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Abstract
Integrating epidemiological information into mortality models has the potential to
improve forecasting accuracy and facilitate the assessment of preventive measures that
reduce disease risk.While probabilisticmodels are often used formortality forecasting,
predicting how a system behaves under external manipulation requires a causal model.
In this paper, we utilize the potential outcomes framework to explore how population-
level mortality forecasts are affected by interventions, and discuss the assumptions and
data needed to operationalize such an analysis.Aunique challenge arises in population-
level mortality models where common forecasting methods treat risk prevalence as
an exogenous process. This approach simplifies the forecasting process but overlooks
(part of) the interdependency between risk and death, limiting the model’s ability to
capture selection-induced effects. Using techniques from causal mediation theory, we
quantify the selection effect typically missing in studies on cause-of-death elimination
and when analyzing actions that modify risk prevalence. Specifically, we decompose
the total effect of an intervention into a part directly attributable to the intervention
and a part due to subsequent selection. We illustrate the effects with U.S. data.
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1 Introduction

Soaring life expectancies throughout the industrialized world have prompted a rapid
increase in research on mortality modelling and forecasting. Most models aim to
produce accurate forecasts of all-cause mortality, relying solely on age, calendar time,
and birth-cohort as predictors, e.g. [4, 24, 34]. While these models are effective at
predicting future death rates, they do not incorporate information about the causal
mechanisms underlying past trends. Instead, they assume secular linear trends at an
aggregate level—an assumption often at odds with reality [17, 19].

To foster a deeper understanding of mortality and its drivers, recent studies have
sought to enrich traditional models by incorporating the impact of risk behaviour on
health. The goal is to disentangle the effects of general health improvements from those
of risk behaviour change over successive generations. Booth and Tickle [3] charac-
terize models exploiting relations between behavioural risks and death as explanatory
models but warn that such relationships are still imperfectly understood. Nonetheless,
various advances to make more precise and better substantiated forecasts by integrat-
ing health and lifestyle related trends have been made in recent years, e.g. [11, 18, 23,
33, 41].

Still, little work exists on the applicability of explanatorymodels to assess the effec-
tiveness of health interventions aimed at reducing mortality rates in population-level
forecasts. Studying how human longevity can be improved by curing or reducing the
prevalence of existing diseases, or by modifying risk behaviour, is of great interest
with many potential applications across numerous disciplines, including demography,
actuarial risk management, and health economics. In practice, such analyses are chal-
lenging due to their inherent causal nature, which necessitates explicit assumptions
about the data generating process and parameters that can be adjusted to represent
interventions.

The difficulty in carrying out these analyses is twofold. First, causal models require
careful consideration of the underlying mechanisms that lead to changes in mortality.
This involves identifying the causal relationships between various risk factors andmor-
tality, and inferring their strength.We elaborate on this issue in Sect. 2. Second, current
population-level mortality frameworks have limited ability to take varying individual
responses into account. Population heterogeneity creates a two-way feedback mech-
anism between risk prevalence and mortality, wherein the risk composition among
the surviving population changes over time in accordance with the risk composition
among those who die. This selection-induced mechanism is ignored by explanatory
models that treat risk prevalence as an exogenous process. However, real-world con-
sequences of interventions can sometimes only be correctly predicted if the feedback
mechanism is incorporated into the analysis [22, 39]. This is the main theme of the
paper.

The purpose of this paper is to discuss how mortality forecasts are affected by
interventions and to show by example the assumptions and data needed for such an
analysis to be operationalized. To facilitate this discussion, we define a generic causal
mortality model in Sects. 3 and 4 using the framework of potential outcomes, and we
emphasize when explicit modelling of the feedback mechanism is needed. In Sect. 5
we propose a method based on causal mediation theory that decomposes the total
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effect of an intervention into a part directly attributable to the action and a part due to
selection. The overall message is that if we want to make accurate statements about
the effect of an intervention, that is if we are to quantify both the direct and the indirect
effects of an intervention, risk prevalence must be endogenous to the mortality model.
We consider this work a first step towards population-level forecasting of mortality
under interventions.

2 When do we need a causal mortality model?

In general, modelling and forecasting (cause-specific) mortality is a problem of pre-
diction, for which a probabilisticmodel suffices. That is, if wewish to predict mortality
given the prevalence of concurrent health risks, π say, it suffices to specify a distribu-
tion over a lifetime, X , through amodel of the conditional death rate (x, π) �→ μ(x |π).
In theory, it is also possible to use such a model to study the impact of interventions
by perturbing the distribution of variables that have been conditioned on as is done
in conventional stress tests. That is, by computing μ(x |πa) for some alternative risk
distribution πa . But this analysis will only give a realistic picture of the consequences
of an intervention if the conditional distribution of mortality does not change when
the predictors change.

For example, suppose that we are interested in studying the effect of the number of
cigarettes smokeddaily, S, on the risk of death. There is an abundance of evidence in the
literature to support the conclusion that the more one smokes, the higher one’s risk of
death becomes. Suppose we focus on the regression task of learning s �→ E[X |S = s].
It is then tempting to interpret E[X |S = s] − E[X |S = 0] as the expected increase in
survival for a smoker, who quits smoking. But such an interpretation is invalid in the
presence of confounding factors. A confounding factor is any variable that influences
both risk exposure and response. Here we could imagine the relationship depicted in
Fig. 1.A lackof commitment to not smoke tends to co-occurwith ahigher susceptibility
to being obese through various underlying social factors. Since associations between
‘Smoking’ and the outcome may arise not only through the number of cigarettes
smoked but also through underlying factors that determine general risk behaviour,
the parameters associated with E[X |S = s] may have no causal meaning.

In comparison, a causalmodel is able to update its prediction in response to changing
conditions in a way that is intrinsic to the model. This is because, in a causal model,
the distribution of a variable given its causes is stable under interventions that only
affect other variables. That is, the generative mechanism for a variable not targeted
by an intervention is left intact. Several comprehensive books have been devoted to

Fig. 1 Example of confounding.
The arrows represent causal
relations
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the topic of causal inference and discovery, e.g. [14, 15, 31, 32, 38], and we will thus
not give an in-depth account of the concepts and methods here. In the present paper
we focus on decomposing the effects of interventions in population-level forecasts of
mortality with a particular emphasis on the role of selection, that is how differences in
risk can cause the composition of the population (and thereby death rates) to change
over time.

2.1 Inferring cause–effect relationships is challenging

To give precise answers to causal questions, we need to invoke restrictive assumptions
about the data generating process. A formal account of the ones needed can be found
in, e.g., [14, 35, 37]. These may hold by virtue of study design, for instance in a
randomized controlled trial, but generally we can only identify causal effects from
observational data when there is no unmeasured confounding. Because no regard is
paid to confounding factors in a standard regression analysis, these estimates cannot be
endowedwith a causal interpretation. This issue is alsowell recognized in themortality
forecasting literature, for instance by [23] who carefully remark: “Indeed, none of our
results should be seen as claims about the causal effects of obesity, smoking, or any
other factor.”.

Estimating causal effects is an ambitious task requiring specializedmethods, subject
matter expertise, and detailed individual-level health data. To operationalize a causal
mortality model, dose-response relationships must be based on epidemiological evi-
dence from the literature, supported by trial and cohort data. Recent advances in the
field of epidemiology, spearheaded by the Global Burden of Disease (GBD) initiative,
may assist in bridging this gap between mortality and its determinants. In particular,
[28] gives a standardized and comprehensive account of how 87 risk factors interact
and affect different causes of death, covering in total 560 risk-outcome pairs based
on a systematic review of partial studies. Using data from the GBD, it is possible to
construct a causally interpretable mortality model with the aim of forecasting country
specific mortality under varying scenarios. We take up this task in Sect. 6.

