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Local Independence Testing for Point Processes
Nikolaj Thams and Niels Richard Hansen

Abstract— Constraint-based causal structure learning for point
processes require empirical tests of local independence. Existing
tests require strong model assumptions, e.g., that the true data
generating model is a Hawkes process with no latent confounders.
Even when restricting attention to Hawkes processes, latent con-
founders are a major technical difficulty because a marginalized
process will generally not be a Hawkes process itself. We intro-
duce an expansion similar to Volterra expansions as a tool to
represent marginalized intensities. Our main theoretical result
is that such expansions can approximate the true marginalized
intensity arbitrarily well. Based on this, we propose a test of local
independence and investigate its properties in real and simulated
data.

Index Terms— Causal discovery, local independence, neuro-
science, point processes.

I. INTRODUCTION

HAWKES processes are models of time-dynamic inter-
acting point processes with applications in such diverse

areas as finance [1], seismology [2], social science [3], and
neuroscience [4]. Hawkes proposed himself that his model
for self- and mutually exciting point processes could be
applied as a model of epidemic spread and neuron firing
among other things [5], and with reference to Hawkes’ pivotal
work the model has taken the name Hawkes process in the
literature. Specifically, Hawkes introduced the multivariate
linear Hawkes process, which together with its nonlinear
extension [6] have become the most widely applied models
of multivariate dynamic point processes.

It is straightforward to define—in purely mathematical
terms—whether one event type in a Hawkes process affects
another event type. This defines a network, and our main
objective is to test hypotheses regarding network connec-
tivity. Constraining the network structure to be sparse can
have well-known statistical and computational benefits, e.g.,
a favorable bias-variance tradeoff for large networks and fast
data-fitting algorithms [7], [8]. However, it is much less
obvious if the network structure allows for a subject matter
interpretation beyond the purely statistical one. In particular,
if the network conveys causal information.

We will use Hawkes process models of neuron spike activity
as a main motivating example, and we will discuss the question
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of causal discovery in this context; nonetheless, our proposed
methodology does not rely on parametric assumptions, such
as the process being Hawkes, and can equally well be applied
to other point process model classes. Hawkes processes have
a long history in neuron science with Brillinger using them
some 45 years ago for the first time [9], [10]. Early applica-
tions relied on moment identities and spectral methods, but
likelihood methods later became computationally feasible and
widely used [4], [11], [12], [13], [14], [15]. The Hawkes
processes have served several objectives, from a statistical
characterization of dependencies among correlated neurons
to a vehicle for sensory decoding from neuron ensembles,
and, more recently, as a way to learn a sparse network
structure among the neurons [16], [17]. According to [17]
the Hawkes process can identify the functional connectivity
of a neural network, but the network “cannot be directly
interpreted as synaptic connections”—yet the model’s attrac-
tiveness was from the very beginning tied to its physiological
interpretability as representing synaptic integration [10]. More-
over, functional connectivity was interpreted in [17] as a
causal relation, and understanding the extent to which this
interpretation is justified was a main motivation for the work
presented in this article.

The methods proposed by [17], as well as most methods in
the statistical [7], [8], [18], [19], [20], [21], result in networks
that only enables identification of intervention effects [22],
[23], [24] when assuming that all variables of the system
are observed. Causal structure learning algorithms like the
causal analysis (CA) algorithm [25] likewise require all vari-
ables observed, but recent constraint-based learning algorithms
[26], [27] do allow for an interventional causal interpretation
of the resulting network even in the presence of latent con-
founders. The algorithm by [26] is related to FCI for acyclic
causal structures [28], but it is adapted to cyclic graphs that
can represent time-dynamic feedback mechanisms. Where FCI
and other algorithms for acyclic graphs are relying on tests
of conditional independence, cyclic graphs of time-dynamic
systems are based on (conditional) local independence
[22], [27], and causal discovery algorithms require empiri-
cal tests of this asymmetric independence relation. This has
the additional benefit that, contrary to works exploiting the
Hawkes assumption to learn causal graphs [8], [29], constraint-
based methods apply to any model class for which the local
independence test captures causal dependencies. Very recently,
Bhattacharjya et al. [30] proposed a likelihood-ratio test in the
model class of “proximal event” models, though until now,
no test for local independence in neither Hawkes processes nor
general point processes has been described in the literature.

In this article, we propose a test of local independence in
point process data. Let j and k denote two types of events,

2162-237X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Copenhagen University. Downloaded on December 21,2023 at 09:00:36 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-3961-5101
https://orcid.org/0000-0003-3883-365X


2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

e.g., the firing of two different neurons, and let C denote a set
of event types, e.g., a set of neurons. The hypothesis that k is
locally independent of j given C is denoted j ̸→ k|C . We test
the hypothesis by testing whether events of type j contribute
significantly to the intensity of k given events of type C .
We approximate point process intensities by basis expansions
and propose to use higher order interactions terms of events
to fit intensities, such that the intensity does not only take into
account single events (as is the case for Hawkes processes),
but also pairs or triples of events. We show that higher order
interactions can be captured through iterated integrals and that
any intensity can be arbitrarily well approximated by including
enough higher order terms, analogous to Volterra expansions
in dynamical systems [31], [32].

Our main motivation for this nonparametric expansion is
that Hawkes processes are not closed under marginalization,
meaning that a subcollection of event types of a Hawkes
process need not be a Hawkes process. Consequently, if some
event types of a Hawkes process are unobserved, we may not
be able to model it by a Hawkes process (that is, using only
first-order terms of events). Even if all processes are observed,
constraint-based learning algorithms [25], [26] construct a
local independence graph by testing j ̸→ k|C within a
(typically small) subcollection of event types, in effect cor-
responding to testing local independence when marginalizing
away everything else than j , k and C . The model misspec-
ification arising from the assumption that the marginalized
processes are Hawkes may result in tests that do not have
asymptotic level. By including higher order interactions in
our tests, this model misspecification is reduced, such that the
null hypotheses of local independence are rejected less often,
resulting in sparser and more correct graphs.

Our main contributions are as follows.
1) In Section II, we discuss local independence testing

in point processes, and in particular the challenge of
model misspecification due to marginalization. We pro-
pose an approximation (5) that allows us to test local
independence without model misspecification under the
null hypothesis.

2) In Section III, we develop an expansion of point process
intensities via iterated integrals, and show that it con-
verges to the true point process intensity. The expansion
does not rely on parametric assumptions, and can be
used to approximate marginalized intensities from any
model class including Hawkes processes.

