in terms of the ground intensity, we dfine

f (x | t) = λt(x)

λg,t
, (9.6)

for λg,t > 0. The ground intensity has an interpretation similar to (9.4), that 
is, as the conditional rate of an event with any mark type: P[Nt+dt − Nt− =
1 | Ft−] ≈ λg,t dt. The function f (x | t) is then the conditional density with 
respect to η of the mark given an event at time t and the history Ft− up to 
just before time t.

Models dfined in terms of an Ft-predictable intensity λ are sometimes 
referred to as a causal description of the system, in the sense that the model 
description at the present time t only depends on the past. We note that 
this notion of being causal differs from other notions of causality, see, e.g., 
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(Peters et al., 2017), which should also rflect what happens when we inter
vene in the system. See also Mogensen et al. (2018); Mogensen and Hansen 
(2020).

The intensity process has, in addition to (9.4), another interpretation. 
Dfine the process Λt(A) := ∫

A

∫ t
0 λs(x)dsη(dx) for A ∈ K. Under minimal 

assumptions on λ, namely that it is a nonnegative and locally bounded2

Ft-predictable process, the process Mt(A) = Nt(A) − Λt(A) is a local Ft
martingale. The process Λt(A) is known as the compensator of the process 
Nt(A), and Nt(A) = Mt(A) + Λt(A) is the Doob–Meyer decomposition of the 
submartingale Nt(A) as a sum of a (local) martingale and an increasing 
predictable process.

With a given intensity model determining P and an observation of the 
random counting measure X on [0,T ] under P, we can compute the log
likelihood as log(LT ). It is worth writing out the explicit formula for the 
log-likelihood in the corollary that follows; see also Proposition 7.3.III in 
Daley and Vere-Jones (1998).

Corollary 9.1. Consider the MTPP X with intensity process λ and observed 
on the interval [0,T ] for some fixed and finite T > 0. Let (t1,x1), . . . , (tn,xn)

denote the finite observed points for X with event times 0 < t1 < t2 < . . . < tn < T, 
and the associated marks x1, . . . ,xn ∈ K. Then the log-likelihood process at time T
equals

log LT =
n ∑

i=1 
log

λg,ti

λ0 −
∫ T

0
(λg,u − λ0)du +

n ∑
i=1 

log f (xi | ti) . (9.7)

Note how the log-likelihood in (9.7) is decomposed into the first two 
terms pertaining only to the ground intensity and the event times and the 
last term being effectively a conditional log-likelihood of the marks given 
the event times.

Canonical probability space
MTPPs are often studied on a so-called canonical probability space (the 
space of counting measures, say) with the internal filtration generated by 
the process X itself. See Jacobsen (2005) for a detailed treatment of this 
perspective. One main benfit of this approach is that the way that λ can 
depend on the history becomes very explicit.

2 An Ft-adapted is said to be locally bounded if there exists a sequence of Ft-adapted increasing stop
ping times, such that the stopped process is bounded.
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Suppose that we have observed the points (t1,x1), . . . , (tn−1,xn−1) in the 
time interval [0, tn−1], we can then write the conditional survival function 
of the waiting time τn = tn − tn−1 from tn−1 to the next event as

Sn(s) = exp

(
−

∫ s

0
hn(u)du

)
,

where hn denotes the conditional hazard function. From this, we identify 
the ground intensity as λg,t = hn(t) = hn(t | (t1,x1), . . . , (tn−1,xn−1)). Com
bined with (9.6), the intensity can be written as λt(x) = h1(t)f1(x | t) for 
0 < t ≤ t1, and for i ≥ 2 and ti−1 < t ≤ ti as

λt(x) = hi(t | (t1,x1), . . . , (ti−1,xi−1))fi(x | (t1,x1), . . . , (ti−1,xi−1), t) . (9.8)

Though the above representation of the intensity is fairly explicit in 
terms of how the conditional hazard functions and conditional mark distri
butions should depend on the observed history, the mere computation of 
the log-likelihood can be a practical challenge. The sequential condition
ings, when i ranges in {1, . . . ,n}, results in an intractable form of LT , limiting 
its direct maximization. Strategic choices of parameterization for the joint 
distribution of (t,x), resulting in elegant models; see, e.g., (Schoenberg, 
2013), can circumvent some limitations related to the high dimensionality 
of the process, possibly with long-range memory. We will, however, not 
focus on those works, and rather discuss methods alleviating those intrinsic 
characteristics in the dedicated Section 9.3. In the paragraph that follows, 
we briefly discuss the case of abstract filtration, and how it can encode 
dependencies on external covariates in particular.

Dependence on exogeneous covariates
In many applications, the observed X over [0,T ] depends on auxiliary 
covariates, which we would like to include in a statistical model. We can 
model such a dependence by assuming that such covariate processes are 
adapted to the abstract filtration so that the intensity process can depend on 
them.

Example 9.1. (Explicit form of dependence.) Let Y be a covariate process de
fined on (Ω,F,F,Q), with values in Rd, and predictable with regard to 
the filtration F . We suppose that X is a homogeneous Poisson random 
measure under Q, and that Y is independent of X under Q. If we dfine 
the intensity process λt(x)(ω) = μ(t,x,Yt(ω)) for a continuous mapping 
μ : R+ × K ×Rd → R+, Theorem 9.1 applies and X depends, under P, on 
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Y through its intensity. In this particular example, X will be an inhomoge
neous Poisson counting measure conditionally on Y .

In general, there can be some technicalities arising from considering 
external dependencies, related to the F-measurability/predictability of the 
process Y in particular. We will not go into the details, and refer to Da
ley and Vere-Jones (1998) page 236, Brémaud (2020) Chapter 5.1, and to 
Christgau et al. (2023) for resulting limitations in the context of statistical 
modeling. In the following section, we expose prototypical examples of 
(marked) point processes, which will be extensively used in Section 9.3.

Now that the general framework is stated, the following section presents 
a series of prototypical examples of temporal point processes dfined 
through their intensity process only.

9.2.2 Examples of event processes
This section presents fundamental examples of point processes from the 
simplest form, i.e., homogeneous Poisson processes, to specific classes of 
MTPP. We implicitly consider processes indexed by time t ∈ [0,T ], with 
T > 0 finite, to avoid additional technicalities. We dfine the processes 
via their associated model for the intensity that is generally formulated as 
a transformation of a predictable process, and parameterized by a deter
ministic set of square-integrable functions. Precisely, without any loss of 
generality, consider a counting process Nt with associated intensity pro
cess λt with regard to an abstract filtration (Ft)t≥0 such that the framework 
in Section 9.2.1 holds true. Based on a Hilbert class of real-valued basis 
functions H, we present explicit classical models by the relation

λt = ϕt(h) , (9.9)

where h ∈ H, and ϕt is the predictable transformation characterizing the 
time dependent stochastic structure of the process. As we shall see in Sec
tion 9.3, the goal is to estimate the function h based on an observed process 
on t ∈ [0,T ].