The modelling choices we make are close in spirit to the seminal work of [11],
who also build an explanatory model based on the GBD estimates with the aim of
substantiating mortality forecasts and exploring alternative health scenarios. While
[11] does evaluate better/worse scenarios, these are made using a more conventional
stress testing procedure, where the improvement rates of the risk factors are varied.
They stress that such scenarios are to be understood as “[…] a signal on the scope for
policy change”, rather than actual alternative scenarios. In Sects. 3–5, we expand on
their method of analysis and explain which additional model components are needed
to evaluate actual interventions.

2.2 Two types of interventions

We aim to explicate the causal consequences of two types of interventions, namely
on actions that target the death rates directly by cause-of-death elimination, and on
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actions that modify behavioural risk factor prevalence thus targeting the death rates
indirectly.

The impact of eradicating certain causes of death is a topic widely debated in the
actuarial literature, dating back to Bernoulli’s discussion in 1760 of a hypothetical
world without small-pox [21]. The pivotal assumption made by Bernoulli was that
individuals “saved” from the eliminated cause were as susceptible to dying from the
non-eliminated causes as the general population, an assumption that still permeates
most cause-deleted lifetable calculations today. Indeed, the prevailing methodology is
to directly manipulate the cause-specific death rates of interest, while leaving remain-
ing rates unaffected. This is commonly referred to as cause elimination under an
assumption of independent competing risks, an approach that typically overstates the
actual effect because it fails to account for subsequent selection, see also the discus-
sions in [22, 39].

Some papers recognize the issue of dependence among competing causes in their
estimates of cause-deleted life tables, e.g. [1, 8, 20, 25–27], but they do not explain the
pathways through which dependence originates. Here, we provide an explanation by
linking individual risk behaviour to cause-specific mortality. It is this link that allows
us to explicate the consequences of selection following interventions.

As a motivating example, suppose that we are able to prevent all deaths due to lung
cancer by some unusually successful targeted laser therapy. In this hypothetical world
there will, at least initially, be fewer deaths compared to the world where the cause
still operates. But since everyone eventually dies, deaths are ultimately redistributed
among remaining causes. What is left is then to quantify how soon those “saved” die
from something else, and what they die from instead. Because individuals who die
from lung cancer are predominantly smokers, improvements in the treatment of lung
cancer will indirectly affect (and most likely increase) the mortality rates for other
tobacco-attributable causes such as heart diseases, following the progressive build-up
of smokers in the population. The initial decrease in the aggregate death rate due to
lung cancer being eradicated is thus partly offset by a subsequent “harvesting” of the
“saved” smokers. We elaborate on this feedback mechanism in the next section, and
formally decompose interventions into their direct and indirect effects in Sect. 5.

3 The feedbackmechanism

To define interventions and their consequences on mortality, we will conceptualize
how risk mechanisms at the level of individuals transfer to the level of populations in
the framework of potential outcomes. We establish the basic relations in this section
and use them to emphasize that the necessity of modelling the feedback mechanism,
wherebymortality and risk prevalence influence each other in population-levelmodels,
is an inherent consequence of aggregation. We then give an instructive example that
demonstrates the role of the mechanism in a scenario of cause-of-death elimination.

For ease of exposition, we consider the dynamics of a single ageing (birth) cohort
followed until somemaximum attainable ageω ∈ (0,∞). Since age and calendar time
advance synchronously in this case, we omit dependence on time in the following.
Consider i = 1, . . . , n independent lives endowed with an age-varying vector of
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categorical1 covariates Zi and life times Xi . For the purposes of this paper, we think of
the covariates asmodifiable lifestyle risk factors (e.g., smoking, weight, etc.), although
disease history, socio-economic indicators and other variables that predict mortality
could be included.

Denote by an overbar the history of the covariate process up to age x , that is
Z̄i (x) = (Zi (u) : 0 ≤ u ≤ x). With probability one, we assume that [0, ω] � x �→
Zi (x) only has finitely many jumps. Let z̄(x) be a possible (fixed) covariate trajectory
and define X z̄

i as an individual’s potential life time had covariate exposure been z̄
(possibly different to what was observed) with z̄’s dependence on x suppressed. For
each possible trajectory of z̄ the distribution of X z̄

i is completely characterized by the
hazard rate

μz̄(x) := lim
dx↘0

P
(
x ≤ X z̄

i < x + dx | X z̄
i ≥ x

)
/dx . (1)

The superscript identifies that μz̄ is the hazard function for X z̄
i . Of course, for a given

individual we only observe one outcome and not all potential outcomes. We can relate
the observed outcome to the potential outcomes through the assumption of consistency,
see e.g. [14], namely Xi = X z̄

i when Z̄i (x) = z̄(x) for all x ∈ [0, Xi ]. In other words,
the two outcomes coincide for the observed covariate trajectory.

3.1 A cause-specific relative risk framework

All-cause mortality is decomposed by considering k ∈ {1, . . . , K }mutually exclusive
and exhaustive causes of death. This is a situation of competing risks, where different
causes compete to end the life of an individual and occurrence of one event precludes
occurrence of the remaining. The cause-specific hazard μz̄

k characterizes the instanta-
neous rate of death from cause k in the presence of competing causes and is constructed
such that

∑K
k=1 μz̄

k(x) = μz̄(x) for all x .
To facilitate estimation and inference, some structure must be imposed on the

hazard. In epidemiological and biostatistical applications where the inferential goal
is to establish causal explanations for the etiology of disease and death, mortality is
often studied in the relative risk framework. We adopt this framework throughout and
assume that the death rate is related to z̄ in a multiplicative fashion adhering to the
form2

μz̄
k(x) = μ0k(x)Rk(z̄(x), x), k = 1, . . . , K , (2)

where μ0k is a baseline death rate common to all individuals, and Rk is a known
function governing the effect of risk exposure. Equation (2) can be classified as a
marginal structural model in the sense that it provides a structural (and thereby causal)

1 Covariates are, especially for large cohort studies, often reported as categorical variables even when the
underlying exposure is continuous.
2 One could also rewrite (2) to not condition on the entire covariate history of an individual but only on
concurrent exposure. Prior behaviours could then be incorporated by making them explicit levels of the
categorical covariates. We adopt this methodology in Sect. 6.
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description of the marginal distribution of X z̄
i . This interpretation will be important

when arguing about the effects of interventions.

3.2 Mortality with individual- and population-level information

To understand the interdependence between an individual’s exposure to risk and prob-
ability of death, we associate to each lifetime, Xi , the multivariate counting process
Ni (x) = (Ni1(x), . . . , NiK (x)) where Nik(x) = I(Xi ≤ x, δ = k), k ∈ {1, . . . , K },
is a counting process registering whether or not individual i has died before or at age
x from cause k, with δ designating cause. For every i , the process (Ni (x))x is adapted
to the filtration (Fi x )x with

Fi x = σ(Ni (s),Yi (s), Zi (s) : 0 ≤ s ≤ x) (3)

being the σ -algebra generated by the internal history of the counting process aug-
mented by the history of the covariate process Zi and the at-risk process Yi (x) =
I(Xi ≥ x). Assuming sufficient regularity, Ni (x) has intensity process λi (x) =
(λi1(x), . . . , λi K (x)) given by

λik(x) = μ0k(x)Rk(Z̄i (x), x)Yi (x), k = 1, . . . , K , (4)

with respect toFi x . The interpretation in infinitesimal terms is that the expected (local)
change in the death process

E[dNik(x) | Fi x−] = E
[
Nik((x + dx)−) − Nik(x−) | Fi x−

] = λik(x)dx, (5)

is a function of the individual’s covariates and their survivorship status. We note that
Yi depends on the set of causes operating, but we suppress this in the notation for now.

