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Conditional local independence is an asymmetric independence relation
among continuous time stochastic processes. It describes whether the evolu-
tion of one process is directly influenced by another process given the histo-
ries of additional processes, and it is important for the description and learn-
ing of causal relations among processes. We develop a model-free framework
for testing the hypothesis that a counting process is conditionally locally in-
dependent of another process. To this end, we introduce a new functional
parameter called the Local Covariance Measure (LCM), which quantifies de-
viations from the hypothesis. Following the principles of double machine
learning, we propose an estimator of the LCM and a test of the hypothesis
using nonparametric estimators and sample splitting or cross-fitting. We call
this test the (cross-fitted) Local Covariance Test ((X)-LCT), and we show that
its level and power can be controlled uniformly, provided that the nonpara-
metric estimators are consistent with modest rates. We illustrate the theory by
an example based on a marginalized Cox model with time-dependent covari-
ates, and we show in simulations that when double machine learning is used
in combination with cross-fitting, then the test works well without restrictive
parametric assumptions.

1. Introduction. Notions of how one variable influences a target variable are central
to both predictive and causal modeling. Depending on the objective, the relevant notion of
influence can be variable importance in a predictive model of the target, but it can also be
the causal effect of the variable on the target. In either case, we can investigate influence
conditionally on a third variable—to quantify the added predictive value, the direct causal
effect or the causal effect adjusted for a confounder. Our interests are in an asymmetric notion
of direct influence among stochastic processes, which is not adequately captured by classical
(symmetric) notions of conditional dependence. The objective of this paper is therefore to
quantify this notion of asymmetric influence and specifically to develop a new nonparametric
test of the hypothesis that one stochastic process does not directly influence another.

The hypothesis we consider is that of local independence—a concept introduced by
Schweder (1970) for Markov processes as a continuous time formalization of the phe-
nomenon that the past of one stochastic process does not directly influence the evolution
of another stochastic process. Generalizations to other continuous time processes were given
by Aalen (1987) and studied by Commenges and Gégout-Petit (2009), who systematically
used the term conditional local independence for the general concept. We will in this paper
follow that convention whenever we want to emphasize the conditional nature of the local
independence. We note that (conditional) local independence is a continuous time version of
the discrete time concept of Granger noncausality (Aalen (1987), Granger (1969)).

To illustrate the concept of conditional local independence, we will in this Introduction
consider an example involving three processes: X, Z and N ; see Figure 1. The process N is
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FIG. 1. Local independence graph illustrating a dependence structure among the three processes X, Z and N .
Here, N is the indicator of death for an individual, X is their cumulative pension savings and Z is a covariate
process. All nodes in this graph have implicit self-loops. There is no edge from X to N , which indicates that death
is not directly influenced by pension savings. This can be formalized as N being conditionally locally independent
of X, which is the hypothesis we aim to test.

the indicator of death, Nt = 1(T ≤ t), for an individual with survival time T , and Xt denotes
the total pension savings of the individual at time t . The process Z is a covariate process,
for example, health variables or employment status, that may directly affect both the pension
savings and the survival time. This is indicated in Figure 1 by edges pointing from Z to X

and N . Edges pointing from N to X and Z indicate that a death event directly affects both X

and Z (which take the values XT and ZT , respectively, after time T , see Section 2.2).
To define conditional local independence, let FN,Z

t = σ(Ns,Zs; s ≤ t) denote the filtra-
tion generated by the N - and Z-processes. The σ -algebra FN,Z

t represents the information
contained in the N - and the Z- processes before time t . Informally, the process Nt is condi-
tionally locally independent of the process Xt given FN,Z

t if (Xs)s≤t does not add predictable
information to FN,Z

t− about the infinitesimal evolution of Nt . For this particular example, this
means that the conditional hazard function of T does not depend on (Xs)s≤t given FN,Z

t . In
Figure 1, the hypothesis of interest, that Nt is conditionally locally independent of Xt given
FN,Z