3) Finally, we propose a concrete test based on a
second-order approximation and basis splines, and show
in real and synthetic data that compared to using
first terms only the use of second-order interactions
improves performance of the local independence tests.

A. Structure of This Article

In Section II, we outline the existing theory on Hawkes
processes and local independence. Section III contains our
main theoretical result, that intensities can be approximated
arbitrarily well by including higher order interaction terms.
We apply this approximation in Section IV to construct a

test of local independence. In Section V, we evaluate the test
in simulation studies, and in Section VI we apply the test
in causal learning algorithms to learn network structure in a
neuron spiking dataset.

II. HAWKES PROCESSES AND LOCAL INDEPENDENCE

In this section, we first give a brief introduction to Hawkes
processes (see [33] for a more thorough introduction). We then
introduce local independence graphs and tests of local inde-
pendence.

Let V = {1, . . . , d} and let N = (N k)k∈V denote a
collection of point processes on R indexed by V . Each mark
k ∈ V represents a particular type of event, and N is also
referred to as a marked point process [33]. More formally,
if for each k = 1, . . . , d , we let {. . . , τ k

−1, τ
k
0 , τ k

1 , τ k
2 , . . .} be a

series of event times, the point process N k is defined as the
random measure

N k(A) =

∑
i

δτ k
i
(A)

where δt (A) is a Dirac measure. We associate with the kth
point process the counting process N k

t = N k((0, t]). We will
assume that N is simple and non-exploding, meaning that
event times are distinct and any finite interval only has finitely
many points.

For a point process N , the intensity λt = (λ1
t , . . . ,λ

d
t )

describes the conditional rate of new events at time t

λk
t = E

(
N k( dt)|FV

t−

)
where FV

t− is the predictable filtration generated by
N 1, . . . , N d , i.e., FV

t− is the history of events strictly prior
to time t of any type j ∈ V .

Let g jk
:[0, ∞) → [0, ∞) for j, k ∈ V be integrable

functions, which we call kernels. We introduce the intensity
process

λk
t = βk

0 +

∑
j∈V

∑
i :τ j

i <t

g jk
(

t − τ
j

i

)

= βk
0 +

∑
j∈V

∫ t−

−∞

g jk(t − s)N j (ds) (1)

where we call βk
0 ≥ 0 baseline intensities.

Definition 1: A d-dimensional point process with intensity
processes λk , k ∈ V , as defined by (1) is called a multivariate
linear Hawkes process with kernels g jk and baseline intensi-
ties βk

0 .
In this article, we only consider stationary Hawkes pro-

cesses. If we define

g jk
=

∫
∞

0
g jk(t)dt (2)

and define the matrix G as the matrix where the the ( j, k)th
entry is g jk , stationarity for the linear Hawkes process is
achieved if the spectral radius of G is strictly smaller than 1,
see [33, Ch. 6] and [34].
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The linear Hawkes process can be extended to the nonlinear
Hawkes process using a link function η

η
(
λk

t

)
= βk

0 +

∑
j∈V

∫ t−

−∞

g jk(t − s)N j (ds).

Useful alternatives to η(x) = x are η(x) = log(x) or
η(x) = 1x≥1 · x + 1x<1 · (log(x) + 1). In both cases, η−1 maps
R into [0, ∞), which ensures that λk

t ≥ 0 even if the
kernels are allowed to take negative values. In the fol-
lowing subsection, we only discuss marginalization in the
linear Hawkes process. However, the approximation result in
Section III extends readily to nonlinear processes, and so we
state that result in generality.

A. Marginalization in Hawkes Processes

If we only observe events corresponding to marks in
V ′

⊂ V , the distribution of the V ′-events is a marginalization
of the distribution of V -events. Even if all event types of
a system are observed, the local independence statement
j ̸→ k|C relates to the marginal distribution of N j , N k and
N C , so when { j, k} ∪ C ̸= V , we test local independence in
a marginalized distribution.

This creates a problem for testing, because many model
classes, including Hawkes processes, are not closed under
marginalization, i.e., the marginalized distribution need not be
in the same model class as the original distribution. We explore
the case of marginalized Hawkes processes in more detail.

For C ⊆ V let FC
t− := σ(∪s<tFC

s ) denote the predictable
filtration generated by N j for j ∈ C , and let E(·|FC

t−) denote
expectations given only information about events strictly prior
to t of types C .1 Suppose that k ∈ C , then by the innovation
theorem (see [36]) the FC

t−-intensity of N k is

λk,C
t = E

(
λk

t

∣∣FC
t−

)
.

We will refer to this as the C-intensity. For the linear Hawkes
process, we have from (1) that

λk,C
t = βk

0 +

∑
j∈C

∫ t−

−∞

g jk(t − s)N j (ds)

+

∑
l∈Cc

∫ t−

−∞

glk(t − s)E
(
N l

∣∣FC
t−

)
(ds) (3)

thus for a complete computation of the C-intensity we need
to compute E(N l

|FC
t−), which is a classical filtering problem.

The solution can be characterized via general filtration equa-
tions, see [37] and [38].

We could approximate the solution of the filtering problem
by a linear filter

E
(
N l

∣∣FC
t−

)
(ds) ≃

γ l
0 +

∑
j∈C

∫ t−

−∞

h jl(t − u, t − s)N j (du)

ds

1Technically, E(·|FC
t−) is the predictable projection operator to have regular

sample paths of the resulting stochastic process. See the remark in [35] for a
discussion of this.

for a choice of kernels h jl . Using this, we arrive at the
following approximate C-intensity:

λ̃k,C
t = β̃

k,C
0 +

∑
j∈C

∫ t−

−∞

g̃ jk,C(t − s)N j (ds) (4)

where

β̃
k,C
0 = βk

0 +

∑
l∈Cc

∫
∞

0
γ l

0 glk(t)dt

and

g̃ jk,C(t) = g jk(t) +

∑
l∈Cc

∫
∞

0+

h jl(t, s)glk(s)ds

for j ∈ C . We recognize (4) as being the intensity for a linear
Hawkes process over event types indexed by C . However, this
is only an approximation, and the marginalized process will
generally not be a linear Hawkes process. Thus some effects
of this model misspecification should be expected if we fit a
model of the form (4) to marginalized data.

B. Local Independence Hypotheses

Following [27], we define local independence for a point
process N by saying that N k is locally independent of N j

given N C if λk,C∪{ j} has an FC
t -predictable version. Intuitively

that means that λk,C∪{ j} only depends on events in N C and not
N j . In this case, we write j ̸→ k|C , and else (if λk,C

t is not
a version of λ

k,C∪{ j}
t ) we write j → k|C .