In demographic and actuarial studies of mortality the focus is on the aggregate
age-specific death rate. To relate the individual level model to the population level
we marginalize over surviving individuals. Consider the aggregated counting process
N•(x) = (N•1(x), . . . , N•K (x)) given by

N•k(x) =
n∑

i=1

Nik(x), k = 1, . . . , K , (6)

which has intensity process

λ•k(x) =
n∑

i=1

λik(x) = μ0k(x)
n∑

i=1

Rk(Z̄i (x), x)Yi (x), k = 1, . . . , K , (7)

with respect to Fx = ∨n
i=1 Fi x . Since the covariates, Z , are categorical with sample

paths for each individual taking only a finite number of values, we can assume a
grouping of the individuals based on their covariate configurations. Let G be the finite
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number of possible subgroups of covariate histories, and denote these configurations
by zg for g ∈ {1, . . . ,G}. The proportion of surviving individuals in group g at age x
is πg(x) = Y•g(x)/Y••(x) where Y•g(x) = ∑n

i=1 Yi (x)I(Z̄i (x) = zg) is the number
of individuals at risk in group g while Y••(x) = ∑G

g=1 Y•g(x) is the total number at
risk at age x . With Rkg(x) = Rk(zg, x) being the combined relative risk of group g
for cause k, we can write (7) as a weighted average

λ•k(x) = μ0k(x)
n∑

i=1

G∑
g=1

Rkg(x)I(Z̄i (x) = zg)Yi (x) = Y••(x)μ0k(x)
G∑

g=1

Rkg(x)πg(x).

(8)

Usually when working with population-level data, we do not have access to Fx .
Instead, data are often aggregated and thus only available in the form of tables of
frequencies or in the form of histograms. Suppose therefore that the observed data
available at age x is the aggregated history

F̃x = σ(N•(s),Y•(s) : 0 ≤ s ≤ x), (9)

where Y•(x) = (Y•1(x), . . . ,Y•G(x)) is the number of individuals at risk in the G
groups. Since the aggregated history is nested in the individual-level history, that is
F̃x ⊆ Fx for all x , we can apply the innovation theorem of [2] to (8). It follows that
the intensity process of N• with respect to (Fx )x is also an intensity process of N•
with respect to (F̃x )x . Thus, the aggregated history yields the same population-level
death rate

μπ
k (x) := μ0k(x)

G∑
g=1

Rkg(x)πg(x), k = 1, . . . , K , (10)

where π(x) ∈ {p ∈ [0, 1]G | ∑G
g=1 pg = 1} is the potential risk factor composition

identified by the superscript π .
From amodelling perspective, when full information is available at the level of indi-

viduals, forecasting risk exposure prior to mortality is an admissible strategy. Since
it is possible to calculate the aggregate death rate by marginalizing over surviving
individuals, we can implement a modularized forecasting procedure by first determin-
ing the covariate dynamics conditionally on survival, and then the death rate given
the covariate trajectory. However, the same level of modularity is not achievable with
population-level models. If risk prevalence is exogenously given, as is common with
explanatory mortality models, then there is no effect of mortality at age s < x on risk
prevalence at x . In this case, feedback due to selection is not part of the model, making
the risk composition invariant to perturbations that cause a change in the death rates.
Such perturbations will therefore not necessarily reflect the real-world consequences
of an intervention. To build intuition for this problem, we conclude with an example of
the role of the feedback effect. A more formal characterization of the feedback effect
in a forecasting context is given in Sect. 5.
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3.3 Changes in population composition due to feedback

Understanding mortality patterns produced by differential selection is a classical topic
[39], and it is instructive to see how the feedbackmechanismworks when eradicating a
cause-of-death in the simplest possible setting.Consider a closed population consisting
of two homogeneous subgroups, differing only by their exposure to a two-level risk
factor Z ∈ {1, 2}. Suppose that there are two causes operating in this world, governed
by the individual-level model

μz
k(x) =

{
μ0k(x), if z = 1,

μ0k(x)Rk, if z = 2,
(11)

with Rk > 1, μ0k(x) > 0 for all x ≥ 0 and both causes-of-death k ∈ {1, 2}. At the
population level, the cause-specific death rate is a weighted average of the healthy
(z = 1) and the unhealthy (z = 2) subpopulations

μπ
k (x) = π1(x)μ

z=1
k (x) + π2(x)μ

z=2
k (x), (12)

where π2(x) is the proportion of unhealthy individuals at age x , namely

π2(x) = π2(0)Sz=2(x)

π1(0)Sz=1(x) + π2(0)Sz=2(x)
=

[
π1(0)

π2(0)

Sz=1(x)

Sz=2(x)
+ 1

]−1

, (13)

with survival function Sz(x) = exp{− ∫ x
0 (μz

1(u)+μz
2(u)) du}, initial stateπ1(0), π2(0)

∈ [0, 1], and the requirement that π1(x) + π2(x) = 1 for all x .
Now, consider the “reference” world with both causes operating, K = {1, 2}, and

a hypothetical world in which cause 1 has been eradicated, K∗ = {2}. Because of
competing risks, we need to be mindful that the cause k hazard is evaluated in the
presence of other causes.Wemake this explicit in the notation nowwithπK identifying
the risk proportion and SK,z the survival function in a world where a specific (sub)set
of causes K ⊆ {1, 2} are operating. By the assumptions above, we have that

SK,z=1(x)

SK,z=2(x)
= exp

{∫ x

0
[μ01(u)(R1 − 1) + μ02(u)(R2 − 1)] du

}
≥ SK∗,z=1(x)

SK∗,z=2(x)
,

(14)

which, combined with (13), implies that πK
2 (x) < πK∗

2 (x) for all x > 0. Thus,
eradicating cause 1 weakens the selection mechanism resulting in a progressive build-
up of unhealthy individuals, which makes the cause 2 death rate rise at the population
level

μπK∗
2 (x) − μπK

2 (x) = μ02(x)(R2 − 1)
(
πK∗
2 (x) − πK

2 (x)
)

> 0, x > 0. (15)

Equation (15) describes an indirect effect of cause removal brought about by a change
to the risk composition through the feedback mechanism.We formalize the distinction
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Fig. 2 Example effect of cause elimination for a cohort aged 20. The initial proportion of unhealthy
individuals is π2(0) = 1/3. Baseline mortality curves are given by μ01(x) = exp(−11.69 + 0.074x)
and μ02(x) = exp(−10.58 + 0.088x) and relative risks by R1 = 5 and R2 = 2.5. The parameters are
calibrated to reflect current death rates due to cancer and residual causes. The upper right panel visualizes
the build-up of unhealthy individuals following cause-1 elimination, while the lower right panel pictures
the subsequent harvesting. The left panel shows the remaining life expectancies prior and post elimination.
In this example, the feedback effect reduces the life expectancy gained by about a quarter of a year

between direct and indirect effects of cause removal in Sect. 5. For now, notice that if
the model ignored the feedback effect, that is if πK was given exogenously, then the
indirect effect would be zero since then πK(x) = πK∗

(x) for all x . The effects of
cause removal are exemplified in Fig. 2.