t , is represented by the lack of an edge from X to N .
A systematic investigation of algebraic properties of conditional local independence was

initiated by Didelez (2007, 2008, 2015). She also introduced local independence graphs, such
as the directed graph in Figure 1, to graphically represent all conditional local independen-
cies among several processes, and she studied the semantics of these graphs. This work was
extended further by Mogensen and Hansen (2020) to graphical representations of partially
observed systems. While we will not formally discuss local independence graphs, the prob-
lem of learning such graphs from data was an important motivation for us to develop a non-
parametric test of conditional local independence. A constraint-based learning algorithm of
local independence graphs was given by Mogensen, Malinsky and Hansen (2018) in terms of
a conditional local independence oracle, but a practical algorithm requires that the oracle is
replaced by conditional local independence tests.

Another important motivation for considering conditional local independence arises from
causal models. With a structural assumption about the stochastic process specification, a con-
ditional local independence has a causal interpretation (Aalen (1987), Aalen et al. (2012),
Commenges and Gégout-Petit (2009)), and if the causal stochastic system is completely ob-
served, a test of conditional local independence is a test of no direct causal effect. See also
Røysland et al. (2022), who use local independence graphs to formulate criteria for identifi-
cation of causal effects in continuous-time survival models. If the causal stochastic system is
only partially observed, a conditional local dependency need not correspond to a direct causal
effect due to unobserved confounding, but the projected local independence graph, as intro-
duced by Mogensen and Hansen (2020), retains a causal interpretation, and its Markov equiv-
alence class can be learned by conditional local independence testing. In addition, within the
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framework of structural nested models, testing the hypothesis of no total causal effect can
also be cast as a test of conditional local independence (Lok (2008), Theorem 9.2).

To appreciate what conditional local independence means—and, in particular, what it does
not mean—it is useful to compare with ordinary conditional independence. In our exam-
ple, Nt is conditionally locally independent of Xt given FN,Z

t , but this implies neither that
N ⊥⊥ X|Z (as processes), nor that Nt ⊥⊥ Xt |FZ

t . In fact, these conditional independencies
cannot hold in this example where Xt = XT for t ≥ T —except in special cases such as T

being a deterministic function of Z. Theorem 2 in Didelez (2008) gives a sufficient condition
for Nt ⊥⊥ Xt |FZ

t to hold in terms of the local independence graph, but this condition is also
not fulfilled by the graph in Figure 1 due to the edge from N to X. Moreover, conditional
local independence is in general also different from the baseline conditional independence
T ⊥⊥ X0|Z0 unless both X and Z are time-independent; see Section 3.2. In Section E in the
Supplementary Material (Christgau, Petersen and Hansen (2023)), we elaborate further upon
the connection to semiparametric survival models. Didelez (2008) argues that Nt being con-
ditionally locally independent of Xt given FN,Z

t heuristically means that Nt ⊥⊥ FX
t−|FN,Z

t− ,
but this is technically problematic in continuous time. If T has a continuous distribution, then
for any fixed t , Nt = Nt− almost surely, whence Nt is almost surely FN,Z

t− -measurable and
conditionally independent of anything given FN,Z

t− . This heuristic can thus not be used to
formally define conditional local independence in continuous time. See instead the formal
Definition 2 by Didelez (2008) or our Definition 2.1.

Several examples from health sciences given by Didelez (2008) demonstrate the usefulness
of conditional local independence for multivariate event systems, and more recent attention to
event systems in the machine learning community (Achab et al. (2017), Bacry et al. (2017),
Cai et al. (2022), Xu, Farajtabar and Zha (2016), Zhou, Zha and Song (2013)) testifies to
the relevance of conditional local independence. This line of research relies primarily on the
linear Hawkes process model, which is effectively used to infer local independence graphs—
sometimes even interpreted causally. The Hawkes model is attractive because conditional
local independencies can be inferred from corresponding kernel functions being zero—and
statistical tests can readily be based on parametric or nonparametric estimation of kernels.