Poisson processes
Poisson processes are the simplest models for random counting processes, 
where the distribution of the jumps are specfied by a rate being constant if 
homogeneous, or a deterministic function of time otherwise. The intensity 
process is deterministic and equals

λt = h(t) , (9.10)
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with H ⊆ L2([0,T ],R+). Their fundamental property of having indepen
dent jumps when conditioned on the past makes this class a building block 
for any other MTPP. We refer to dedicated analysis in Brémaud (2020), 
Chapters 2 and 3 therein, among others.

Hawkes processes
Introduced in Hawkes (1971a,b), Hawkes processes (HPs) are fundamen
tal models of temporal point processes, which have been used extensively 
to model evolutionary phenomena with memory. By allowing past occur
rences to have inhibitory or excitatory effects on the future events, this class 
achieves great modeling flexibility. The first works modeled epidemic-type 
aftershock sequence (ETAS) of earthquakes, see, e.g., (Ogata, 1988), more 
recently being used to model portfolio dynamics in finance markets (Bacry 
et al., 2015), or neuronal networks (Reynaud-Bouret et al., 2013; Lambert 
et al., 2018) for instance. Consider ψ : R �→ R+ and a kernel h : R+ �→ R, 
then the general formulation of the intensity process for Hawkes processes 
is explicitly given by

λt = ψ

(
μ0 +

∫ t−

t−T
h(t − u) dNu

)
, (9.11)

where μ0 ∈ R dfines the spontaneous rate, representing the value of the 
process at the origin, and often chosen to be equal to zero. If the interaction 
function h is nonnegative, then the resulting process is self-exciting, and it 
is self-inhibiting otherwise. The simple choice of ψ(u) = u generates linear 
Hawkes process, whereas typical examples are ψ(u) = (u)+, accounting for 
possibly inhibitory effects, and ψ(u) = exp(u) ensures positivity. We refer 
to Brémaud and Massoulié (1996) for stability results for nonlinear Hawkes 
processes under Lipschitz-type conditions for ψ mainly, generalizing the 
results of Hawkes and Oakes (1974) established in the linear case. If now 
one considers multivariate HPs with d ∈ N∗ coordinates, then for any j ≤ d,

λ
(j)
t = ψ(j)

(
μ

(j)
0 +

d∑
i=1 

∫ t−

t−T
h(j)

i (t − u) dN (i)
u

)
, (9.12)

where the kernels h(j)
i model the transfer from the ith coordinate N (i)

to N (j). Notice that the upperbound of the integral (t−) ensures pre
dictability of the intensity, that could alternatively be obtained by fixing 
all kernels h(j)

i (0) = 0. The associated class of kernel functions can be 
chosen to be H = (R × L2([0,T ],R)d)d, with associated squared norm 
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‖h‖2
H = ∑

j(μ
(j)
0 )2 + ∑

j
∑

i

∫ T
0 (h(j)

i )2, with i, j ≤ d, see, e.g., (Hansen et al., 
2015). HPs can alternatively be dfined via a system of stochastic equations. 
For instance, Bacry and Muzy (2014) proposed an estimation method for 
multivariate linear HPs associated with marks, as being the solution of a 
linear discretized scheme of the Wiener–Hopf system of equations, char
acterizing up to their second-order. Corollary 1 therein proves that if the 
considered process has stationary increments and some conditions, then it 
is uniquely dfined by its first- and second-order statistics, ensuring thus 
that the proposed system has a unique solution.

Temporal point processes
We now dfine the general setting of temporal point processes (TPP). Fol
lowing the pattern set by Section 9.2.1, consider X to be a homogeneous 
Poisson random measure on (R+,B+), dfined on the filtered abstract prob
ability space (Ω,F,F ,P). Then by defining the likelihood process Lt of any 
process λt fufills the conditions of Definition 9.1 to be

Lt = exp

{∫ t

0
log

λu(x)

λ0 X(du) −
∫ t

0
(λu(x) − λ0)du

}
. (9.13)

If it is a martingale, we can construct Pt such that Lt is the change-of
measure Lt = dPt/dQ by Theorem 9.1. Let n ∈ N∗ be finite, and consider 
the strictly increasing time-stamps over (0,T) under P: 0 < t1 < t2 < . . . <

tn < T . The likelihood process then is

LT =
n ∏

i=1 

(
λti

λ0

)
exp

{
−

∫ T

0
(λu − λ0)du

}
. (9.14)

We refer to Proposition 7.2.III in Daley and Vere-Jones (1998), for the 
proof using the explicit Janossy density functions.

Multivariate and spatial TPP
The framework introduced in Section 9.2.1 encompasses many important 
models for MTPP. If the set of marks is of the form K = {1, . . . ,d}, with 
d ∈ N∗ finite, d ≥ 2, and variation independent, then X can model a mul
tivariate TPP, for which the marks represent the coordinates of X . Such 
processes can be represented by (finite) graphs, with the set of nodes being 
K , and the edges possibly oriented, which importantly encode the inter
actions between coordinates. The related adjacency matrix is dfined by 
A = (Ai,j)1≤i,j≤d, with Ai,j = 1 if there is an edge between node i and j, 
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and Ai,j = 0. It is a key tool for the methods in Section 9.3 for summa
rizing the structure of the graph. If K is a subset of a Euclidean space, 
the marks can indicate the spatial location visited at the event time, defin
ing spatio-temporal point processes, whereas many models restrict K ⊆ R2

for geospatial models. Lastly, the marks can indicate a weight coefficient 
K ⊆ R+, attributed to the associated event time, or can be multivariate for 
factorial MTPP.

In the next section, we expose the main statistical methods proposed 
in the literature to approximate and estimate (M)TPPs. We focus on two 
different methods formulated as a penalized loss functional of the intensity 
process mainly. Section 9.3.2 is devoted to losses related to the likelihood 
process as derived in Theorem 9.1, while Section 9.3.3 focuses on quadratic 
contrast functions.