4 A causal mortality model

For the remainder of the paper, we switch focus to a model spanning multiple birth
cohorts and therefore consider a population defined in the rectangular age-period
region

Rdata = {(x, t) | xmin ≤ x ≤ xmax, tmin ≤ t ≤ tmax} . (16)

To give a proper justification for the declining mortality rates observed over the past
centuries, one needs to model the influence of both individual and contextual factors
on the risk of death. Contextual factors are the general living conditions to which all
individuals are exposed, while individual factors may be divided into two types—
observable and unobservable. We do not consider unobserved heterogeneity in the
following, although this could be modelled using frailty theory as in [40]. Our focus
is instead on individual differences relating to (observable) health and lifestyle related
behaviour. Following the notation outlined in the previous section, we assume that the
cause-specific death rate under a potential covariate trajectory z̄ follows the relative
risk model3

μz̄
k(x, t;C(t)) = μ0k(x;C(t))Rk(z̄(x, t), x, t). (17)

3 The relative risk estimates of the GBD study [28] vary with age but not over time. Age-related changes
are consistent with current epidemiological research which indicates that the relative effect of (most) risk
exposures dissipate over the course of a life span. Time invariance is, however, only justifiable over short-
to medium horizons as it renders the model unable to capture temporal changes in the effect of exposure.
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Here, the pair (x, t) ∈ Rdata identifies the cohort in question. The process C(t) tracks
the evolution of contextual variables like availability of food and water, access to
healthcare services, improvements in medical technology, GDP change, and so on. It
plays a dual role as a time-varying confounder process that must be controlled for to
ensure that Rk has a causal interpretation, and acts as an effect modifier by stratifying
the baseline death rate. The contextual variables relevant to us typically exhibit a
secular trend over time, and disentangling their effect from the effect of calendar time
can be complex and resource-intensive. In many cases calendar time is therefore used
as a surrogate confounder by equating C(t) = t for all t as a compromise.

The population-level equivalent of (17) under the assumption of categorical covari-
ates as in Sect. 3 reads

μπ
k (x, t;C(t)) = μ0k(x, t;C(t))

G∑
g=1

πg(x, t)Rkg(x, t) = μ0k(x, t;C(t))Rπ
k (x, t),

(18)

where Rkg collects the risks of individuals in group g associated with each covari-
ate and thus describes the combined relative risk of a given group. The aggregated
model can also be viewed as a relative risks model in which the entire heteroge-
neous population has been collapsed into a single risk weighted individual with risk
Rπ
k (x, t) = ∑G

g=1 πg(x, t)Rkg(x, t).

5 Forecasting, interventions and selection

We turn to the impact of interventions on demographic mortality forecasts. Demo-
graphic forecasting is centered around the projection of population-level quantities
such as the aggregate death rate. Predominantly, the stochastic processes considered
are indexed by discrete time and standard time series methods are used for prediction.
Even though we also view our data as time series in the following, all the points made
can be extended to the continuous time case.

Our focus will be on time points in the forecast region τ ⊆ Z. We have three
processes we need to consider jointly:

1. The mortality process M = {μk(x, t) : xmin ≤ x ≤ xmax, k = 1, . . . , K }t∈τ ,
2. The risk prevalence process π = {π(x, t) : xmin ≤ x ≤ xmax}t∈τ , and
3. The confounder process C = {C(t)}t∈τ .

To understand how interventions affect this system, we must describe how the pro-
cesses influence each other, and, in particular, whether or not one process has predictive
power over another. The concept of Granger causality [13] known from econometrics
formalizes the notion of influence between processes, and is particularly useful for
studying dynamic relationships inmultivariate time series.We give a precise definition
and explain how the concept is used to obtain graphical representations inAppendixA.

We can represent the above system by the graph shown in Fig. 3A. In the graph each
process is represented as a single node with time being implicit. Two nodes are joined

123



S. Jallbjørn et al.

Fig. 3 Rolled graphs of models with and without interventions. The blue arrow encodes feedback. Panel
A shows the unintervened setting describing the relationship between π , M, and C . Panels B and C are
graphs of models where the death process and the risk process are indexed by possible actions. In panel B
the action is on the set of causes operating and in panelC the action is an intervention on the risk distribution
(color figure online)

by a directed edge whenever a process at time t is predictive for another process at a
future time s > t . For instance, in a model with feedback the cycle π → M → π

represents a mutual dependence between M and π . The level of risk faced by the
population at time t affects the death rate experienced between t and t + 1, which in
turn affects risk prevalence at time t + 1. Conversely, the absence of an edge implies
that a process is not predictive for another. Thus, in a model without feedback there
is no arrow pointing from M to π because π(t + h) ⊥⊥ M(t) | (π(t),C(t)) for any
h ∈ N+. This relation is asymmetric in the sense that the risk composition always
predicts the death rate M(t + 1) 
⊥⊥ π(t) | (M(t),C(t)). We remind the reader that
an overbar denotes the history of the time series, cf. Sect. 3.

5.1 Cause-of-death elimination

Inspired by [9, 10], we consider a set of actions Aμ = (A1, . . . , AK ) that act on
components ofM(t) through all points in time t ∈ τ . For our purposes, each Ak takes
values in {0, 1} describing two different regimes. Having Ak = 0 corresponds to no
action on the k’th component, while Ak = 1 is an atomic intervention that forcesμk(t)
to be zero for all t ∈ τ . More general interventions could also be considered but will
not be pursued in the present paper.

We assume that intervening on the k’th component ofM does not affect the remain-
ing components or the remaining processes in the system other than through past
variables that may develop differently depending on the intervention:

(C(t), π(t),M−k(t)) ⊥⊥ Ak | (
C̄(t − 1), π̄(t − 1),M̄(t − 1)

)
, t ∈ τ, (19)

where M−k(t) denotes M(t) without the k’th component.4 We can then represent
an intervention on M by augmenting the graph in Fig. 3A with an additional source
node Aμ pointing intoM as shown in Fig. 3B. Because Aμ is a decision variable it is
represented graphically by a box and indicates possible eradication of certain causes of
death. The variableMK is a potential outcome indexed by the set of causes operating

4 We note that Ak is not a stochastic variable thus altering slightly the meaning of the ⊥⊥-symbol. Here, ⊥⊥
expresses that the distribution of (C(t), π(t),M−k (t)) is the same regardless of the value of Ak , cf. [6].
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following the action Aμ = a. Risk prevalence πK is likewise indexed by this set as it
may develop differently depending on which components inM that are affected.

It follows thatwithout feedback there is no causal effect of intervening inM onπ(t)
for any t ∈ τ . Thus the figure with the blue feedback edge removed represents a model
where the action of cause removal only has a direct effect on the risk of death, because
there is no indirect effect through variables between time points t and t+h, h ∈ N+. In
other words, while the action does prevent specific types of death, thereby increasing
the absolute number of deaths at later points in time because of competing risks, it
changes neither the relative risk composition nor the death rates of non-eliminated
causes. When the model includes feedback the risk process acts as an intermediate
variable that mediates an additional effect through the loop M → π → M. In this
case, cause-elimination weakens the selectionmechanism and leads to larger (relative)
concentration of high-risk individuals at future time points.

5.1.1 A decomposition of the death rate

The causal contrast of interest is the difference between the death rate in the reference
world where all causes are operating compared to the rate in a world where only a
subset of causes are operating. The all-cause death rate is

μK(x, t;C(t)) =
∑
k∈K

μ0k(x, t;C(t))
G∑

g=1

πK
g (x, t)Rkg(x, t). (20)

Here, μK is a single-world quantity where the K-index refers to both the set of causes
entering the sum and the world in which π is evaluated. Examining the impact of an
intervention Aμ = a∗ that leaves only a subset of causes K∗

� K = {1, . . . , K }
operating comes down to evaluating the difference

TE(x, t) = μK(x, t) − μK∗
(x, t), (21)

which constitutes the total causal effect. We have left the conditioning on C implicit
for readability. Comparing the total effect in the model without feedback to the total
effect in the model with feedback does tell us something about how much of the effect
is mediated via the risk process, but it does not give us a clean decomposition. Instead,
we consider the standard definitions of natural direct and indirect effects from the
mediation literature adapted to the present setup, cf. [30, 36].