A less attractive property of the Hawkes model is that it is not closed under marginal-
ization. As with any model based statistical test, the validity of the test is jeopardized by
model misspecification, hence even within a subsystem of a linear Hawkes process, a test of
conditional local independence based on a Hawkes model may be invalid.

The challenges resulting from model misspecification and marginalization is investigated
further in Sections 2.2 and 6 based on an extension of our introductory example and Cox’s
survival model. Both the Hawkes model and the Cox model illustrate that conditional local
independence might be expressed and tested within a (semi)parametric model, but model
misspecification makes us question the validity of any such model based test. Thus, there is a
need for a nonparametric test of the hypothesis of conditional local independence. Moreover,
since we cannot translate the hypothesis into an equivalent hypothesis about classical condi-
tional independence, we cannot directly use existing nonparametric tests, such as the GCM
(Shah and Peters (2020)) or the GHCM (Lundborg, Shah and Peters (2022)), of conditional
independence.

We propose a new nonparametric test when the target process N is a counting process
and X is a real valued process, and where the hypothesis is that N is conditionally locally
independent of X given a filtration Ft . In the context of the introductory example, Ft =
FN,Z

t . We consider a counting process target primarily because the theory of conditional local
independence is most complete in this case, but generalizations are possible—we refer to the
discussion in Section 7. Within our framework, we base our test on an infinite-dimensional
parameter, which we call the Local Covariance Measure (LCM). It is a function of time,
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which is constantly equal to zero under the hypothesis. Our main result is that the LCM can be
estimated by using the ideas of double machine learning (Chernozhukov et al. (2018)) in such
a way that the estimator converges uniformly at a

√
n-rate to a mean zero Gaussian martingale

under the hypothesis of conditional local independence. We use the LCM to develop the
(cross-fitted) Local Covariance Test ((X)-LCT), for which we derive uniform level and power
results.

1.1. Organization of the paper. In Section 2, we introduce the general framework for
formulating the hypothesis of conditional local independence. This includes the introduction
in Section 2.1 of an abstract residual process, which is used to define the LCM as a functional
target parameter indexed by time. The LCM equals the zero-function under the hypothesis
of conditional local independence, and to test this hypothesis we introduce an estimator of
the LCM in Section 2.3. The estimator is a stochastic process, and we describe how sample
splitting is to be used for its computation via the estimation of two unknown components.

In Section 3, we give interpretations of the LCM and its estimator. We show that the LCM
estimator is a Neyman orthogonalized score statistic in Section 3.1, and in Section 3.2 we
relate LCM to the partial copula when X is time-independent.

In Section 4, we state the main results of the paper. We establish in Section 4.1 that the
LCM estimator generally approximates the LCM with an error of order n−1/2. Under the
hypothesis of conditional local independence, we show that the (scaled) LCM estimator con-
verges weakly to a mean zero Gaussian martingale. The estimator requires a model of the tar-
get process N as well as the process X conditionally on Ft to achieve the orthogonalization
at the core of double machine learning. The model of X is in this paper expressed indirectly
in terms of the residual process, and we show that if we can learn the residual process at
rate g(n) and the model of N at rate h(n) such that g(n),h(n) → 0 and

√
ng(n)h(n) → 0

for n → ∞ then we achieve a
√

n-rate convergence of the LCM estimator. We also show
that the variance function of the Gaussian martingale can be estimated consistently, and we
give a general result on the asymptotic distribution of univariate test statistics based on the
LCM estimator. All asymptotic results are presented in the framework of uniform stochastic
convergence.

Section 5 gives explicit examples of univariate test statistics, including the local covariance
test based on the normalized supremum of the LCM estimator. Its asymptotic distribution is
derived and we present results on uniform asymptotic level and power. In Section 5.2, we
present the generalization from the sample split estimator to the cross-fit estimator. Though
this estimator and the corresponding cross-fit Local Covariance Test (X-LCT) are a bit more
involved to compute and analyze, X-LCT is more powerful, and thus our recommended test
for practical usage.