Our goal is to test the local independence hypothesis

H0 : j ̸→ k|C.

In the approximate C-intensity from (4) this hypothesis corre-
sponds to g̃ jk,C∪{ j} being 0. However, a test of g̃ jk,C∪{ j}

= 0 as
a surrogate for H0 comes with no guarantee on the level due
to the model misspecification of λ̃k,C .

Instead of relying on λ̃k,C∪{ j}, the first-order approximation
in (4) for λk,C∪{ j}, we propose to base the test on the
approximation

λ
k,C∪{ j}
t := λk,C

t +

∫ t−

−∞

g jk(t − s)N j (dC s) (5)

of the C ∪ { j}-intensity λk,C∪{ j}. While λ̃k,C∪{ j} uses a
first-order approximation for all processes, λ̄k,C∪{ j} uses the
actual λk,C intensity along a first-order approximation of the
contribution from N j . Under H0: j ̸→ k|C , where λk,C∪{ j} and
λk,C coincide,2 λ̄k,C∪{ j} is in fact correctly specified. A major
practical and technical challenge is to approximate and fit
λk,C sufficiently well for the test to maintain level, and we
dedicate Section III to developing methods for appropriately
fitting λk,C .

2More formally λk,C is a version of λk,C∪{ j}.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Copenhagen University. Downloaded on December 21,2023 at 09:00:36 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. (left): Data from a 4-D Hawkes process. The vertical position of points reflect the local frequency of points. (right): Local independence graph (see
Section II-C) of the process that generated the data.

C. Local Independence Graphs

In this article, we consider tests for local independence,
with the motivation of learning graphical representations of
causal relations in point processes. In particular, we consider
the local independence graph for point processes, intro-
duced by Didelez in [22], where the absence of an edge
j ̸→ k in the graph corresponds to the local independence
j ̸→ k|V \ { j, k}.

For the linear Hawkes process, the local independence graph
is a graph with vertices V and an edge j → k if and only
if g jk > 0, where g jk is defined in (2). That is, there is an
edge from j to k if and only if the kernel g jk is not constantly
equal to 0. Fig. 1 displays data from a Hawkes process and the
underlying local independence graph that was used to generate
the data.

III. HIGHER ORDER EXPANSIONS

A. Motivating Higher Order Interactions

In the following, we propose a general expansion of point
process intensities, which we show to converge to the true
intensity as the degree of the expansion approaches infinity.
We intend to apply this to marginalized Hawkes processes,
to remove the model misspecification discussed above, but the
result does not rely on the process being Hawkes, and applies
to any point process model.

The expansion utilizes iterated integrals, which already [9]
used for specifying models with higher order interactions.
Cohen [39] showed that the chaos expansion of point processes
initiated at zero can approximate any measurable variable
arbitrarily well, by integrals over random intervals. Similar
to [39] our proof relies on martingale convergence, but uses
integrals over deterministic intervals.

Iterated integrals are also used in the theory of Volterra
series [31], where the dynamics of a time-homogeneous sys-
tem over variables x and y is approximated by the Lth-order

expansion

yt ≈ β0
+

L∑
n=1

∫ t

−∞

· · ·

∫ t

−∞

hn

× (s1, . . . , sn)xt−s1 · · · xt−sn ds1 · · · dsn.

Under various regularity conditions, including continuity and
finite memory of the system, this approximation will converge,
that is, the right-hand side converges to yt for all t when
L tends to infinity [32], [40]. Although point process systems
are very different in nature to continuous systems, we show a
similar expansion for point processes below.

B. Intensity Representations

We consider a fixed subset C ⊆ V , and a stationary
process N . Let Cn be the set of tuples α = ( j1, . . . , jn) of
length n where ji ∈ C and ji1 ≤ ji2 for i1 < i2. Further define

En = L
(
[0, ∞)n, R

)Cn

where L([0, ∞)n, R) is the set of measurable functions h :

[0, ∞)n
→ R. That is, every element (hα)α∈Cn in En is a

collection of functions, indexed by the distinct combinations
of C . We introduce the notation ϕt

n as the functional that maps
a collection of functions (hα)α∈Cn to the integral over those
functions with respect to N

ϕt
n : (hα)α∈Cn

7→

∑
α∈Cn

∫
(−∞,t)

hα
(
t − sn)Nα

(
dsn)

where∫
(−∞,t)

h
(
t − sn)Nα

(
dsn)

:=

∫ t−

−∞

· · ·

∫ t−

−∞

h(t − s1, . . . , t − sn)N j1( ds1) · · · N jn ( dsn).

Note that ϕt
n maps into L(FC

t−) because for any h := (hα)α∈Cn ,
the filter ϕt

n(h) is FC
t−-measurable.
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For example, if V = {1, 2} and n = 2, we have
Cn = {(1, 1), (1, 2), (2, 2)}, En = {(h(1,1), h(1,2), h(2,2))|h(i, j)

:

[0, ∞)2
→ R measurable} and

ϕt
n

(
h(1,1), h(1,2), h(2,2)

)
=

∫ t−

−∞

∫ t−

−∞

h(1,1)(t − s1, t − s2)N 1( ds1)N 1( ds2)

+

∫ t−

−∞

∫ t−

−∞

h(1,2)(t − s1, t − s2)N 1( ds1)N 2( ds2)

+

∫ t−

−∞

∫ t−

−∞

h(2,2)(t − s1, t − s2)N 2( ds1)N 2( ds2)

is the evaluation of the kernels h(1,1), h(1,2) and h(2,2) in
all combinations of points in the respective event types
N 1 and N 2.

We now show that we can approximate point process
intensities by such sums of iterated integrals. We first show
this for t = 0 and then extend the result to all t ∈ R using
time homogeneity. At t = 0, we define the set Wn of all
FC

0−
-measurable random variables, that can be written as a

n-fold iterated integral and are almost surely finite

Wn =
{

X ∈ ϕ0
n(En)||X | < ∞ a.s

}
.

This allows us to state the following theorem, which is
proven in the appendix in the Supplementary Material.

Theorem 1: With FC
0−

= σ(∪s<0FC
s ) it holds that ⊕n∈N Wn

is dense in {X ∈ L(FC
0−

)||X | < ∞ a.s.} in the topology of
convergence in probability.3

That is, every finite FC
0−

-measurable variable can be approx-
imated arbitrarily well by iterated integrals, over the past
events of the processes in C .