We seek to measure the direct effect of the action Aμ = a∗ associated with the
arrow Aμ → MK∗

separately from the indirect effect associatedwith the loopπK∗ →
MK∗ → πK∗

. To this end, we introduce a cross-world model. Cross-world models
specify a joint distribution of processes corresponding to different values of the action
Aμ = a∗. We introduce the cross-world quantity μK∗,πK

indexed by both K∗ and K
to denote the death rate in a world where causes K \K∗ are eliminated, but where the
risk process develops as if all causes were still operating. To achieve this, we need “to
run” MK simultaneously to drive the risk process πK. Note that μK,πK = μK and

μK∗,πK∗ = μK∗
.
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The total effect (21) may now be decomposed into a part directly attributable to
cause removal, i.e. the expected change in μ induced by replacing the set of causes K
with K∗ while keeping the “mediator” fixed at its reference value πK, and an indirect
effect relayed through the mediating variable. We write

TE(x, t) = μK,πK
(x, t) − μK∗,πK

(x, t)︸ ︷︷ ︸
def= DE(x,t)

+μK∗,πK
(x, t) − μK∗,πK∗

(x, t)︸ ︷︷ ︸
def= IE(x,t)

, (22)

where the natural direct (DE) and indirect (IE) effects are given by

DE(x, t) =
∑

k∈K\K∗
μ0k(x, t;C(t))

G∑
g=1

πK
g (x, t)Rkg(x, t), (23)

IE(x, t) =
∑
k∈K∗

μ0k(x, t;C(t))
G∑

g=1

[
πK
g (x, t) − πK∗

g (x, t)
]
Rkg(x, t). (24)

We note that (23) marks the change in μ caused by simply subtracting the death rates
of causes K\K∗ from the all-cause rate without adjusting risk prevalence. This action
coincides with the notion of cause removal in the setting of independent competing
risks in which elimination does not alter the composition of the surviving population.

5.2 Alternative risk prevalence distributions

Another type of intervention deals with the effect onmortality brought about by chang-
ing risk prevalence from the reference distribution π to some alternative distribution
πa . We consider a set of interventions Aπ = {A(t)}t∈T for a subset of time points
T ⊆ τ . Each A(t) can be represented as a point in the G − 1 dimensional probability
simplex {p ∈ [0, 1]G | ∑G

g=1 pg = 1}, augmented by an additional state ∅ that rep-
resents no action. We assume that an intervention on π(t) is not predictive for earlier
or remaining contemporaneous variables:

(M(t), π(t − 1),C(t)) ⊥⊥ A(t), (25)

and that future variables are unaffected by the intervention other than through past
variables:

{Q(t + h)}h∈N+ ⊥⊥ A(t) | Q(t) (26)

where Q(t) = (M(t), π(t),C(t)). An intervention on π is then represented graphi-
cally as in Fig. 3C with π and M indexed by the action Aπ = a.

Measuring again the total causal effect on the risk difference scale, we have
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μπ∅
k (x, t;C(t)) − μπa

k (x, t;C(t)) = μ0k(x, t;C(t))

G∑
g=1

[
π∅
g (x, t) − πa

g (x, t)
]
Rkg(x, t) (27)

for cause k. The total effect can be decomposed in a similar manner to what we
did when the intervention was on M. We introduce the cross-world quantity πa,a∗

where the action on π is a, but the death rates behave as if it were a∗. The cross-world
process πa,∅ is thus the risk process when the action is a but with the death process
developing as if no intervention has been made. Omitting the dependency on C for
readability, we can then write the total effect of the action Aπ = a on cause k as

μπ∅
k (x, t) − μπa

k (x, t) = μπ∅,∅
k (x, t) − μπa,∅

k (x, t)︸ ︷︷ ︸
natural direct effect

+μπa,∅
k (x, t) − μπa,a

k (x, t)︸ ︷︷ ︸
natural indirect effect

.

(28)

Because all effects are effectively mediated via π itself, the decomposition is com-
plicated to interpret. The direct effect is the effect as if there were no feedback. It
describes the change in the death rate following one or more perturbations of the risk
prevalence distribution in a world where mortality does not influence risk prevalence.
In other words, the risk prevalence prediction is unaffected by the fact that the risk
composition among those dying in the π∅-regime is different from the composition in
πa-regime.

The indirect effect describes a self-exciting change to the death process due to it
developing differently within the πa-regime. To better understand it, it is helpful to
have a concrete example in mind. Suppose that we intervene on a “marginal” risk
factor distribution. For example, consider a situation where the proportion of obese
has been substantially increased. Because of competing risks, influencing the risk of
one event affects the risk of all events (on a population level). As a result, we can expect
smokers to die sooner on average than they would in the absence of the intervention,
since their risk of dying from obesity-related causes has gone up. Conversely, we
can expect the death rates for tobacco-related causes to decrease, even for diseases
that are directly linked to smoking, such as chronic obstructive pulmonary disease.
This phenomenon, where an increase in one risk factor appears to protect against
another, is selection-induced false protectivity, and it is a consequence of the feedback
mechanism.

5.3 Analyzing interventions in the presence of feedback

The rationale for a population-level model that explicitly accounts for the feedback
mechanism lies in its ability to maintain internal consistency. By predicting risk preva-
lence endogenously based on a potential risk composition at projection jump-off, this
type of model can accurately capture the complex and dynamic nature of selection.
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In contrast, models that treat risk prevalence as an exogenous process are limited in
their ability to produce consistent patterns of selection, as these patterns are implicitly
given by the risk prevalence forecast.

In summary, to analyze the effect of interventions in the presence of selection-
induced feedback we require data on cause-specific death counts, Dk(x, t), with
corresponding exposure to risk estimates, E(x, t), and group-wise risk factor preva-
lence proportions, πg(x, t) for (x, t) ∈ Rdata. Furthermore, we need data such that
the relative risk function Rk(zg, x, t) and the confounder process C(t) in Eq. (17)
are known. Consequently, only the baseline model μ0k(x, t;C(t), θ) in Eq. (18),
parametrized in terms of some vector θ , needs to be specified and estimated (for
each k) to model mortality in the data window. Next, to project mortality, a joint fore-
casting procedure of risk prevalence andmortality is required. In practice, this involves
specifying the dynamics of any time-varying parameters in θ , and the dynamics of risk
prevalence conditionally on survival. If calendar time is not used as a surrogate for C
or if Rk is time-varying, then the time dynamics of these processes would also have
to be specified. The chosen joint model is used to produce a reference scenario (e.g.,
a best-estimate projection) and any desired alternative scenario. Finally, the causal
quantities of interest, e.g. risk or life expectancy differences, are computed.

6 An application to US data: illustrating the direct and indirect effects
of cause-of-death elimination

We consider an application of the methodology outlined in the previous sections to
U.S. risk and mortality data. To keep the exposition concise we restrict the analysis
to the SNAP risk factors: smoking, poor nutrition, excess alcohol consumption, and
insufficient physical activity.These fourmodifiable lifestyle related risks are associated
with most causes of death.

6.1 Data sources

We use the relative risk estimates of [28], part of the Global Burden of Disease ini-
tiative, to describe the link between risk exposure and mortality. The estimates are
reported as time homogeneous quantities by sex and 5-year age groups. To get single
age estimates we perform linear interpolation with the age bucket centroids as fixed
points, see Appendix C.