The survival example from the Introduction is used and elaborated upon throughout the
paper. We introduce a Cox model in terms of the time-varying covariate processes, and we
report in Section 6 the results from a simulation study based on this model.

The paper is concluded by a discussion in Section 7.
The Supplementary Material (Christgau, Petersen and Hansen (2023)), henceforth referred

to as the supplement, consists of Sections A through G and contains: proofs of results in
this paper (A); definitions and results on uniform asymptotics (B); a uniform version of Re-
bolledo’s martingale CLT (C); an overview of achievable rate results for estimation of nui-
sance parameters that enter into the LCM estimator (D); a comparison with semiparametric
survival models (E); details on Neyman orthogonality (F) and additional results from the
simulation study (G).
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2. The local covariance measure. In this section, we present the general framework
of the paper, we define conditional local independence and we introduce the local covari-
ance measure as a means to quantify deviations from conditional local independence. In Sec-
tion 2.3, we outline how the local covariance measure can be estimated using double machine
learning and sample splitting. We illustrate the central concepts and methods by an example
based on Cox’s survival model with time-varying covariates.

We consider a counting process N = (Nt) and another real value process X = (Xt), both
defined on the probability space (�,F,P). All processes are assumed to be defined on a
common compact time interval. We assume, without loss of generality, that the time interval
is [0,1]. We will assume that N is adapted w.r.t. a right continuous and complete filtration
Ft , and we denote by Gt the right continuous and complete filtration generated by Ft and
Xt . We assume throughout that X is càglàd (i.e., has sample paths that are continuous from
the left and with limits from the right), which will ensure bounded sample paths and that the
process is Gt -predictable.

In the survival example of the Introduction, Nt = 1(T ≤ t) is the indicator of whether death
has happened by time t , and there can only be one event per individual observed. Furthermore,
Ft = FN,Z

t and Gt = FN,X,Z
t . Our general setup works for any counting process, thus it

allows for recurrent events and censoring, and the filtration Ft can contain the histories of
any number of processes in addition to the history of N itself.

2.1. The hypothesis of conditional local independence. The counting process N is as-
sumed to have an Ft -intensity λt , that is, λt is Ft -predictable and with

�t =
∫ t

0
λs ds

being the compensator of N ,

(1) Mt = Nt − �t

is a local Ft -martingale. Within this framework, we can define the hypothesis of conditional
local independence precisely.

DEFINITION 2.1 (Conditional local independence). We say that Nt is conditionally lo-
cally independent of Xt given Ft if the local Ft -martingale Mt defined by (1) is also a local
Gt -martingale.

For simplicity, we may also refer to this hypothesis as local independence and write

(2) H0 : Mt = Nt − �t is a local Gt -martingale.

As argued in the Introduction, the hypothesis of local independence is the hypothesis that
observing X on [0, t] does not add any information to Ft− about whether an N -event will
happen in an infinitesimal time interval [t, t + dt). Definition 2.1 captures this interpretation
by requiring that the Ft -compensator, �, of N is also the Gt -compensator. Thus, λ is also the
Gt -intensity under H0.

If N has Gt -intensity λ, the innovation theorem, Theorem II.T14 in Brémaud (1981), gives
that the predictable projection λt = E(λt |Ft−) is the (predictable) Ft -intensity. Local inde-
pendence follows if λ is Ft -predictable. Intensities are, however, only unique almost surely,
and we can have local independence even if λ is not a priori Ft -predictable but have an
Ft -predictable version. When N has Gt -intensity λ, H0 is thus equivalent to λ having an Ft -
predictable version. We find Definition 2.1 preferable because it directly gives an operational
criterion for determining whether N has an Ft -predictable version of a Gt -intensity.
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REMARK 2.2 (Censoring). Suppose that the data is censored such that (Nt ,Xt ,Ft ) =
(N∗

t∧C,X∗
t∧C,F∗

t∧C), where (N∗,X∗,F∗) are uncensored data and where C is the censoring
time. The hypothesis regarding the uncensored data,