9.3. Approximation models and estimation methods

This section presents the most common approximation models and 
estimation methods for event processes, specifically formulated as solution 
of a penalized loss functional. We distinguish two main risk functions, being 
either the likelihood functional or the least-squares functional. We consider 
the general framework and related assumptions exposed in Section 9.2.1 to 
hold true.

9.3.1 Generic formulation and empirical optimal estimators
Let the filtered probability space be (Ω,F,P), and suppose the time-interval 
[0,T ] to be finite, during which we observe the process Xt. As motivated 
in Section 9.2.2, we focus on presenting approximation models for the 
true intensity process λt of Xt, adapted to the filtration Ft, with associated 
estimation procedures. Following Section 9.2.1, let Θ be a parameter space, 
and consider a statistical model (λ(θ))θ∈Θ approximating the true intensity 
λ, dfined on (Ω,F,P), with associated probability measure (Pθ )θ∈Θ. Then 
X has intensity λ(θ) under Pθ on [0,T ]; see Corollary 2.3 in Sokol and 
Hansen (2015). Choose �t : Θ → R+ to denote a smooth loss functional, 
which is supposed to admit at least one local minimizer. The general form 
of the penalized loss function to minimize is formulated by the penalized 
risk

θ ∈ Θ �→ �T (θ) + π(ρ, θ) , (9.15)
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where π : (0,∞)q × Θ → R+, q ∈ N∗, is the penalization function, being 
usually a linear combination of �p-norms, with p ∈ N, of positive weights 
ρ ∈ (0,∞)q being fixed or data-driven. Typical choices are p ∈ {0,1,2}, 
recovering namely lasso (p = 1), Tikhonov (p = 2), and elastic net (linear 
combination of the two) penalizations, also considered as regularizations 
for some; we refer to Hastie et al. (2001) for a dedicated analysis. Suppose 
that there exists at least an optimal minimizer θ∗ that we want to estimate, 
and possibly control the expected risk dfined for any θ by

ET (θ) = Eθ [�T (θ)] − �T (θ∗) , (9.16)

which we suppose to be nonnegative, where Eθ denotes the expectation 
with regard to Pθ . In practice, however, the approximation models under 
Pθ are unknown, and the goal here is to minimize the penalized risk (9.15)
based on an observed random sample (Xt)t∈[0,T ]. Consider the sequence 
of strictly increasing event times {t1, . . . , tn}, possibly with associated marks 
{x1, . . . ,xn}. Notice that, because the process is nonexploding, there is at 
most a finite number of events occurring within a finite time-interval, with 
probability one. Letting Θ0 ⊆ Θ be fixed, we dfine an optimal empirical 
minimizer of the empirical counterpart of the penalized risk, when it exists, 
by

θn ∈ arg min
θ∈Θ0

�T (θ) + π(ρ, θ) . (9.17)

Some reviewed methods consider having observed an i.i.d. sample drawn 
from X denoted by {Xt,i, i ≤ m} with m ∈ N∗. Notice that, depending on 
the application, the parameters T or m are supposed to be large, or the 
aggregated process to contain enough information, insofar as enough oc
currences should be observed to be able to model the memory effect of 
the process. In addition, when the penalty function is well calibrated on 
the data sample and the model class, it can be related to adaptive models 
and model selection procedures; see Massart and Picard (2007), Chapter 
7 therein, in the context of density estimation. In the present framework, 
those guarantees are established for the least-squares estimator (LSE) mainly, 
and by means of concentration inequalities resulting in (minimax and) or
acle generalization bounds of the empirical solution (9.17). As we will see, 
those recent results provide explicit choices of empirical criteria for penalty 
functions, while enjoying minimal assumptions on the regularity of the true 
model λt, however they come at a highly technical cost.
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We specifically explain the risk function for each of the methods in the 
sections that follow, and particularly emphasize the choices for the approx
imation models for the intensity process. In the paragraph that follows, we 
present some typical choices of nonparametric function classes used in the 
literature.

Examples of estimators
We briefly outline some prototypical examples of Hilbert spaces H, which 
are commonly used to model the intensity process for instance, and for 
which θ represents the weights and possibly additional parameters appear
ing in those estimators. The simplest class, particularly used for modeling 
Poisson and counting processes, is that of histograms:

H =
{

h, h : t �→
∑
k∈I

θk1t∈k, (θk)k∈I ∈ Θ

}
, (9.18)

with I being a set of disjoint intervals partitioning [0,T ], right-closed (i.e., 
of the form (a, b]), and Θ ⊂ R. By counting the number of events occur
ring in those bins, it drastically simplfies the derivations of the losses. An 
important related class is the Haar family of intervals, composed of basis 
functions of the form x �→ 2j/2(10≤2jx−l<1/2 −11/2≤2jx−l<1) for all l ∈ Z, j ∈ N, 
and x �→ 1l≤x<l+1 for j = −1, k = (l, j). For multivariate TPP, the θ ’s appear
ing in the linear decomposition depend on all couples (i, j)’s of coordinates. 
For example, the interaction kernels in the linear MHP of Eq. (9.12), are 
usually written as h(j)

i = ∑
k∈I θ

(j)
i,kg(j)

i,k, with the g’s being typically exponential 
or power-law functions, and for modeling the fixed jth coordinate. Such 
strategic choices can reduce the computational complexity of minimizing 
Eq. (9.17), in particular when chosen to be common to all pairs of coordi
nates (i, j), cf. Section 9.3.3. It is thus interesting to choose a group-norm 
penalty function inducing the same characteristic across the I ’s basis func
tions, as will be seen in the sequel.

In the next sections, we will present the two main methods studied in 
the literature for learning the optimal model, either by minimizing the pe
nalized likelihood-based risk function, by sequentially estimating the condi
tional p.d.f. or intensity processes, or by minimizing a penalized quadratic 
loss function when specifying a nonparametric approximation model for 
the intensity process. To avoid additional technicalities, we formulate the 
loss functions for temporal point processes only, and refer to the general 
structure of MTPPs in Section 9.2.1.



172 Myrto Limnios and Niels R. Hansen

9.3.2 Likelihood-based loss functions
We first recall the general form of the likelihood process, which incidentally 
highlights inherent computational limitations, resulting from its intrinsic 
evolutionary structure.