Consider now the case of a point process intensity λk,C
t ,

and let η denote a link function. Assume further that the
intensity is time homogeneous: if η(λk,C

t )(τ1, τ2, . . .) denotes
the mechanism with which η(λk,C

t ) depends on the event times
prior to time t , we say that η(λk,C

t ) is time-homogeneous if
for s ≥ 0

η
(
λk,C

t

)
(τ1, τ2, . . .) = η

(
λk,C

t−s

)
(τ1 − s, τ2 − s, . . .).

Corollary 1: If η(λk,C
t ) is a time homogeneous point pro-

cess intensity, η(λk,C
t ) can at all times be arbitrarily well

approximated by iterated integrals in the topology of conver-
gence in probability.

Proof: Take ϵ > 0 and any t ∈ R. Since the intensity
is FC

t -predictable, η(λk,C
0 ) ∈ FC

0−
at time t = 0. Thus take

φ0
∈ ⊕n∈N Wn such that P(|η(λk,C

0 ) − φ0
| > ϵ) < ϵ, which is

possible by Theorem 1. Since ⊕n∈N Wn is a sum of images,
we can choose h1 ∈ E1, h2 ∈ E2, . . . , hL ∈ EL such that
φ0

=
∑L

n=1 ϕ0
n(hn). Let φ be the process t 7→

∑L
n=1 ϕt

n(hn),
and observe that φ is time homogeneous.

Conclusively, the process η(λk,C
t )−φt is time homogeneous,

and by the assumed stationarity, the distribution of η(λk,C
t )−φt

is invariant over t . In particular P(|η(λk,C
t )−φt

| > ϵ) < ϵ for
all t ∈ R.

3i.e., the topology induced by the Ky Fan metric

d(X, Y ) = inf{ϵ > 0|P(|X − Y | > ϵ) ≤ ϵ}.

Observe that it is the same kernels h1, . . . , hL that enter
into the approximation of λk,C

t for all t . In Theorem 1, there
is nothing special about t = 0, and one could as well have
proven that ⊕n∈N ϕt

n(En) is dense in L(FC
t−). However, only

by the time-homogeneity can one be ensured that the same
kernels can be used for all t .

C. Approximate Intensities

The fully observed (nonlinear) Hawkes process has intensity
given by sums of first-order terms

η
(
λk

t

)
= η

(
λk,V

t

)
= β0

+

∑
j∈V

∫ t−

−∞

g jk(t − s)N j ( ds).

As discussed in Section II-A, when C ̸= V , λk,C cannot in
general be represented by sums of first-order terms. However,
by Theorem 1 the intensity can be approximated by including
interaction terms of higher orders, and so one could approxi-
mate λk,C by the Lth-order expansion

η
(
λk,C

t

)
≈ βk

0 +

L∑
n=1

∑
α∈Cn

∫
(−∞,t)

hα
n

(
t − sn)Nα

(
dsn)

for some sequence of kernels hα
n , 1 ≤ n ≤ L , α ∈ Cn . For

L = 2, we obtain the approximate intensity

η
(
λk,C

t

)
≈ βk

0 +

∑
j1∈C

∫ t−

−∞

h j1(t − s1)N j1( ds1)

+

∑
j1, j2∈C

∫ t−

−∞

∫ t−

−∞

h j1, j2(t − s1, t − s2)

× N j1( ds1)N j2( ds2). (6)

The class of models described by (6) contains the class of
linear Hawkes processes (corresponding to h j1, j2 = 0) but also
encompasses more complicated models, such as a model where
the intensity boosts only when two events occur very close to
each other.

IV. TESTING LOCAL INDEPENDENCE

We now return to the question of developing a test for local
independence j ̸→ k|C . We consider the approximation of
λk,C∪{ j} in (5), and use the higher order interactions from
Section III together with basis splines to approximate λk,C .
We fit this approximation from data and test significance of
the contribution from j .

A. Approximating Kernel Functions With Basis Functions

We consider the question of approximating the terms∫ t−
0 g jk(t − s)N j ( ds) and λk,C

t from (5).
To approximate the intensity λk,C

t , we utilize the W0 ⊕

W1 ⊕W2-approximation from (6). We approximate the kernels
h j1(s1) and h j1, j2(s1, s2) by spline expansions

h j1 ≈

∑
i

β
j1

i bi and h j1, j2 ≈

∑
i1,i2

β
j1, j2

i1,i2
bi1 ⊗ bi2

for some class of basis functions {bi }i . We propose to use
B-splines [41], which is a flexible and frequently studied
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model class, though one could use other classes if desired.
Using a smaller number of basis functions is less expressive,
but is less prone to over-fitting and makes the problem
computationally easier (see Section IV-D), whereas choosing
a larger number of basis functions increases the expressive
power. For a given application, one can use cross validation
to select an appropriate number of basis functions.

Due to the linearity in β, the coefficient terms can be col-
lected into one vector βC and we can write λk,C

t ≈ (βC)T xC
t .

Each entry of xC
t corresponds to one basis function integrated

with respect to either a single event type or a pair of event
types. For instance the entry corresponding to β

j1, j2
i1,i2

would be∫ t−

−∞

∫ t−

−∞

bi1(t−s1)bi2(t − s2)N j1( ds1)N j2( ds2).

Similarly, we approximate the kernel g jk by
∑

i β
j
i bi ,

and collect the coefficients to β
j

and x j
t . Conclusively, the

intensity (5) can be approximated by

η
(
λ

k,C∪{ j}
t

)
=

(
βC)T

xC
t +

(
β

j
)T

x j
t =:

(
βC∪{ j})T

xC∪{ j}
t

for some choice of βC and β
j
.

B. Maximum Likelihood

Given an observation of a point process over the interval
[0, T ], we compute maximum likelihood estimates β̂C∪{ j}

using the penalized log-likelihood∫ T

0
log λ

k,C∪{ j}
t N k( dt) −

∫ T

0
λ

k,C∪{ j}
t dt − ρ

(
βC∪{ j})

where ρ(β) = κ0β
T �β is a quadratic penalization, and where

κ0 > 0 and � is the roughness penalty matrix, which penalizes
curvature of the kernel estimates (see [41, Ch. 5]). κ0 is a
hyper parameter, which needs to be chosen by the modeler;
for example, this can be done by cross validation, choosing
the value κ0 which yields the largest likelihood on a held-out
validation set. In practice, we find that model performance is
not sensitive to the choice of κ0.