H ∗
0 : N∗

t is locally independent of X∗
t given F∗

t ,

might then be the hypothesis of interest. If 1(C ≥ t) happens to be F∗
t -predictable, it is

straightforward to show that H ∗
0 implies H0, and consequently a test of H0 is also a test of

H ∗
0 . However, F∗

t may not a priori contain information about the censoring process. Suppose
instead that the common condition of independent censoring (Andersen et al. (1993)) holds,
which is equivalent to N∗

t being locally independent of Ct := 1(C ≤ t) given G∗
t (Røysland

et al. (2022)). Then H ∗
0 implies that Nt is locally independent of Xt given Ft ∨ FC

t . Thus,
in order to test H ∗

0 , we replace Ft by the enlarged filtration Ft ∨ FC
t and proceed mutatis

mutandis with testing H0 using the observed data.

Since X is assumed càglàd, and thus especially Gt -predictable, the stochastic integral

(3)
∫ t

0
Xs dMs,

is under H0 a local Gt -martingale. A test could be based on detecting whether (3) is, indeed, a
local martingale. We will take a slightly different approach where we replace the integrand X

by a residual process as defined below. We do so for two reasons. First, to achieve a
√

n-rate
via double machine learning we need the integrand to fulfill (4) below. Second, other choices
of integrands than X could potentially lead to more powerful tests.

DEFINITION 2.3 (Residual process). A residual process G = (Gt)t∈[0,1] of Xt given Ft

is a càglàd stochastic process that is Gt -adapted and satisfies

E(Gt |Ft−) = 0, t ∈ [0,1].(4)

The geometric interpretation is that the residual process evolves such that Gt is orthogo-
nal to L2(Ft−) within L2(Gt−) at each time t . One obvious residual process is the additive
residual process given by

Gt = Xt − �t = Xt −E(Xt |Ft−),

where �t = E(Xt |Ft−) denotes the predictable projection of the càglàd process Xt ; see
Theorem VI.19.2 in (Rogers and Williams (2000)). The additive residual projects Xt onto the
orthogonal complement of L2(Ft−), but this may not necessarily remove all Ft -predictable
information from Xt . An alternative choice that does so under sufficient regularity conditions
is the quantile residual process given by

Gt = Ft(Xt) − 1

2
,

where Ft is the conditional distribution function given by Ft(x) = P(Xt ≤ x|Ft−). The quan-
tile residual process satisfies (4) provided that (t, x) �→ Ft(x) is continuous. In Section 3.1,
we discuss additional transformations of X that can also be applied before any residualization
procedure.

We will formulate the general results in terms of an abstract residual process, but we focus
on the additive residual process in the examples. Any nondegenerate residual process will
contain a predictive model of (aspects of) Xt given Ft− in order to satisfy (4). We use Ĝt

to denote the residual obtained by plugging in an estimate of that predictive model. For the
additive residual process, the predictive model is �t and Ĝt = Xt − �̂t . For the quantile
residual process, the predictive model is Ft and Ĝt = F̂t (Xt ) − 1

2 .
We can now define our functional target parameter of interest, which we call the local

covariance measure.
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DEFINITION 2.4 (Local covariance measure). With Gt a residual process, define for
t ∈ [0,1],

(5) γt = E(It ), where It =
∫ t

0
Gs dMs,

whenever the expectation is well-defined. We call the function t �→ γt the Local Covariance
Measure (LCM).

The following propositions illuminate how γ relates to the null hypothesis of Nt being
conditionally locally independent of Xt given Ft .

PROPOSITION 2.5. Under H0, the process I = (It ) is a local Gt -martingale with I0 = 0.
If I is a martingale, then γt = 0 for t ∈ [0,1].

To interpret γ in the alternative, we assume that N has Gt -intensity λ.