Formulation of likelihood loss processes
Let X be a TPP observed on the finite time-interval [0,T ], and with inten
sity process λt dfined on the probability space (Ω,F,P). Without loss of 
generality, consider the probability measure under which Xt is a counting 
process, say Nt for clarity, compatible with the abstract probability space, 
and the generic filtration (Ft)t≥0. Then the maximum likelihood estimator 
(MLE) of (9.7) is equivalently the minimizer of

�t(θ) := −1
t

∫ t

0
logλu(θ)dNu + 1

t

∫ t

0
λu(θ)du , (9.19)

where we set λ0 = 1 for simplicity, and the normalization factor 1/t is to 
comply with the asymptotic regime. In the case of MTPP, we refer to Sec
tion 9.2.1, and the extension follows from Eq. (9.6). Suppose the number 
of events n ∈ N∗ of random nondecreasing times (ti)i≤n in [0,T). Following 
the sequential decomposition of the intensity process in Eq. (9.8), a natu
ral approach for fitting a statistical model relies on proposing an adequate 
model for the conditional kernels of, equivalently, the intensity processes, 
the p.d.f.’s, or the hazard functions for increasing ti’s (equivalently the τi’s). 
Table 9.1 gathers typical transmission functions used in the literature. This 
direct approach, however, results in an intractable minimization scheme 
converging at least with rate O(n2), as the log-likelihood (Eq. (9.7)) has 
a finite sum of the logarithms of conditional intensities, themselves de
pending on the past occurrences. For small n, it is possible to numerically 
evaluate and estimate θn. We refer to classic references directly treating 
Eq. (9.19), such as Brillinger (2004); Brillinger and Segundo (1979); Ozaki 
(1979). For linear approximation models of the intensity process, classic 
results have proved the existence and unicity of the MLE; see Kutoyants 
(1984); Ogata (1978) for theoretical analysis, and, e.g., Ogata et al. (1993), 
for parametric modeling resulting in a closed-form with faster computa
tional rate O(n), which is applied to earthquakes activity. We now present 
some recent contributions proposed in the literature, and refer to additional 
methodological reviews, such as Reinhart (2018) for classical approaches, 
and to Yan (2019) for machine learning based methods. We will emphasize 
the choice of penalization function π , and the algorithmic complexity of 
the related practical implementations.
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Table 9.1 Typical examples of basis functions to model the 
log-transformation of the survival conditional function S and 
the corresponding conditional hazard function h. The two 
event times are dfined by ti and tj such that tj > ti , and the 
rate of transmission being αi,j > 0.
Model Log survival function Hazard function 
Exponential −αi,j(tj − ti) αi,j

Power Law −αi,j log(tj − ti) αi,j/(tj − ti)
Rayleigh −αi,j(tj − ti)2/2 αi,j(tj − ti)

Approximation models and estimation of the intensity process
We start by presenting recent works estimating a nonparametric model 
for the intensity process, particularly motivated for providing faster algo
rithmic procedures, to allow for efficient model fitting when using large 
datasets (i.e., large n, m, d). For instance, multivariate Hawkes processes 
typically require estimating d2 interaction kernels (see Eq. (9.12)), whereas 
the likelihood minimization is quadratic in n in addition. Lemonnier and 
Vayatis (2014) achieves faster rates of order O(nd2) by linearly decom
posing the real-valued kernels onto a linear exponential basis h(j)

i,I(t) =∑
k∈I β

(j)
i,k exp(−kαt), for k ∈ I being the degree of decomposition, the co

efficients β(j)
i,k ∈ R encoding the intensity of the jumps, while considering 

a constant rate α for all kernels, and ϕ(u) = (u)+. They proposed a con
cave approximation of the log-likelihood (Proposition 3), for which the 
resulting approximation functions valued at the optimal parameters con
verge in sup-norm towards the true functions μ0, h’s (Proposition 1) with 
explicit polynomial rate O(|I |−r) if the r ∈ N∗th derivative functions are 
continuous, with |I | being the number of basis functions, and with ge
ometric rate O(exp(−|I |)) if the functions are analytic. The gradients of 
the Hessian of the loss can be analytically computed, yielding a Newton
based optimization sequential approach, leveraging the Markovian property 
of the kernels. The implemented unweigthed L2-roughness penalization of 
the form α

∫ T
0 h′ 2 empirically shows some limitations for estimating power

laws with fast decay around 0. When considering structural assumptions 
of the underlying data, a series of methods achieve faster rates. Lemon
nier et al. (2017) extended Lemonnier and Vayatis (2014) by assuming a 
low-rank structure induced by clusters in the associated graph. They used 
the concept of self-concordant barriers circumventing the constrained loss 
functions (see Nesterov et al. (1994)), and by projecting the d-dimensional 
HP into a smaller r-dimensional space characterizing the number of event 
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groups. The obtained method achieves an algorithmic complexity of or
der O(n|I |r(Δ + r)), with Δ the maximum node degree of the underlying 
graph. We also refer to Zhou et al. (2013) for sparse low-rank network 
applied to learning social infectivity networks, and to Du et al. (2015) for 
weighted nuclear norm penalization for instance. Lastly, Liu et al. (2018) 
proposed an extension for multivariate HP, which integrates prior spatial 
structural knowledge encoded into a connection matrix, of coordinates 
measuring the similarity between two spatial locations. The functions h’s 
are linearly decomposed over the exponential basis with fixed transmission 
rates. The elastic net regularization with an additional weighted �2-norm 
forces the alignment between the interaction and the connection matri
ces, and a third weighted �2-norm ensuring both to be of low rank. The 
Lagrangian formulation of Rt,n is then optimized by the alternating direc
tion method of multipliers (Boyd et al., 2011). For theoretical results on 
nonparametric linear models of λt, cf. Eq. (9.19), Hansen (2013) studied 
general classes of basis filters valued in a generic Banach space. The author 
considered a finite number of events n, and quadratic π . For Sobolev spaces 
in particular, e.g., reproducing kernel Hilbert spaces, if ϕ is continuously 
differentiable, then the gradients of �t exist and can be numerically com
puted; see Proposition 3.6 therein. Later, Hansen (2015) proved the almost 
identical estimated intensity model when based on either Sobolev kernels 
or B-spline basis classes, with quadratic penalization, and ρ being chosen 
to minimize the Takeuchi’s information criterion (Claeskens and Hjort, 
2008).