Assuming that the true model belongs to the model class,
with parameter β

C∪{ j}
0 , it follows from [14] that the distribution

of the maximum likelihood estimate β̂C∪{ j} is approximately
normal with mean

µ =
(
I + 2κ0 Ĵ−1

T �
)
β

C∪{ j}
0

and covariance matrix

6 = Ĵ−1
T K̂ T Ĵ−1

T

where

K̂ T =

∫ T

0
xC∪{ j}

t xC∪{ j}
t

T

((
η−1

)′
(
β̂xC∪{ j}

t

))2

η−1
(
β̂xC∪{ j}

t

) dt

Ĵ T = K̂ T − 2κ0�.

If µ j , 6 j denotes the respective subvector and -matrix
which corresponds to the entries of β

j
, the approximate

distribution of the estimated parameter ˆβ j is known and can
be used for testing.

C. Hypothesis Testing

We can now test the hypothesis H0:g jk
= 0 by testing

whether
ˆ

β
j
= 0. In the setting of testing g = 0 for a function

g =
∑

i βi bi , [42] shows that directly testing β̂ j
= 0 can lead

to loss of power. Instead, [42] proposes to evaluate the function
in a grid X = (u1, . . . , uM) and perform the hypothesis test
that the resulting vector g(X) := (g(um))1≤m≤M is 0.

Let B = (bi (um))m,i be the matrix where the i th column is
the evaluation of the i th basis function evaluated in X. Then
g jk(X) = B ˆβ jk is the evaluation of g jk in X, which is then
approximately N (Bµ j , B6 jBT )-distributed. This allows for
testing the hypothesis g jk

= 0 by the Wald-test statistic

T =
[
B ˆβ jk]T (

B6 jBT )−1[B ˆβ jk]
which is approximately χ2

(M)-distributed. By comparing T to
the theoretical quantiles of χ2

(M), we can test for significance
of the contribution of j to the intensity λk,C∪{ j}. The test is
implemented in python and is available online.4

D. Computational Complexity

The main complexity of the procedure is fitting the second-
order estimate of λk,C . If |C | = dC , this implies fitting dC

estimates of the first-order kernels h j1 and dC(dC + 1)/2 esti-
mates of the second-order kernels h j1, j2 and so the complexity
grows quadratically in the size dC of the conditioning set.
In general, for the nth order approximation, the number of
pairs ( j1, . . . , jn) (where repetitions ji = jk, i ̸= k is possible,
but ordering does not matter) is ((dC + n − 1)!)/(n!(dC − 1)!).

If we use a basis {b1, . . . , bK } of K basis functions, each
first-order kernel requires K parameters and each second-order
kernel requires K 2 parameters, so the total number of param-
eters becomes d K + dC(d + 1)K 2/2.

For the datasets we consider, using the second-order approx-
imation is tractable to run on a standard laptop with K = 10; in
cases where it is not (typically if the number of processes N j

is very large), one can for example use decreasing granularity
of the basis functions, K1 ≥ K2, to make each individual h j1, j2

easier to approximate.
On the basis of Theorem 1, we could consider higher

order approximations. The growth in the number of parameters
means that although the model is more expressive, the increase
in the number of parameters also increases variance of the
estimator. In many cases, it is reasonable to assume that
the parameter vector is sparse, and we can apply a sparsity
inducing penalty during training to reduce the variance of the
estimator; in this case it might be possible to include third- or
higher order interactions.

V. SIMULATION EXPERIMENTS

We evaluate our test using simulated data. First, we explore
the level and power for several graphical structures. Second,
we apply the test in a causal discovery algorithm to learn the
local independence graph from an observed dataset. In both
experiments, we compare our method to the first-order method
in (4), where also the λk,C intensity is approximated by basis
expansions using only first-order interaction terms.

4Code available at https://github.com/nikolajthams/LIPP
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Fig. 2. (left) Graphical structures used for testing local independence. Square nodes indicate unobserved event types. For each, we simulate 500 samples
from a Hawkes process with this true local independence graph, and evaluate the test j ̸→ k|C for with C being {c, k} or (in the absence of a node c) {k}.
(right) H0 acceptance rates (p < 0.05 level) for the 500 repetitions of the test j → k|{k, c} in each of the structures using both a first- (1) and second- (2)
order approximation of λk,C . The colors indicate the proportion of tests accepted and rejected, and the dashed line marks 5% rejection rate (only relevant for
graphs L1–L3).

A. Level and Power
In Section II-A, we argued that the misspecification from

using only first-order terms may lead to a loss of level.
To validate this, for each of the graphs G in Fig. 2, we sample
n = 500 point processes from the Hawkes process with
kernel gi1i2(s) = αi1i2βi1i2 e−βi1 i2 s if (i1, i2) ∈ G and otherwise
gi1i2(s) = 0. Simulation details are in the appendix in the
Supplementary Material.

For each sample, we test the hypothesis H0: j ̸→ k|C with
C = {c, k} (or C = {k} in the graphs with no node c). The
hypothesis H0 is true in structures L1–L3 (and thus we here
evaluate level) and false in structures P1–P3 (and so we here
evaluate power).

The nodes h represent an unobserved event type, and so is
not included in the conditioning set C . Due to the latent events,
we expect the first-order test to loose level compared to the
second-order test. We conduct the test of H0 from Section IV
on a nominal 5% level and display in Fig. 2 the proportion of
p-values below 5% for each structure, with red indicating a
rejected test of H0.

In the structure L1, we observe that the both the first- and
second-order tests maintain level in the structure L1. This is
as expected, because the ground truth structure L1 has no
latent events, and so the effect c → k is truly a first-order
interaction. In the structure L2, our proposed second-order test
has a rejection rate around 5%, while the first-order test
exceeds the nominal level by rejecting in around 9% of the
simulations. This indicates that due to the latent process N h

being marginalized out, the dependence between N c and N k

is not fully captured by first-order interactions, and so when
fitting only first-order interactions, there is some residual
information which mistakenly is then captured in the fit ker-
nel g jk . By introducing second-order interactions, this residual
information is reduced, and the false negative link j → k
becomes less likely. In L3 both the first- and second-order
tests reject in more than 5% of cases, however with the level
of the second-order test being closer to the nominal 5% level.
This indicates that the marginalization of h induces a model
misspecification which is partly captured by the second-order
interaction.

For the graphs P1, P2 and P3, where truly j → k|C ,
we observe that both the first- and second-order approaches
have substantial power. For the structure P3, we observe that
the first-order test has more power than the second-order test,
possibly due to the fewer parameters that need to be estimated
to use the first-order test.

Fig. 3. Illustration of constrained-based learning algorithms like the CA
algorithm [25] or the PC-algorithm [28]. The algorithm starts with the fully
connected graph (left), and removes the edge a → b if there exist a set C of
current parents of b, such that a ̸→ b|C (middle). This is then done repeatedly
for all nodes and for sets C of increasing size. The algorithm terminates, when
no more edges can be removed, that is when no more local independences
can be found (right).