PROPOSITION 2.6. If
∫ 1

0 E(|Gs |(λs + λs))ds < ∞, then for every t ∈ [0,1],

γt =
∫ t

0
cov(Gs,λs − λs)ds.

In particular, γ is the zero-function if and only if cov(Gs,λs − λs) = 0 for almost all s ∈
[0,1].

We note that under H0, the condition
∫ 1

0 E(|Gs |λs)ds < ∞ is sufficient to ensure that I is
a martingale and γt = 0 for all t ∈ [0,1]. By Proposition 2.6, the LCM quantifies deviations
from H0 in terms of the covariance between the residual process and the difference of the Ft -
and Gt -intensities. To this end, note that if X happens to be Ft -adapted, then Gt = Ft and N

is trivially locally independent of X. The hypothesis of local independence is only of interest
when Gt is a strictly larger filtration than Ft , that is, when X provides information not already
in Ft .

For the additive residual process, where Gt = Xt − �t ,

γt = E

(∫ t

0
Gs dMs

)
= E

(∫ t

0
Xs dMs

)
−E

(∫ t

0
�s dMs

)
provided that the expectations are well-defined. Since the predictable projection �t has a
càglàd version and is Ft -predictable, and since Mt is a local Ft -martingale,

∫ t
0 �s dMs is a

local Ft -martingale. If it is a martingale, it is a mean zero martingale, and

(6) γt = E

(∫ t

0
Xs dMs

)
= E

( ∑
τ≤t :	Nτ =1

Xτ −
∫ t

0
Xsλs ds

)
.

The computation above shows that the additive residual process defines the same functional
target parameter γt as the stochastic integral (3) would. It is, however, the representation of
γt as the expectation of the residualized stochastic integral that will allow us to achieve a√

n-rate of convergence of the estimator of γt in cases where the estimator of λt converges at
a slower rate.



NONPARAMETRIC CLI TESTING 2123

FIG. 2. Local independence graphs illustrating how the three processes X, Y and Z could affect each other and
time of death in the Cox example. There is no direct influence of X (pension savings) on time of death in either
of the two graphs, but in the left graph the death indicator is furthermore conditionally locally independent of X

given the history of Z and N . In the right graph, Z and N does not block all paths from X to N , thus conditioning
on the history of Z and N only would not render N conditionally locally independent of X.

2.2. A Cox model with a partially observed covariate process. To further illustrate the
hypothesis of conditional local independence and the local covariance measure we consider
an example based on Cox’s survival model with time dependent covariates. This is an exten-
sion of the example from the Introduction with T being the time to death of an individual, and
with X and Z being time-varying processes. There is, moreover, one additional time-varying
process Y in the full model.

An interpretation of the processes is as follows:

X = Pension savings,

Y = Blood pressure,

Z = BMI.

Periods of overweight or obesity may influence blood pressure in the long term, and due to,
for example, job market discrimination, high BMI could influence pension savings negatively.
Death risk is influenced directly by BMI and blood pressure but not the size of your pension
savings. Figure 2 illustrates two possible dependence structures among the three processes
and the death time as local independence graphs, and we will use these two graphs to discuss
the concept of conditional local independence of pension savings on time to death.

We assume that T ∈ [0,1] and that X, Y and Z have continuous sample paths. Recall
also that Nt = 1(T ≤ t) is the death indicator process. To maintain some form of realism, all
processes are stopped at time of death, that is, Xt = XT , Yt = YT and Zt = ZT for t ≥ T .
This feedback from the death event to the other processes is reflected in Figure 2 by the edges
pointing out of N . Recall also that

FN,Z
t = σ(Ns,Zs; s ≤ t)

is the filtration generated by the N - and Z-processes. We use a similar notation for other
processes and combinations of processes. For example, FN,X,Y,Z

t is the filtration generated
by N and all three X-, Y - and Z-processes. With λfull

t denoting the FN,X,Y,Z
t -intensity of

time of death based on the history of all processes, we assume in this example a Cox model
given by

(7) λfull
t = 1(T ≥ t)λ0

t e
Yt+βZt

with λ0
t a deterministic baseline intensity. It is not important that λfull

t is a Cox model for our
general theory, but it allows for certain theoretical computations in this example.