Bayesian inference. When considering a reference probability mea
sure on the parameter space Θ, a series of works maximize the posterior 
intensity model, implemented with an expected maximization (EM) al
gorithm usually. Briefly, let Π be a chosen prior distribution on Θ, then 
the posterior distribution for any subset Θ0 ⊆ Θ is given by Π(Θ0) =∫
Θ0

LT (θ)dΠ(θ)/
∫
Θ

LT (θ)dΠ(θ) conditioned on the observed process X . 
However, these procedures inevitably result in higher computational com
plexity due to the additional integrals with regard to Π, known as doubly 
intractable. They are derived for specific parametric models of processes, for 
which we expose some recent advances here, and further refer to Rein
hart (2018). For instance, Veen and Schoenberg (2008) introduced a latent 
variable indicating offspring events for modeling earthquakes (epidemic) 
propagation in seismology. Nonlinear HPs with real-valued h’s were stud
ied by Sulem et al. (2024, 2023) in particular. They proved concentration 
rates for the convergence of the posterior distribution to the true parameter 
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measured with regard to the L1-distance, and with explicit rate of the radius 
εT = o(1) of order log3 T = O(Tε2

T ). The necessary assumptions to obtain a 
consistent recovering of A, rely on typical entropic on Θ0, and depend on 
the estimation scenario. Xu et al. (2016) proposed a linear decomposition 
of the interaction functions h over the Gaussian kernel density estimators, 
with data-driven bandwidth Silverman (1986). Then, the Fourier transfor
mation of λt yields the optimal decomposition by estimating the cut-off 
frequency, such that the residual error is controlled at a fixed level. The 
penalization π function of the adjacency matrix A ensures the following: 
local independence with �2-norm, temporal sparsity with its �1-norm, and 
pairwise similarity measure for events belonging in the same cluster given 
by A �→ ∑

j≤d
∑

j′∈Cj
‖Aj· − Aj′·‖2

F + ‖A·j − A·j′ ‖2
F , where Cj is the cluster of 

the jth coordinate, numerically optimized by an iterative EM algorithm. 
We further refer to Lewis and Mohler (2011); Zhou et al. (2020); Yuan et 
al. (2019); Salehi et al. (2019) for instance, and references therein, for non
parametric inference for Poisson and Hawkes processes with an EM-type 
procedure.

Sequential minimization of the loss for multivariate TPP
In the context of large data analysis for network learning, a substantial series 
of works deployed algorithms tailoring specific applications, wherein the 
idea lies in sequentially learning the MLE by recurrent or feed-forward 
algorithms, depending on the choice of kernel functions, the embedding 
maps between two events, and the optimization algorithm.

Cascade modeling for network learning. Myers and Leskovec 
(2010) introduced a recurrent network procedure for multivariate TPP, 
dfined by constant parameters for all density functions between two co
ordinates (i, j), to be exponential, power-law, or Weibull distributions. To 
ensure a convex objective function, the penalization π is the �1-norm of 
(ρ,Ai,j) �→ ρ exp{−(1 − Ai,j)}, with A being the adjacency matrix. The au
thors proposed a convex relaxation achieving polynomial time algorithm, 
which recovers the global optimal estimator. They did not allow for self
contamination of the coordinates, and considered having access to the 
sequence of event-times, while not of their origin that encode hidden 
events. Gomez-Rodriguez et al. (2012) proposed NetInf algorithm, finding 
the optimal weighted directed spanning tree as a representation of a mul
tivariate TPP, wherein cascades dfine the hidden layers composed of all 
the nodes of the tree. The contagion spread over the tree is parameterized 
by power or exponential laws, and only depends on the time-interval since 
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the previous event, with constant rate α > 0 for all nodes. The procedure 
aims to learn the graph maximizing the log-likelihood loss using submod
ularity, instead of considering all possible propagation trees. It is penalized 
to ensure sparsity of the network, with a fixed number of edges in the 
tree, which is used as a stopping rule for the greedy approach when start
ing from the empty graph. Gomez-Rodriguez et al. (2011) extended those 
models by learning transmission rates between the layers as well, and for 
all transmission models gathered in Table 9.1 with weighted �1-norm pe
nalization. The model only allows pairwise time-dependent transmissions 
between two nodes; it ignores dependence between unknown covariates, 
while assuming the event times to be independent conditionally on the 
past events. Theorem 3 proves the consistency of the MLE for the uncon
strained loss for the three different transmission models. When considering 
the loss as function of the conditional survival process Sn valued at the inter
times τi’s, Du et al. (2012) proposed a linear model for the hazard rate of the 
form hi,j = ∑

k∈I θk
i,jg(δk, tj − ti), where (δk)k∈I is a uniform grid of the obser

vational interval [0,T ]; g is a kernel function such that the associated matrix 
of embeddings (g(δl, δs))l,s∈I is positive definite. The weighted group-lasso 
penalization function selects a few number of groups having interactions: 
π(ρ, θ) = ρ(

∑
i ‖θi,j‖)2, such that θi,j ≥ 0, for all j ≤ n. The authors used 

Gaussian kernels to obtain a closed-form of the survival process, although 
not restricted to it, as one can use numerical integration schemes. By notic
ing that π(ρ, θ) ≤ ρ

∑
i ‖θi,j‖2/γj, with γj ≥ 0 and 

∑
j γj = 1, the resulting 

loss is convex in θ . A learning algorithm based on block coordinate descent 
method alternating between the parameters involved is implemented.

Neural point processes. Neural networks (NN), termed as diffusion 
networks here, are characterized by their deep learning architecture. They 
are reference algorithms for learning an approximation model for massive 
datasets, possibly valued in high-dimensional spaces, with competitive gen
eralization performances. Recurrent and feedforward NN are mainly used 
as a natural algorithmic architecture to estimate the MLE, when the risk 
Eq. (9.7) is formulated in terms of the conditional p.d.f.’s. Starting from 
t0, the node/neuron of the network updates at each next time ti the value 
of the loss by computing the probability of an event conditionally on the 
past. The neurons characterize the hidden layers of the network, dfined by 
the high-dimensional feature real-valued vector yi, i ≤ n+2, where the first 
and last layers, respectively, characterize the input and output. At the cur
rent time ti, the hidden layer is a (nonlinear) function of the past yi−1 and 
of the input layer encoding the information observed at time ti, and possi
bly the mark xi. Once the current value of the hidden layer is computed, 
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Figure 9.1 Recurrent neural network architecture, with the input observation y0, the 
hidden layers represented by the y’s, computed via the embedding f(x, y), includ
ing possible marks x, the output layer being yn+1, and final mapping to obtain the 
predicted intensity process valued at t = T . The coefficients θ = (W1,W2,b) are se
quentially optimized by gradient descent solution of the log-likelihood process and 
back-propagated through time.

an activation function f (u) (e.g., softmax function, typically R → [0,1]) 
maps it to a normalized value to be interpreted as a probability, which 
is then embedded to yi+1. Typical choices of embeddings are nonlinear 
(y,x) �→ f (W T