B. Causal Structure Learning

We also evaluate the proposed test in the context of the
CA algorithm proposed by Meek [25], which is similar to
the PC-algorithm [28] but applies to local independence
graphs (see Fig. 3 for an illustration of the algorithm). For
d ∈ {3, . . . , 7}, we simulate n = 60 graphs of dimension d
and with each edge occurring with a fixed probability of 0.2.
We then simulate a Hawkes process with the simulated graph
as causal graph. Simulation details are in the appendix in the
Supplementary Material. Constrained-based causal learning
algorithms, such as the CA-algorithm, estimate the causal
graph by sequentially testing local independence j ̸→ k|C for
nodes j, k given conditioning sets C ⊂ V \ { j} of increasing
size. If at some point, a local independence j ̸→ k|C is
found, the edge j → k is removed from the graph.

For each simulated Hawkes process, we run the
CA-algorithm using either the first- or the second-order tests
and obtain a resulting estimated graph. We then compare the
estimated graphs to the true graph that generated the Hawkes
process by the structural hamming distance (SHD), which
measures the number of edge additions, removals or flips that
is needed to convert the estimated graph into the true graph.
That is, the SHD measures how far the estimated graph is
from the true graph. Fig. 4 shows the resulting SHDs for the
different dimensions. We observe that for all dimensions, the
second-order approach performs as well or better than the first-
order approach. Notably, this is more outspoken as dimensions
increase: In larger systems, more processes are marginalized
away when testing j ̸→ k|C , and so the effect of model
misspecification is more severe for larger dimensions.

Further, we compare to a Lasso-based approach [7]: for
each process N j we fit the conditional intensity given all
processes N 1, . . . , N d (using the same basis expansion as
for the independence test). We apply ℓ1 penalization to the
fit (the penalization parameter is chosen by cross validating
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Fig. 4. SHDs between the true graph that simulated data and the graphs
estimated using either first- or second-order tests or a Lasso-based approach
in the experiment in Section V-B.

the predictive performance on held out time slices) and take
as parents those processes whose fit parameters are non-
zero. While this is computationally more efficient, there is no
theory supporting consistency of this approach without further
assumptions [7].

The average and median SHD of the Lasso estimate is
larger than the SHDs of the constraint-based methods (Fig. 4)
meaning that the Lasso estimates are further from the true
graph than the constraint-based estimates. This shows that
even in fully observed data (as in this experiment) where
the Lasso is correctly specified, fitting intensities given all
other processes simultaneously, may not be optimal. If the
processes were only partially observed, this would only be
more pronounced, since constraint-based methods can still
estimate the Markov equivalence class of the mixed graph [27]
while Lasso regression coefficients cannot represent latent
variables.

VI. NEURON FIRING DATA

We employ a causal discovery algorithm using our proposed
tests to a dataset of neuron firing in turtles.5 The turtles were
exposed to a stimuli in a period of 10 seconds, in which the
activity of d = 6 channels were measured. The experiment
was repeated 5 times.

For each repetition, we employ the CA algorithm from [25]
to learn the causal structure, using either first- or second-
order tests. Fig. 5 shows data from the first repetition of the
experiment and the resulting learned graphs (repetitions 2–5
are shown in the appendix in the Supplementary Material). The
graph estimated using second-order tests is sparser than the
one using first-order tests. This concurs with our motivation
for including second-order terms: when level is lost due to
misspecification, the edge j → k will too often remain in the
graph, even though j ̸→ k|C for some C . Using first-order
tests results in a denser and less informative graph. This
effect is more outspoken in the neuron firing data than in
the simulated data in Section V: While the synthetic data
were truly simulated from a Hawkes process, and so the
misspecification would only be due to marginalization, there
may be additional misspecification in the real data if the full
process is not truly a Hawkes process.

5Data provided by Associate Professor Rune W. Berg, University of
Copenhagen.

Fig. 5. (left) The first repetition of the experiment. Each point corresponds to
one neuron firing. (right) Output of the CA algorithm on the first repetition,
when the test of local independence either uses a first-order test (“First”) or a
second-order test (“Second”). In the appendix in the Supplementary Material,
we show the similar plots and graphs for the repetitions two through five.

TABLE I
CONSISTENCY OF ESTIMATED GRAPHS FROM THE FIVE

REPETITIONS OF THE STIMULUS EXPERIMENT

Since ground truth graphs for the neural connections are
not available, we cannot directly evaluate which test provides
estimated graphs closer to ground truth. Instead, we compare
the first- and second-order tests by their consistency across
the five repetitions, i.e., how similar the estimated graphs are
from the five repetitions. For each repetition, a separate graph
is learned using the CA-algorithm, with a test using either first-
or second-order terms. In Table I we display the proportion
of edges where either 1) all five graphs agree on the presence
or absence of the edges and 2) at least 4 of 5 graphs agree.
As a baseline, we include the theoretical proportions, if in
each graph, an edge would appear randomly with a probability
of 1/2. Self-edges, which are easy to detect, and hence inflates
consistency, are excluded from all numbers. We observe that
the second-order approach is more consistent in terms of both
agreement between all five repetitions and agreement between
at least four repetitions.

VII. DISCUSSION

In this article, we formulated a framework for testing local
independence in point processes. We introduced a test of
local independence that fits intensities using basis expansions
and tests the local independence hypothesis j ̸→ k|C by
testing significance of contributions of the process N j to the
intensity λk,C∪{ j}.

We addressed the issue of marginalization: Even if the
full data-generating mechanism is a known and simple model
class, such as Hawkes processes, a partially observed sys-
tem with some event types unobserved cannot necessarily
be modeled as a Hawkes process. This issue is native to
(conditional) local independence testing, since the local inde-
pendence j ̸→ k|C relates to the marginal distribution
of N { j,k}∪C . To overcome this misspecification, we proved
that, when facing marginalized variables, the intensity can
be arbitrarily well approximated by expansions in terms of
iterated integrals, and we have verified that including higher
order interactions leads to an improved level of the test of
j ̸→ k|C .

The availability of an empirical local independence test
is quintessential to constraint-based causal structure learning
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algorithms for point processes, and we have validated in
simulation studies that using our proposed test, one can from
data obtain good estimates of the underlying graph. We applied
our approach to a real-world dataset on neuron spiking in
turtles, and found that including higher order interactions
resulted in sparser, more informative estimated networks.
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APPENDIX

A. Proof of Theorem 1

In this appendix, we prove Theorem 1. The proof first shows
the result for a univariate process (|C| = 1), and then argues
that result can easily be extended to the multivariate setting.