For smoking the risk-outcome relationship is listed by either current number of
cigarettes smoked daily or by pack-years. Pack-years collapse smoking intensity and
duration into a single variable, so thatwe do not have to condition on the entire smoking
history of an individual. One pack-year is the equivalent of having smoked one pack
of cigarettes (20) a day for a year. For a given sex, age, and risk-outcome pair the
exposure category is listed in jumps of 10. We use natural cubic spline interpolation
between categories to obtain a continuous dose-response curve, see Appendix C.
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As an indicator for nutritional status we use the Body Mass Index5 (BMI), which
is the dominant metric for categorizing individuals in terms of weight excess or defi-
ciency. The relative risk is reported per five-unit change in BMI with 20 to 25 kg/m2

being the baseline category. Risks for alcohol consumption are reported directly in
terms of grams consumed per day while the relative risk for physical activity is
measured in metabolic equivalents (METs) with one MET being the rate of energy
expenditure at rest.

Cause of death data is extracted from [5] and contains U.S. specific mortality and
population data through the years 1999–2018. The data is based on death certificates
on which a single underlying cause of death is registered. Matching the data with
risks from the GBD study of [28], we consider in total 35 causes of death known to
be influenced by the risk factors. These causes make up about two-thirds of the total
age-specific deaths in the population above the age of 35. To obtain an exhaustive
list of causes such that the sum of the cause-specific rates equals the all-cause rate,
remaining causes are collected and aggregated into a ‘residual’ category and assigned
a relative risk of one for all risk factors.

Risk prevalence data is collected from the IPUMSNationalHealth InterviewSurvey
(NHIS) database [16]. The NHIS is a large cross-sectional survey conducted annually
by the U.S. government and contains comprehensive health and behaviour data at the
level of individuals. The IPUMS NHIS data relies on sampling weights to produce
representative estimates. Each unit of study can thus be inflated such that the sumof the
weighted units constitutes the entire U.S. population. The present analysis is based
on adult individuals covering ages 20–84 and years 1999–2018. Observations with
missing data are placed into the baseline category. Pack-years of smoking exposure is
constructed by assuming that the amount someone currently smokes has not changed
since they began smoking. Exposure among former smokers is estimated using years
since cessation and average cigarette consumption of the respective cohort. Figure4
shows the evolution of risk prevalence over time.

6.2 Baselinemodel

For modelling purposes we assume that the (true) hazard rate μk is constant over the
squares [x, x + 1) × [t, t + 1) for integer ages x and calendar years t . We consider
data on the form given in Sect. 5.3. We can estimate the parameters associated with
μk in (18) via maximum likelihood using the customary Poisson assumption

Dk(x, t) | E(x, t), Rk(x, t),C(t)
indep.∼ Pois (E(x, t)Rk(x, t)μ0k(x, t;C(t), θ)) .

(29)

Contrary to all-cause mortality that is generally well-behaved as a function of age,
cause-specific mortality may exhibit several structural changes over the age span.
Sudden rapid increases, periods of constancy, and even declines are not unusual. We

5 Body Mass Index := weight in kilograms
(height in meters)2

. A BMI below 18.5 is considered underweight and a BMI in the

range 25–29.99 is considered overweight. A BMI of 30 or above is classified as obese, subdivided into three
categories: 30–34.99 is Class I, 35–39.99 is Class II, and 40 or greater is Class III.

123



S. Jallbjørn et al.

Fig. 4 U.S. risk proportions of BMI, smoking, alcohol consumption, and physical activity based on IPUMS
data for both sexes and ages 20–84. The data shown in the figure is aggregated for the purpose of visual
presentation. More granular data is used in the application

Fig. 5 Empirical (dotted), fitted (solid black), and baseline (solid grey) death rates for the top 10 leading
causes of death in the dataset. The gap between the black and grey lines expresses the excess risk faced by
the population due to deviations from baseline levels of exposure in the risk factors considered
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could in principle use different functional forms to model μ0k depending on cause,
however stating just a single parametric form that generalizes well to most settings
might be preferable in terms of interpretability. A simple yet widely used parametric
form is the log-linear model

μ0k(x, t;C(t), θk) = exp (θk0x + θk1x t) = μ0k(x, t; θk), (30)

which has been applied in settings similar to ours, for instance by [11, 23]. The model
is easy to estimate (see Appendix B), flexible enough to capture the different shapes
associated with cause-specific mortality, and reflects that age is generally the most
important driver of mortality regardless of risk exposure. We use (30) as the baseline
model in what follows. Figure5 shows the empirical female cause-specific death rates
for the last year in the estimation period with fits of the aggregate and baseline rates
superimposed.

6.3 Joint forecasting

Generally speaking, straightforward extrapolative approaches for forecasting risk
prevalence are not recommended as they lead to an unabated continuation of his-
torical trends and likely poor out-of-sample performance. Many researches resort to
models that are specifically tailored to project the risk prevalence distributions in ques-
tion, but existing methods are confined to working on the marginals and do not capture
selection-induced feedback effects either. Developing a scalable joint forecasting pro-
cedure is an important topic of research, but it is beyond the scope of this paper.
For the demonstration we have in mind we make do with a somewhat elementary
state-transition model.

We aim at extrapolating the cohorts available in our sample until they reach age
xmax. We assume that there is no migration in or out of the composite population.
Define the (one-step) survival probabilities

pg(x, t) = exp

(
−

K∑
k=1

μ0k(x, t)Rkg(x, t)

)
, (31)

for group g and denote by mi j (x, t) the probability of the cohort aged x at time t
changing its “risk-groupmembership” from i to j .We employ a cohort state-transition
model

Y (x + 1, t + 1) = M(x, t)Y (x, t), (32)

with Y (x, t) ∈ N
G being the number of individuals in the G groups

and M(x, t) ∈ [0, 1]G×G a matrix of transition probabilities with elements
Mi j (x, t) = pi (x, t)mi j (x, t). Note that as a consequence of this formulation, migra-
tion rates are only applied to the surviving population. The estimated transition
probabilities mi j are stated in Appendix D. To aid in understanding the output of
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Fig. 6 Historical (dotted) and estimated and projected (lines) female rates for diabetes mellitus and
ischaemic heart disease. The dashed lines are reference projections using the baseline model fitted without
additional covariates

the model (32), Fig. 10 in Appendix D shows the mean trajectory of the continuation
of the compositions from Fig. 4.

6.3.1 Example death rate forecast

Figure 6 shows the empirical and forecasted female rates for ischaemic heart disease,
the leading cause of death in the dataset, and diabetes for select ages. To gauge the
effect of including additional covariates in the forecast, the superimposed dashed
lines are reference projections using the baseline model (30) fitted without additional
covariates.

Mortality projections are usually based on empirical regularities such as smooth
age profiles and small incremental mortality improvements, but the present projec-
tion depends heavily on the cohort specific exposures causing it to exhibit a rather
erratic behaviour.6 Figures5 and 6 suggest that this is particularly so for diabetes as
a large proportion of mortality is attributable to obesity and cohorts evidently differ
substantially in their exposure.

On the other hand, the inclusion of covariates caters for the fact that (baseline)
mortality levels ought to be consistently declining over time.While all-causemortality
adheres to this pattern, historical cause-specific rates may have actually increased
over time—even recently as Fig. 6 shows—for some causes and ages. This is an ever-
present issue widely acknowledged in cause-specific forecasting. The problem is that
increasing rates generally do not express that health care and treatment options have
worsened, but that mortality improvements have been substantially offset by changes

6 For practical applications some smoothing is warranted. The type of smoothness violations seen here
prompted the Bayesian modelling approach developed by [12], applied by e.g. [23] and [11], that down-
weighs risk factor information if contradicted by observed empirical patterns. These papers also use
smoothed prevalence estimates, whereas we simply apply the raw data.
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to the risk prevalence distribution. A purely extrapolative model is not able to explain
this development and will simply continue the observed trend unabated as seen in the
reference forecast for the youngest age groups in Fig. 6. In the long run this may result
in the aggregate all-cause forecast being dominated by the causes that have increased
historically.