1 y + W T
2 x + b), with the weight matrices W ’s and bias vec

tor b being learned, and θ = (W1,W2, b), y = yi−1, and possibly x = xi. All 
the weights connecting the layers are the MLE solution of Eq. (9.17), ob
tained by stochastic gradient descent, and back-propagated through time 
(BPTT) to minimize the prediction error. Notice that the weights play an 
important role, insofar as they tailor the possible inhibitory or excitatory 
effects of the past events on the current event. The estimated NN can be 
used to predict the value of the modeled λt(θn) at the final point t ∈ (tn,T ], 
based on a new data sample. Multiple models have been proposed; they 
differ through the choices of the activation functions, characteristics of the 
weights, and optimization algorithm in particular. For a thorough review 
on neural TPP, we refer to the excellent works of Shchur et al. (2021) for a 
general overview, and to Rommel et al. (2022) when applied to EEG data 
in particular. We summarize the procedure in Fig. 9.1. Du et al. (2016) 
proposed a recurrent NN for MTPP, for fixed number of discrete marks, 
and motivated for learning the underlying graph (DAG) in particular. The 
hidden layer yi is then computed as in Fig. 9.1, wherein the marks are 
generated according to a multinomial distribution, conditioned on the cur
rent hidden layer; and f (u) = u+. The conditional intensity is of the form 
λt(θ) = exp(θT

1 yi + θ2(t − ti) + θ3), for all t ∈ [ti, ti+1). The network is esti
mated by a truncated BPTT procedure, based on a loss inducing a sparse 
model for the marks, but dense with regard to time-occurrences.

Recurrent models, however, suffer from the long memory of processes 
through the sequential nonlinear computations during training. It numeri
cally results in either very large effects or in vanishing gradients after many 



178 Myrto Limnios and Niels R. Hansen

events. A common work-around is by either truncating the network that 
provides an approximation of the gradients, or by using long short-time 
memory NN models (LSTM), see, e.g., (Hochreiter and Schmidhuber, 
1997). For instance, Mei and Eisner (2017) proposed a LSTM NN to ap
proximate multivariate HPs of real-valued μ0’s and h’s, decomposed over 
the exponential basis functions, with rates depending on the layers and 
coordinates. The estimated function is then mapped using a scaled soft
plus function of the form f : θ �→ s log(1 + exp(λt(θ)/s)), with s > 0, which 
approximates the ReLU function when s → 0, and models nonlinear in
tensity processes (Eq. (9.12)). It still requires to approximate the integrals 
using a Monte-Carlo procedure. Mei and Eisner (2017) extended the ar
chitecture to continuous-time by including hidden memory cells between 
two consecutive events, and of exponential decay, in the estimation of the 
hidden states (yi’s). See the references therein for related models. Wu et 
al. (2018) proposed a model for approximating factorial MTPP, wherein 
�t is formulated in terms of the conditional p.d.f.’s, and π(ρ, θ) is a linear 
combination of the �1-norm for the overall underlying network, and the 
group-level �2-norm. For Hawkes processes modeled with exponential in
teraction function, Nickel and Le (2020) decomposed the log-likelihood 
with regard to active and inactive event times, resulting in a closed-form 
with exact computation of the gradients. By considering a random sample 
of observed processes of size, say m, the runtime complexity is of order 
O(m + nκ), with κ being the number of the m active entities. Chen et al. 
(2021) introduced a new method for modeling spatial TPP with contin
uous distribution of the marks by combining continuous-time NN with 
either jump of attentive continuous-time normalizing flows; see, e.g., Jia 
and Benson (2019) for neural jump SDE. For spatial TPP, Yuan et al. (2023) 
proposed an advanced deep model, allowing for learning the joint condi
tional p.d.f. of (t,x) directly, avoiding parameterizing the density f (x | t), 
which can exhibit complex dependence structure.

Intensity-free models. We lastly expose a different approach highly 
motivated by recent advances in deep architectures for neural density es
timation. Indeed, approximating the intensity process with NN can fail 
in defining a valid p.d.f., and obtaining a closed-form of the expecta
tion of the compensator process. In Shchur et al. (2020), an intensity-free 
framework models the p.d.f. of the τi’s by normalizing flows. It consists 
in defining a complex p.d.f. p(t) as a (forward) transformation g of a sim
ple one q(z), yielding p(t) = q(g−1(t))|∂g−1(t)/∂t| after a change of variable, 
see, e.g., (Tabak and Turner, 2013). This transformation g should be a dif
feomorphism allowing for differentiation. But, its inverse mapping is not 
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necessarily analytically available. Shchur et al. (2020) considered inverse 
mappings, based on either sigmoids or polynomials (Jaini et al., 2019), and 
of parameters trained using NN (Huang et al., 2018). The proposed p.d.f. 
of the TPP is modeled by a finite log-normal mixture, of parameters (means 
and variances) modeled by functions of linear combination of yt−1 and the 
current (additional) inputs, whereas the weights of the mixture are obtained 
by computing the softmax image of those parameters. The related loss is pe
nalized by the �2-norm. We further refer to Shchur et al. (2020), Section 4 
therein, for an account of recent references.

The next section presents recent methods for learning processes of ap
proximation models being the solution of the least-squares penalized loss. 
As we shall see, this approach differs by nature, as it relies on the martingale 
structure of the target processes, and focuses on their stochastic characteri
zation through their intensity solely.

9.3.3 Quadratic loss functions
In this section, we review statistical methods estimating approximation 
models for intensity processes, when formulated as solution of penalized 
quadratic losses. We consider the same notations and framework exposed 
in Section 9.3.2.