We stress that the motivation for the theorem is to show
convergence of the representation. In practice, many other
kernel functions than those appearing in the proof, could also
be used to describe the system, and so our interest lies very
little in the concrete functional forms used.

Let τ1, τ2, . . . be the jumps of N starting at 0 and moving
backwards in time. That is . . . < τ2 < τ1 < 0.

Definition 2. For s < 0, let Fs denote the σ-algebra generated
by events in [s, 0). That is

Fs = σ(τ1 ∨ s, τ2 ∨ s, . . .),

where τ ∨ s = max(τ, s). Define also F0− = σ(∪s<0Fs).

Proposition 1. F0 equals F−∞ := σ(τ1, τ2, . . .).

Proof. For all i, τi ∨ s is σ(τi)-measurable, and in particular,
F−∞-measurable. Therefore Fs = σ(τ1 ∨ s, . . .) ⊆ F−∞ and
so F0− = σ(∪s<0Fs) ⊆ F−∞.

Reversely, τn is F0-measurable for each n. F−∞ is the
smallest σ-algebra making all τn’s measurable, so F−∞ ⊆ F0

will follow. To see that τn is F0-measureable, consider any n.
(τn ∨ s) → τn for s → −∞ (potentially with τn = −∞),
and so since (τn ∨ s) is F0-measurable for each s, τn is F0-
measurable.

Proposition 2. The union of function spaces ∪s<0L1(Fs) is
dense in L1(F0−).

Proof. Take any λ ∈ L1(F0−). By the tower property,
λs := E[λ | Fs] ∈ L1(Fs) and further from the martingale
convergence theorem, (λs)s<0 is a martingale (in −s) and
E[λ | Fs] converges in L1 to E[λ | F0−] = λ as s → −∞.

Because each λs ∈ L1(Fs) ⊆ ∪s<0L1(Fs), it follows that
∪sL1(Fs) is dense in L1(F0−).

We now show that for any λ ∈ L1(Fs) and for each
M ∈ N that λ1N([s,0))=M can be written as a sum of
integrals of deterministic functions. These integrands will play
a role similar to Volterra kernels, but only given the count
N([s, 0)). We then sum over these terms, to obtain a general
representation of λ.

It is well known that if Y ∈ L1(σ(X1, X2, . . .)) for some
random variables X1, . . ., then there exists a measurable map
f such that Y = f(X1, X2, . . .). In the case of event times
truncated at s, τn ∨ s, this corresponds to that if λ ∈ L1(Fs)
there exists a function f such that

λ = f(τ1 ∨ s, τ2 ∨ s, . . .)

To obtain an integral representation of λ, we can utilize
this function. Define fn

s (t1, . . . , tn) = f(t1, . . . , tn, s, s, . . .)
as the evaluation of f in (t1, . . . , tn) and then the s in all
other entries of the function. We will write fn if s is clear
from the context or even f(t1, . . . , tn).

As a motivation for the below proof, suppose that we knew
that exactly one event occurred in the interval A := [s, 0), i.e.
τ1 ∈ A, τn /∈ A for n ≥ 2. Then one could write:

λ = f(τ1 ∨ s, τ2 ∨ s, . . .) = f(τ1, s, s, . . .)

=

∫ 0−

s

f(t, s, s, . . .)N( dt) =
∫ 0−

s

f1N( dt)

This however depends heavily on the assumption that
N(A) = 1. If instead the interval contained m events, then∫ 0−
s

f1(t)N( dt) = f1(τ1) + . . .+ f1(τm) which is not equal
to λ (because in this case λ = fm(τ1, . . . , τm)).

The following proposition devices a procedure, such that
one can obtain f(τ1) exactly if N(A) = 1 and else 0,
using only integrals of deterministic functions. For a function
h(t1, . . . , tn), we use the shorthand notation∫

A

h dN(tn) :=

∫
A

· · ·
∫
A

h(t1, . . . , tn) dN(t1) · · · dN(tn).

Proposition 3. Assume N is a simple, non-exploding point
process. Let λ ∈ L1(Fs) and A = [s, 0). Then

L∑
n=1

βn

∫
A

f(t1)1Dn dN(tn)
a.s.−→ λ1N(A)=1 (7)

for L −→ ∞ where βn = (−1)n−1

(n−1)! , n ≥ 1, and:

Dn = {(t1, . . . , tn) ∈ [−s, 0)n | ti ̸= tj for i ̸= j}

Proof. Observe that while we integrate over sequences
(t1, . . . , tn), we evaluate only the function f1(t1) in t1. The
indicator function 1Dn still is evaluated in (t1, . . . , tn). For
this reason∫

A

f(t1)1Dn(t1, . . . , tn) dN(tn)

=

[∫
A

f(t1) dN(t1)

](
N(A)− 1
n− 1

)
(n− 1)!

This follows because for each event time τ ∈ A, there are

exactly
(
N(A)− 1
n− 1

)
(n − 1)! tuples (τ, t2, . . . , tn) where τ

is the first element and no elements are identical.
It then follows that:

N(A)∑
n=1

βn

∫
A

f(t1)1Dn
dN(tn)

=

[∫
A

f(t) dN(t)

]N(A)∑
n=1

(−1)n−1

(
N(A)− 1
n− 1

)

=

{
f(τ1) N(A) = 1

0 else
= λ1N(A)=1
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This last step is utilizes that for M = 1,∑M
n=1(−1)n−1

(
M−1
n−1

)
= 1, and for M > 1, the binomial

formula implies that

0 = (1 + (−1))
M−1

=

M−1∑
n=0

(−1)n
(
M − 1

n

)

=

M∑
n=1

(−1)n−1

(
M − 1
n− 1

)
.

Since the integrand 1Dn
is 0 for n ≥ N(A), and

P (N(A) < ∞) = 1, it follows that

L∑
n=1

βn

∫
A

f(t1)1Dn dN(tn)
a.s.−→ λ1N(A)=1 for L → ∞

This extends to the following corollary:

Corollary 2. Let λ ∈ L1(Fs). For M ∈ N, one has:

L∑
n=M

βM
n

∫
A

f(t1, . . . , tM )1Dn
1OM

dN(tn)
a.s.−→ λ1N(A)=M

with βM
n = (−1)n−M

(n−M)! for n ≥ M and

OM = {(t1, . . . , tM ) ∈ [−s, 0)n | t1 < t2 . . . < tM}

Proof. The case M = 1 is covered in Proposition 3. For
M ≥ 2, the result essentially is the same, with the additional
requirement that the first M jumps should be ordered, which
is handled by 1OM

.
Apart from this, combinatorics of how many tuples

(t1, . . . , tn) with t1 < . . . < tM ordered (as fixed by OM )
and all t’s distinct (by Dn) remains the same, in particular∫

A

f(t1, . . . , tM )1Dn
1OM

dN(tn)

=

[∫
A

f(t1, . . . , tM )1OM
dN(tM )

](
N(A)−M
n−M

)
(n−M)!