The causal model with covariate information is, in contrast, equipped to analyze the
historic evolution of death rates at a granular level and may disentangle the effects of
lifestyle related habits changing fromgeneration to generation fromgeneral health care
improvements. Indeed, the model successfully separates risk prevalence and mortality
in this case by yielding negative slopes for the baseline for all age groups considered in
Fig. 6. This shows that baseline mortality has improved, despite the immediate trend in
the raw rates suggesting otherwise, and hints at why cause-specific modelling without
additional information or assumptions ought to be avoided.

6.4 Cause-of-death elimination: what happens if cancer were eradicated?

We now seek to answer the central question posed in the beginning of the paper. If
certain causes of death are eradicated, how soon will the individuals “saved” die from
something else and what will they die from instead? We illustrate this query using the
U.S. dataset by considering an elimination of deaths due to cancers. To answer the
questions precisely, we look at the cumulative incidence

Fk(u + x | x) = 1

S(x)

∫ u

0
S(v + x)μk(v + x) dv, (33)

i.e., the probability of dying from cause k before or at age u+ x conditionally on being
alive at age x .

Figure 7 shows as an example how cumulative incidence for the cohort aged 60 in
2018 (tmax) is affected by the intervention. The figure explains the probability of dying
before or at age 84 (xmax). The cumulative incidences add up to the total probability of
death which is 38.7 percent prior to elimination. Cancers make up roughly a quarter
of all deaths with the cumulative incidence being 9 percent. An elimination therefore
initially causes the total death count to decrease to 29.7 percent of the original cohort,
while adjusting for the subsequent redistribution of deaths brings it up to 31.6 percent.
The figure decomposes the redistribution into a part attributable to competing risks
and a part due to feedback, using the framework developed and calibrated over the
previous subsections.

The decomposition allows us to compare the model with feedback to its non-
feedback alternative, namely the same model but with the feedback mechanism
disengaged. Without feedback, individuals saved from cancer die according to the
rates observed in the population prior to the intervention. Because of competing risks
this leads to a rise in the cumulative incidence for every non-eliminated cause (grey
bars). This change occurs despite the fact that the corresponding death rates are unal-
tered. Because the risk prevalence distribution among individuals who previously died
from cancer is not the same as that of the general population, there is an additional
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Fig. 7 Change to the cumulative incidence of select disease chapters following the elimination of deaths due
to neoplasms affected by smoking and/or obesity for the female cohort aged 60 in 2018. The bars explain
how the 9 percent of the cohort who previously died from cancer are redistributed into other categories. The
percentages listed on top of the bars differentiate the part of the change due to direct and indirect effects
respectively

effect (blue bars). In the model with feedback, higher-than-average-risk individuals
are carried forward in the system, causing an increase in the death rates among remain-
ing causes attributed to the SNAP risks. The number of deaths due to diseases of the
respiratory system is particularly amplified.

Overall, a simple deletion of cancer death rates that disregards feedback will under-
state the total probability of death by 7.3 percent among those that are saved and
by more than 30 percent at the cause-specific level. These percentages are naturally
bounded by the number of risk factors included in the model. As additional risk fac-
tors are introduced, and as the departure from population homogeneity becomes more
pronounced, selection-induced effects will carry even more weight.

6.4.1 Comparison to other non-feedback alternatives?

One might also take interest in comparing the method we have applied here to other
non-feedback alternatives. Such a comparison is, however, beside the point that we are
trying to make. We do not claim that our model is superior in predicting the reference
scenario compared to other models. In fact, other models with carefully “sculptured”
risk prevalence projections likely have better out-of-sample performance compared to
the method we have used.

Our focus has been on finding and discussing themagnitude of second-order effects.
We have shown that non-feedback models are unable to quantify these, making a com-
parison between the effect of an intervention based on our proposed method and an
alternative somewhat fruitless. Often—especially when it comes to policy making—it
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is tacitly assumed that second-order effects are small and can be more or less deliber-
ately ignored. However, to reveal the extent of such an assumption, we need a method
that allows us to realistically and consistently analyze the impact of interventions. We
have detailed how to do so in this paper.

7 Concluding remarks

In this paper we discussed how mortality forecasts are affected by interventions in
structural models that link individual risk behaviour to cause-specific mortality. We
saw that when these risk mechanisms were specified at the level of populations, the
model’s ability to relay selection effects hinged on a feedback mechanism control-
ling how risk prevalence changed in response to differential mortality. We made the
point that perturbations of the system only conform with real-world consequences of
interventions when risk prevalence is endogenous to the model.

We considered how death rates changed following the eradication of certain causes
of death. The prevalent approach directly manipulates the death rates of interest, with
little or no regard for subsequent effects on non-eliminated rates. However, since
individuals “saved” cannot be expected to follow the same pattern of mortality as that
observed in the population prior to the intervention, these methods are too generous in
their estimate of mortality reduction—but by how much? To disentangle and quantify
the magnitude of indirect effects we applied techniques from causal mediation theory.
This method gave us a straightforwardly interpretable decomposition of the total effect
of cause-eliminationwith a part directly attributable to death rate deletion and apart due
to disrupting the selection mechanism. The latter effect is, however, only quantifiable
when risk prevalence is endogenous to the mortality model.

From a methodological perspective, our analysis of indirect effects is limited to
those induced by changes in behavioural risks. Other health indicators, such as existing
or developing medical conditions that have an impact on the length of life, may also be
important contributing factors. To give one example, consider the COVID-19 vaccine
which is highly effective at preventing serious disease, hospitalization, and death.
Those who would have died from COVID without the vaccine may instead have a
milder disease course although they could potentially still suffer from “long COVID”.
Such a delayed effect on their risk of death could be modelled using Barker frailty
[29]. Those who would have survived even without the vaccine potentially never even
contract the disease, thus producing a feedback that raises the vitality of the population.
Further, by avoiding overcrowded hospitals due to COVID-related admissions, there
could also be an effect on the general access to health care. This example shows that
assessing all higher-order effects of an intervention can be extremely challenging and
requires a comprehensive modelling framework.

From a practical perspective, mortality models with integrated epidemiological
information are still in their infancy. A major challenge when building explanatory
mortality models is the substantial data demand. Data is typically not available at a
sufficient granular level to warrant a model at the level of individuals, and it is in
fact rarely the case that a single authoritative source contains a complete set of the
covariate distributions of interest, not even at an aggregate level. Instead, researchers
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often have to collect (aggregate) prevalence data of marginal distributions from mul-
tiple sources. In time, however, as the availability and quality of detailed risk data
continues to improve, causal models will inevitably gain a footing and contribute to
more precise and better substantiated long-term projections of mortality. Moreover,
the ability to formulate scenarios of interest in a straightforward and verbal manner is
key to engaging non-specialist and making results accessible to a wider audience.
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Appendix A: Granger causality

In the followingwe give a brief overviewofGranger causality and its use for describing
conditional (in)dependence relations. For an in-depth account of causal reasoning in
(graphical) time series models, we refer the interested reader to [9, 10] for the discrete
time case and [7] for the continuous time analogue.