Formulation of quadratic loss functions
We suppose, having observed the counting process, Nt over [0,T ], with 
T > 0 finite, under a probability measure PT , of Ft-predictable intensity λt, 
compatible with the abstract probability space (Ω,F,P) with the generic 
filtration (Ft)t≥0. We suppose the compensator process Λt to be bounded 
on [0,T ] for simplicity. Let (λt(θ))θ∈Θ be the set of Ft-predictable processes 
to model the unknown λt. The associated generic least-squares contrast 
function is then

�t(θ) := −2
t

∫ t

0
λu(θ)dNu + 1

t

∫ t

0
λu(θ)2du . (9.20)

For linear models, the loss has the concise formulation �t(θ) = −2θTHt +
θTGtθ , with (Ht)t≥0 being a Ft-predictable vector process and (Gt)t≥0 be
ing the Gram matrix dfined as a stochastic quadratic form, both being 
generated by the transformations of the basis functions of H. For in
stance, the Gram matrix associated with linear multivariate HP modeled 
by Eq. (9.12), equals to Gt = (〈∫ gi,·dNi,

∫
gi′,·dNi′ 〉

)
i,i′≤d, for a given coor

dinate j ≤ d, when the inner product is well dfined and the integrals are 
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dfined on [t −T , t). A wide literature has been devoted to contrasts of that 
form, under various assumptions on the eigenspace of G. The strongest 
assumption is for G being invertible. Weaker assumptions focus on local
neighborhoods of θ∗, usually based on its support, and are known as re
stricted isometry property; see (Koltchinskii, 2011), Chapter 7 therein, and 
restricted eigenvalue (RE) condition; see (Bickel et al., 2009) in particular. 
Under such assumptions, it is possible to analyze the expected risk of an 
empirical minimizer of �t, wherein the martingale structure of Nt plays a 
key role. Indeed, Doob–Meyer’s decomposition theorem ensures that the 
process Mt = Nt − Λt is a (local) Ft-martingale, and implies

E[�t(θ)] = −2
t

∫ t

0
λu(θ)λudu+ 1

t

∫ t

0
λu(θ)2du = ‖λ(θ)−λ‖2

t −‖λ‖2
t , (9.21)

which is minimized for λt(θ) = λt a.s. and for almost all t. We expect that 
the optimal solution of the least-squares results in a good approximation 
model. When decomposing the approximation processes over the class H
of orthonormal basis, indexed by a finite set of parameters Θ, the best
approximation model λ(θ) is the orthogonal projection of the true inten
sity λ induced by a parameter θ∗, which we would like to estimate, i.e., 
θ∗ ∈ arg minθ E‖λ(θ) − λ‖2

T . We expect that the minimizer θn of the penal
ized empirical risk, Eq. (9.17), performs similarly to the unknown solution 
θ∗, expressed by

E‖λ(θn) − λ‖2
T ≤ C E‖λ(θ∗) − λ‖2

T , (9.22)

with the constant C > 1, which is supposed to be small. In fact, the con
dition (9.22) can be extended and used for traditional estimation methods, 
such as adaptive and model selection methods, as argued in the excellent 
(Reynaud-Bouret, 2014). By the derivation of (9.21), nonasymptotic sta
tistical guarantees of the empirical θn results in the study of ‖λ(θn) − λ‖2

t . 
It is upperbounded as in Eq. (9.22) with an additive term of rate depend
ing on the penalization function, and where the constant C might increase 
with T , while ideally tending to one. To achieve such (sharp) oracle in
equalities, it has been shown for linear stochastic models for λt of the form 
of Eq. (9.9), that there is an essential relation between optimal data-driven 
penalty weights ρ̂, and the random fluctuations of (the sup-norm of) the 
(local) martingale process, roughly taking the form

Zt =
∫ t

0
Hu (dNu − λudu) , (9.23)
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with (Ht)t≥0 being a predictable process, resulting from the decomposition 
of λt(θ) over a class H, cf. the quadratic formulation for linear mod
els. Recent works proved nonasymptotic probabilistic control for (Zt)t≥0

at a t = T , t ≤ T , or stopped if Mt is a local martingale, by means of 
concentration inequalities. For model selection and adaptive statistics, in
equalities following that of Talagrand’s for empirical processes are used; see 
(Reynaud-Bouret, 2003) for inhomogeneous Poisson processes. For prov
ing oracle inequalities for penalized risk functions (Eq. (9.17)), Bernstein
type inequalities are required. To provide some intuition, those allow a 
probabilistic control of the stochastic deviation of Zt in terms of its exact 
variance process and the sup-norm variations of Ht, which we loosely write 
as follows:

P

(
Zt ≥ √

2κx + κ ′x
3 

, 
∫ t

0
H2

u λudu ≤ κ, sup
u≤t

|Hu| ≤ κ ′
)

≤ e−x , (9.24)

for all x > 0, as soon as it is well dfined; see, e.g., (van de Geer, 1995), 
Sections 2 and 3 therein, and up to normalization with T . Additional 
derivations using the peeling technique, aim at replacing the exact variance 
(or bracket) process with its empirical counterpart 

∫ t
0 H2

u dNu =: V̂t, which 
can directly be estimated based on a data sample. A series of works have 
been devoted to proving extensions of Eq. (9.24), depending on mainly, the 
type of TPP, its related (local) assumptions, and of those related to the Gram 
matrix of the quadratic loss, such as in Hansen et al. (2015); Bacry et al. 
(2018); Howard et al. (2020); Ost and Reynaud-Bouret (2020); Reynaud
Bouret (2006) for instance. As we will present next, these results yield 
explicit optimal data-driven penalty weights ρ̂ guaranteeing nonasymptotic 
control of the estimation error E‖λ(θn) − λ‖2

T . There are multiple advan
tages related to those properties. Indeed, many applications face limited 
number of observed individuals m, and sometimes even only one, com
pared to the very large number of observed events n, particularly the case 
for biomedical applications. On the contrary, in survival analysis, there is 
no interest for large observational time T , as no additional information can 
be gained after failure. In addition, even though m can be small, providing 
optimal data-driven weights for the penalized loss prevents from additional 
computational and storage costs. This would typically be the case with 
cross-validation and sample-splitting to numerically estimate ρ̂.