The fact that λfull
t does not depend upon Xt implies that λfull

t is also the FN,Y,Z
t -intensity,

and according to Definition 2.1, Nt is conditionally locally independent of Xt given FN,Y,Z
t .
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This is in agreement with the local independence graphs in Figure 2 where there is no edge
in either of them from X to N .

We will take an interest in the case where Y is unobserved and test the hypothesis:

H0: Nt is conditionally locally independent of Xt given FN,Z
t .

That is, with Y unobserved we want test if the intensity of time to death given the history
of N , X and Z depends on X. To simplify notation, let Ft = FN,Z

t and Gt = FN,X,Z
t , in

accordance with the general notation. The Gt -intensity is by the innovation theorem given as

(8) λt = E
(
λfull

t |Gt−
) = 1(T ≥ t)λ0

t e
βZtE

(
eYt |Gt−

)
,

while the Ft -intensity is

(9) λt = E
(
λfull

t |Ft−
) = 1(T ≥ t)λ0

t e
βZtE

(
eYt |Ft−

)
,

and H0 is equivalent to λt = λt almost surely. Comparing (8) and (9), we see that H0 holds
in this example if E(eYt |Gt−) = E(eYt |Ft−), and a sufficient condition for this is

(10) FX
t ⊥⊥ FY

t |Ft .

The condition (10) is in concordance with the left graph in Figure 2 (see Theorem 2 in Didelez
(2008)), but not the right, and it implies H0. We will in Section 6.1 elaborate on condition
(10) and give explicit examples.

We recall that H0 can be reformulated as λt not depending on X, and we could investigate
the hypothesis via a marginal Cox model

(11) λcox
t = 1(T ≥ t)λ0

t e
α1Xt+α2Zt

and test if α1 = 0. The Cox model is, however, not closed under marginalization and the
semiparametric model (11) is quite likely misspecified. Consequently, a test of α1 = 0 is not
equivalent to a test of H0.

Our proposed nonparametric test of H0 does not rely on a specific (semi)parametric model
of λt . To test H0, we consider the LCM using the additive residual process. Then (6) implies
that

γt = E

(
XT Nt −

∫ t

0
Xsλs ds

)
.

By Proposition 2.5, γt = 0 for t ∈ [0,1] under H0, whence conditional local independence
implies γt = 0, and we test H0 by estimating γt and testing if it is constantly equal to 0.

Before introducing a general estimator of the LCM in Section 2.3, we outline how to
estimate the end point parameter γ1 in this example. Due to T ≤ 1 and the appearance of the
indicator 1(T ≥ t) in (9),

γ1 = E

(
XT −

∫ T

0
Xsλs ds

)
.

With i.i.d. observations (T1,X1,Z1), . . . , (Tn,Xn,Zn) and (nonparametric) estimates, λ̂j,t ,
based on (T1,Z1), . . . , (Tn,Zn), we could compute the plug-in estimate

γ̂
(n)
1,plug-in = 1

n

n∑
j=1

(
Xj,Tj

−
∫ Tj

0
Xj,sλ̂j,s ds

)
.

However, we cannot expect the plug-in estimator to have a
√

n-rate unless λ̂ has
√

n-rate,
which effectively requires parametric model assumptions on the intensity. Using the defini-
tion of γ1 in terms of the additive residual process Gt = Xt − �t , we also have that

(12) γ1 = E

(
XT − �T −

∫ T

0
(Xs − �s)λs ds

)
.
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FIG. 3. Histograms of the distributions of three different estimators of γ1. Each histogram contains
1000 estimates fitted to samples of size n = 500. The samples were sampled from a model that satisfies
the hypothesis of conditional local independence and hence the ground truth is γ1 = 0. See Section 6.2
for further details of the data generating process.