Granger causality was introduced by [13] and is a popular tool not only within its
origin of econometrics, but also for causal time series analysis. Consider a multivariate
time series Q = {Q(t)}t∈Z with Q(t) = (Q1(t), . . . , Qd(t))�. Let V = {1, . . . , d}
be the index set and define for anyU ⊆ V the subprocess QU (t) = (Qu(t) : u ∈ U ).
Further, denote by an overbar QU (t) = {QU (s)}s≤t the history of the series. Let A
and B be two disjoint subsets of V . We say that QA is Granger non-causal for QB

up to horizon h ∈ N (w.r.t. Q) if

QB(t + l) ⊥⊥ QA(t) | QV \A(t), ∀ l ∈ {1, . . . , h}, t ∈ Z. (34)

Here the⊥⊥-symbol denotes independence. The formulation (34) of Granger causality
tacitly assumes that all relevant variables for predicting Q are available in Q. This
differs from the original formulation in which the information available is that of the
“entire universe”.

If (34) holds for h = 1, we say that QA is Granger non-causal for QB and we write
QA � QB . Thus, a process QA is Granger non-causal for another process QB if the
past of QA up to time t does not give a better prediction of QB at time t + 1 given all
information available up to time t but without that of QA. If QA is Granger non-causal

for QB at all horizons we write QA
(∞)
� QB .
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Fig. 8 An example of a rolling
graph with three nodes A, B, and
C and a corresponding unrolled
version. Since, e.g., A → B in
the rolled version, the unrolled
version could contain edges
from At to Bs for any s > t

A.1 Graphical representation

We can use the concept of Granger (non-)causality to obtain a graphical representation
of the conditional independence relations of the time series. A graph G = (V , E)

consists of a finite set of nodes V and a finite set of edges E . We only consider graphs
containing directed edges, that is E ⊆ V × V is a subset of ordered pairs of nodes.
We allow for multiple edges between two nodes if they are of different orientation in
which case there is a loop.

Instead of a full time graph in which time is made explicit, we are primarily inter-
ested in a “rolled” version, also sometimes called a summary graph. To construct such
a graph based on the time series Q, we partition the index set V into mutually disjoint
subsets A1, . . . , Aq , q ≤ d, and associate with the corresponding sub-processes the
nodes V = {1, . . . , q}. We join two nodes a, b ∈ V by a directed edge if QAa is
Granger causal for QAb at some horizon. Conversely, the absence of an edge implies

that QAa

(∞)
� QAb . Although not explicitly shown in the graphs, we assume that all

nodes have self-loops. Figure8 gives an example of a rolled graph and a corresponding
unrolled version.

Appendix B: Estimation of baseline parameters

Suppose we have data on cause-specific death counts, Dk , exposure-to-risk estimates,
E , and relative risk coefficients, Rk , each of dimension dx × dt with dx = xmax −
xmin + 1 being the length of the age span and dt = tmax − tmin + 1 being the length
of the time span. The model (29) with baseline hazard function (30) is

Dk(x, t) | E(x, t), Rk(x, t)
indep.∼ Pois (E(x, t)Rk(x, t) exp(θ0x + θ1x t)) . (35)

Since the predictor is linear we have the entire machinery of generalized linear models
at our disposal. Using a Poisson error structure, canonical logarithmic link function,
and stacking data into column vectors, that is, dk = vec(Dk), e = vec(E) and rk =
vec(Rk), we have that

logE[dk | e, rk] = η + log(e ◦ rk) (36)
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where the latter term on the right-hand side is treated as an offset while η = Mθ is
the linear predictor with θ being the vector containing the parameters and

M =
[
1dt : (tmin, . . . , tmax)

�]
⊗ Ida (37)

being the model matrix. In the above, 1d a d-dimensional vector of ones, Id a d-
dimensional identity matrix, ◦ the Hadamard product, and ⊗ the Kronecker product.

Appendix C: Interpolation of relative risks: examples

The relative risk estimates of [28] are reported as risk-outcome pairs by sex, age
category, and exposure category. All quantities are time homogeneous.

For every risk-outcome pair the age category is listed in the groups 20–
24, 25–29, . . . , 90–94, 95–120. To obtain relative risk estimates for every
(integer) age, we perform linear interpolation with the age bucket centroids
X = {20, 22, 27, . . . , 92, 107.5, 120} as fixed points. Thus, for fixed risk-outcome
pair and sex and an age x ∈ [x0, x1) where x0 and x1 are two consecutive numbers in
X , the relative risk at age x given by

R(x0) + (x − x0)
R(x1) − R(x0)

x1 − x0
,

where R(·) supplies the relative risk estimate available in the data. An example is given
in the left panel of Fig. 9.

For the risks “Number of cigarettes smoked daily” and “Pack years” the exposure
categories are listed in jumps of 10, specifically by 0, 10, 20, 30, 40, 50, or 60 cigarettes
per day and 0, 10, . . . , 90, or 100 pack years. To obtain a dose-response curve for any
(integer) number of cigarettes smoked per day or number of pack years, we extend

Fig. 9 Left panel: Female relative risk for diabetes mellitus by age (dots) using linear interpolation with
age-bucket centroids as fix points (solid line). Right panel: Age 60 female relative risk for tracheal, bronchus,
and lung cancer by pack-years (dots) using natural cubic spline interpolation (solid line)
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Table 1 One-year smoking
summary transition matrix

(pct.) Smoking transition matrix
Non-smoker 1–10 11–20 20+

Non-smoker 100 0 0 0

1–10 2.35 97.65 0 0

11–20 4.36 0 95.64 0

20+ 9.21 0 0 90.79

Table 2 One-year BMI summary transition matrix

(pct.) BMI transition matrix
Underweight Normal weight Overweight Obese class I Obese class II–III

Underweight 94.55 5.55 0 0 0

Normal weight 0 97.60 2.40 0 0

Overweight 0 0 98.25 1.75 0

Obese class I 0 0 0 98.23 1.77

Obese class II–III 0 0 0 0 100

the exposure categories using natural cubic spline interpolation for fixed sex, age, and
cause-of-death. A similar approach is used in the appendix of [28]. An example is
given in the right panel of Fig. 9.

Appendix D: Transitionmatrices

Figure 4 shows a secular trend in the prevalence distributions for smoking, obesity
and physical activity, whereas alcohol consumption remains roughly constant over the
period. We opt for a migration model that captures the main effect, namely the net
migration flow, using just the data at hand. We construct the number of net migration
events (NM) by balancing the equation of population change

Y (x + 1, t + 1) = Y (x, t) − D(x, t) + NM(x, t),

and by imposing that transitions occur only between neighbouring categories of BMI
and physical activity (in one year), while transitions for smoking are described in terms
of the probability of cessation. In the above,Y (x, t) is the number of individuals alive at
age x and time t while D(x, t) is the number of deaths.We estimate transitions for each
risk factor independently of one another and for both sexes and all ages and calendar
years combined. The resulting transition matrices for the surviving population, i.e.
estimates of mi j in Sect. 6.3, are shown below. To aid in understanding the output of
the model, Fig. 10 shows the mean trajectory of the continuation of the compositions
from Fig. 4.
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Table 3 One-year physical activity summary transition matrix in terms of MET-minute-categories given
by the cut points 0, 600, 1200, 1800, 2400, 3000, 3600, and 4200

(pct.) Physical activity transition matrix
Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Cat. 7 Cat. 8

Cat. 1 95.37 4.63 0 0 0 0 0 0

Cat. 2 0 100 0 0 0 0 0 0

Cat. 3 0 21.83 78.17 0 0 0 0 0

Cat. 4 0 0 43.43 56.57 0 0 0 0

Cat. 5 0 0 0 19.73 80.27 0 0 0

Cat. 6 0 0 0 0 14.52 85.48 0 0

Cat. 7 0 0 0 0 0 3.69 95.73 0.58

Cat. 8 0 0 0 0 0 0 0 100

Fig. 10 U.S. risk proportions from Fig. 4 and their forecasted mean trajectory using (32) with migration
rates from Tables 1, 2, 3.
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