In the following paragraphs, we review models falling into that line 
of research, either for specific models of TPP, and usually of Poisson or 
Hawkes, and highlight the underlying assumptions related to the derivation 
of such guarantees.
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Approximation models for Hawkes processes
A rich literature has been established for (multivariate) HPs for fixed func
tion ϕ(u) by proposing approximation models for the intensity process based 
on Eq. (9.12). The goal is to estimate the optimal decomposition of the in
teraction functions h over a class of basis functions, minimizing Eq. (9.17). 
Reynaud-Bouret and Schbath (2010) solve the lasso problem for linear 
HPs (ϕ(u) = u), with H being a L2-dictionary of weighted intervals of the 
form (9.18). Reynaud-Bouret and Schbath (2010) proved the nonasymp
totic control of the expected risk, with convergence rate of smaller order 
than O(log(T)/T); see Proposition 1 therein. The penalty function is ob
tained of order O(|n| log(T)2/T) by model selection, resulting in a sharp 
oracle inequality bounding the expected risk, with both μ0 and the h’s to 
be truncated outside a fixed compact. It recovers classic well-known results, 
wherein the penalty is related to the variance of the underlying process, 
cf. Eq. (9.24). However, the authors did not consider weighted penaliza
tion function, due to the complexity of the resulting formulation induced 
by the dependence structure of HPs. Those new improvements were later 
obtained in Hansen et al. (2015), which were used in Reynaud-Bouret 
et al. (2013) in the context of dictionary learning for linear multivariate 
HP, where the h’s are of bounded support, applied to spike trains analy
sis. The nonasymptotic bound is obtained on the high probability event 
that the spectral eigenspace of the Gram matrix based on the class H is 
lower bounded by a fixed positive constant, i.e., implying that it is invert
ible. In this direction and for multivariate HPs, Bacry et al. (2020) derived 
sharp oracle inequalities for the estimation error, wherein the weighted pe
nalization function is of the form π(ρ, θ) = ρ1‖μ0‖1 + ρ2‖H‖1 + ρ3‖H‖∗, 
where H is the self-excitement tensor encoding the integrated kernels, being 
positive-valued functions with unit �1-norm (see Eq. (9.12)) and the ρ’s are 
data-driven optimal weights. The consideration of the operator norm for 
matrix martingales required an additional Bernstein inequality for matrix 
martingales, proved in Bacry et al. (2018), and extended in Bacry et al. 
(2020) to remove the boundness conditions on V̂T and supt |Ht|; see The
orem 4 therein. The nonasymptotic control of the estimation error relies 
on the restricted eigenvalue (RE) condition, introduced and analyzed in 
Bickel et al. (2009); Koltchinskii (2009a,b). When considering the estima
tion based on a single observed process for very large T , they proposed 
an algorithmic procedure achieving faster convergence (O(|I |2d3)) than 
likelihood-based methods (O(n|I |d)), as n >> |I |d2, but as well with regard 
to memory, test, and gradient considerations. As pointed out in Staerman 
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et al. (2023), choosing exponential basis functions specifically, results in a 
very efficient procedure of precomputational complexity in O(n). They 
developed a fast algorithm for learning multivariate linear HP as solution 
of the lasso penalization, where H is composed of smooth functions with 
bounded support, and relying on �2-gradient based solvers after discretiza
tion of the sequence of events. They proved asymptotic consistency (a.s.) 
of the empirical estimator, as soon as the discretization length tends to zero. 
We further refer to the interesting application to goodness-o-fit testing for 
Poisson and Hawkes processes applied to neuronal spike trains in Reynaud
Bouret et al. (2014), relying on the adaptive estimation of the best intensity 
model decomposed on histograms of Haar intervals in particular; see Sec
tion 9.3.1.

Approximation models for TPP and spatial TPP
One of the first works to derive oracle inequalities with data-driven weights 
for solutions of Eq. (9.17) with lasso penalization is, to the best of our 
knowledge, in Gaïffas and Guilloux (2012). In the specific application of 
survival analysis, they supposed having observed an i.i.d. sample of marked 
counting processes {Nj, j ≤ m}, satisfying the Aalen multiplicative model. 
The resulting rate of convergence is of order OP((log |I |/m)1/2) under no 
constraints on the Gram matrix. If it fufills the RE assumption, however, 
faster rates are obtained OP(log |I |/m). The empirical weights are of order 
OP(((x + log d)V̂T ,j/m)1/2), for each coordinate j ≤ d. Those results rely on 
a new Bernstein inequality for martingales resulting from counting pro
cesses of the form of Eq. (9.24), proved in Theorem 3 therein, where 
its bracket is replaced with the empirical variance process using a peel
ing method. Theorem 3 was used in Alaya et al. (2015) to show oracle 
guarantee for fused lasso based on the model λt(θ) = ∑n

i=1 θi1((i−1)/n,i/n](t); 
cf. (9.18). The penalization function is the weighted total-variation norm: 
π(ρ, θ) = ∑n

i=1 ρi|θi−1 − θi|, wherein the vector of weights ρ is optimally 
chosen based on the i.i.d. sample of observed Nj’s, similar to Gaïffas and 
Guilloux (2012), resulting from the oracle inequality proved in Theorem 1 
in Alaya et al. (2015). The optimal penalization weights are, in this case, of 
order OP(((nej,n log n)/m)1/2), with ej,n being the empirical average of events 
on the m sample within the window ((i−1)T/n,T ]. The authors extended 
it to change-point detection method for the intensity process. The proce
dure is asymptotically consistent if the event-times of the process are at 
least c/n far apart, with c > 8; see Theorem 3 therein. In addition, if the 
number of events is overestimated, then they are asymptotically close to the 
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true ones, when m → ∞, with explicit order of convergence. In parallel, 
Hansen et al. (2015) proposed a nonparametric model for multivariate TPP 
by modeling λt using a first-order interaction kernel, like Eq. (9.12). The 
interaction kernels are decomposed over a generic dictionary H of func
tions with bounded support. They importantly proved a new data-driven 
Bernstein inequality for bounding local martingales from counting pro
cesses; see Section 7 in particular. Hansen et al. (2015) obtained, similar to 
Gaïffas and Guilloux (2012), oracle inequalities for recovering multivariate 
TPP using lasso risk, with explicit constants, and of optimal data-driven 
penalty weights of order OP(max((xV̂T )1/2, κ ′x)), where κ ′ depend on the 
interaction functions h’s. However, their results rely on a stronger assump
tion on the Gram matrix, assumed to be invertible, and consider m = 1
with possibly very large T . We refer to Lambert et al. (2018) for an appli
cation with multivariate HPs for learning the functional connectivity graph 
of neuronal spike activity. We lastly refer to Qiu and Yang (2023) for spatio
temporal process monitoring, wherein the process is linearly decomposed 
Xti(xij) = μti(xij) + εti(xij) for all time ti, i ≤ n, all locations xij, j ≤ mi at 
time ti. The first process μ is the mean of X , and ε the centered error ran
dom variable. By estimating the covariance function Cov(Xt(s),Xt′(s′)), the 
authors proposed a (weighted) lasso objective function with an exponen
tially weighted kernel smoothing to estimate the empirical decentralized 
and decorrelated residuals (see Eq. 4) for sequential monitoring. We further 
refer to the literature cited therein.

9.4. Conclusion

In this chapter, we presented a review of recent advances in the 
statistical literature for modeling and learning (marked) temporal point pro
cesses. The focus was on optimizing a penalized loss function, in particular 
with the loss function being either based on the log-likelihood or on the 
quadratic contrast. These loss functions are in general given in terms of the 
intensity process describing the model. We presented a general framework 
for comparing those methods, and highlighted their ability to efficiently 
perform the statistical procedure when based on large datasets.
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