Consequently, the proof from Proposition 3 also applies in the
case of 1N(A)=M .

Extending further on Proposition 3 and Corollary 2, we
may include the base-rate λ1N(A)=0. Let h0 be the value of
λ on the set {N(A) = 0} (that is h0 = f(s, s, . . .)). Now∑L

n=1

∫
A

[
f(t1)− h0

]
1Dn

dN(tn) will return the additional
to base-rate intensity f(τ1)−h0 if N(A) = 1 and 0 else. We
combine the above:

Proposition 4. Assume N is a non-exploding point process,
and assume λ ∈ L1(Fs). Then

L∑
M=1

L∑
n=M

βM
n

∫
A

f(t1, . . . , tM )1Dn
1OM

dN(tn)
a.s.−→ λ,

for L −→ ∞.

Proof. As above, the almost sure convergence follows simply
by decomposing λ = λ1N(A)=0 +

∑
M∈N λ1N(A)=M , and

again observing that since P (N(A) < ∞), for every ω, the left
hand side will arrive at the true value for some finite L.

Finally we are able to prove the main result.

Proof of Theorem 1. Observe that each function
βM
n f1Dn

1OM
∈ En, and so

L∑
M=1

L∑
n=M

βM
n

∫
A

f(t1, . . . , tM )1Dn1OM
dN(tn)

is in
⊕L

n=0 Wn. Be reminded that by Proposition 2,
∪s<0L1(Fs) is (L1-)dense in L1(F0−), and for every element
λ of ∪s<0L1(Fs) there exists a sequence in

⊕
n∈N Wn

converging almost surely to λ. Consequently, as both L1 and
almost sure convergence implies convergence in probability,
for any λ ∈ L1(F0−) there exist a sequence in

⊕
n∈N Wn

converging to λ in probability.
Consider now any λ ∈ L(FC

0−) with |λ| < ∞ a.s. Trivially
λk := 1|λ|<Kλ converges in probability to λ for k → ∞.
Further each λk ∈ L1(F0−), and hence there exists a sequence
there exists a sequence in

⊕
n∈N Wn converging almost surely

to λ, completing the proof in the case without marks.

The above framework is readily extended to marked point
processes. Remember that with V = {1, . . . , d} and C ⊆ V ,
one has for any Borel measurable set A that:

N(A× C) =
∑
v∈C

N(A× {v}) =
∑
v∈C

Nv(A)

When integrating, this factorizes:∫
A×C

f(x, v)N( dx, dv)

=

∫
A

f(x, v)
∑
v∈C

Nv( dx)

=
∑
v∈C

∫
A

fv(x)Nv( dx)

where we let fv(x) := f(x, v). Similarly in higher dimen-
sions:∫

A×C

f(x1, v1, . . . , xn, vn)N( dxn × dvn)

=
∑
|α|=n

∫
A×C

fα(x1, . . . , xn)N
α1(x1) · · ·Nαn(xn)︸ ︷︷ ︸

=:Nα( dxn)

where fα(x1, . . . , xn) = f(x1, α1, . . . xn, αn) and α ∈ V n is
some tuple of length n.

Thus, the combinatorics of the one-dimensional case apply
also in the marked setting and the result thus directly transfers
to the multi-dimensional case: In the marked setting, the
generated σ-field becomes Fs = σ((τ1 ∨ s, v11τ1>s), . . .).
A multivariate version of Proposition 1 follows because
(τ1 ∨ s, v11τ1>s) → (τ1, v11τ1>−∞)6, and so denseness of
∪sL1(Fs) also follows in the marked case. Thus the function
f could have been written:

λ = f ((τ1 ∨ s, v11τ1>s), . . .)

6Which is the desired limit, with the convention that vn = 0 if τn = −∞.
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Fig. 6. Simulation parameters for the experiment in Section V-A

In Proposition 3, one could have proceeded in exactly the same
way, but using integrals

∫
A×V

f(t1, v1)N( dt1 × v1) instead.
Therefore also Proposition 4 generalizes such that any λ ∈

L1(Fs) can be approximated by an almost surely converging
sequence, and combined with the denseness result, the result
extends to the multivariate case.

B. Simulation details

In this section, we provide simulation details for the exper-
iments in Section V.

1) Details from Section V-A: Recall that from each struc-
ture, we sampled point processes with kernels gi1i2(s) =
αi1i2βi1i2e

−βi1i2
s if (i1, i2) ∈ G and otherwise gi1i2(s) = 0.

We simulated data using the link-function η(x) = 1x≥1 · x+
1x<1 · (log(x) + 1).

For all structures and edges, the decay parameter βi1i2 is
0.8, the baseline intensity is β0 = 0.25 and the rate parameter
on self-edges is αi1i1 = 0.4. The remaining rate parameters
αi1i2 are given in Fig. 6.

2) Details from Section V-B: All graphs are sampled ran-
domly with all self-edges present and all other edges sampled
with a probability of an edge occuring at p = 0.2. Given the
graph, Hawkes processes are sampled with kernels gi1i2(s) =
αi1i2βi1i2e

−βi1i2
s if (i1, i2) ∈ G and otherwise gi1i2(s) = 0,

and again using the link function η(x) = 1x≥1 · x + 1x<1 ·
(log(x)+1). The decay parameter is βi1i2 = 0.8, the baseline
intensities βi1

0 = 0.25, and for self-edges the rate parameter is
αi1i1 = 0.3. The rate parameters between two different nodes
is s · 0.4 where P (s = 1) = P (s = −1) = 1/2.

C. Estimated graphs for remaining 4 experiments

Figure 5 in Section VI we displayed data and resulting
estimated graphs from the first repetition in an experiment
that was repeated 5 times. This section contains plots similar
to Fig. 5, but for the other 4 repetitions. These are displayed
in Figs. 7 to 10.
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Fig. 7. Data and estimated graphs from repetition 2
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Fig. 8. Data and estimated graphs from repetition 3
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Fig. 9. Data and estimated graphs from repetition 4
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Fig. 10. Data and estimated graphs from repetition 5