A double machine learning estimator based on the ideas by Chernozhukov et al. (2018) is
therefore obtained by plugging in two nonparametric estimators:

γ̂
(n)
1,double = 1

n

n∑
j=1

(
Xj,Tj

− �̂j,Tj
−

∫ Tj

0
(Xj,s − �̂j,s)λ̂j,s ds

)
.

To achieve a small bias and a
√

n-rate of convergence, we use sample splitting. The non-
parametric estimates �̂j and λ̂j are based on one part of the sample only, and are thus in-
dependent of the other part of the sample used for testing; see Section 2.3. To obtain a fully
efficient estimator, multiple sample splits can be combined, for example, via cross-fitting; see
Section 5.2.

Figure 3 shows the distributions of γ̂
(500)
1,plug-in and γ̂

(500)
1,double for the Cox example with γ1 = 0;

see Section 6.2 for details on the full model specification. The latter estimator was computed
using cross-fitting but also without using any form of sample splitting. The figure illustrates
the bias of γ̂

(500)
1,plug-in, which is somewhat diminished by double machine learning without sam-

ple splitting and mostly eliminated by double machine learning in combination with cross-
fitting.

2.3. Estimating the local covariance measure. To estimate the LCM, we assume that we
have observed n i.i.d. replications of the processes, (N1,X1,F1), . . . , (Nn,Xn,Fn), where
observing Fj = (Fj,t ) signifies that anything adapted to the j th filtration is computable from
observations. The process Nj is adapted to Fj , while Xj is not, and Gj denotes the smallest
right continuous and complete filtration generated by Xj and Fj .

For each n, we consider a sample split corresponding to a partition Jn ∪ J c
n = {1, . . . , n}

of the indices into two disjoint sets. We let λ̂(n) and Ĝ(n) be estimates of the intensity and the
residualization map, respectively, fitted on data indexed by J c

n only. By an estimate, λ̂(n), of λ

we mean a (stochastic) function that can be evaluated on the basis of Fj,t for j ∈ Jn, and its

value, denoted by λ̂
(n)
j,t , is interpreted as a prediction of λj,t . The stochasticity in λ̂(n) arises

from its dependence on data indexed by J c
n , from which its functional form is completely

determined. Similarly, Ĝ(n) is a function that can be evaluated on the basis of Gj,t for j ∈ Jn
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Algorithm 1: Sample split estimator of LCM

1 input: processes (Nj ,Xj ,Zj )j=1,...,n, partition Jn ∪ J c
n of indices ;

2 options: historical regression methods for estimation of λ and G given N and Z,
3 discrete time grid 0 = t0 < · · · < tk ≤ 1;
4 begin
5 historically regress (Xj )j∈J c

n
on (Nj ,Zj )j∈J c

n
to obtain a fitted model Ĝ(n) ;

6 historically regress (Nj )j∈J c
n

on (Nj ,Zj )j∈J c
n

to obtain a fitted model λ̂(n) ;

7 compute out of sample residuals Ĝ
(n)
j,ti

and M̂
(n)
j,ti

for j ∈ Jn and i = 0, . . . , k ;
8 for each i = 1, . . . , k, compute

γ̃
(n)
ti

= 1

|Jn|
∑
j∈Jn

∑
1≤l≤i

Ĝ
(n)
j,tl

(
M̂

(n)
j,tl

− M̂
(n)
j,tl−1

)
9 end

10 output: Local covariance measure γ̃ (n) numerically approximated on grid;

to give a prediction Ĝ
(n)
j,t of Gj,t . In Section 6.1, we illustrate through the Cox example how

λ̂(n) and Ĝ(n) are to be computed in practice when we use sample splitting. In Section D
in the supplement, we give more examples of such estimation procedures and discuss their
statistical properties in greater detail.

To ease notation, we will throughout assume that (N,X,F) denotes one additional pro-
cess and filtration—independent of and with the same distribution as the observed processes.
Then the estimated intensity λ̂(n) and estimated residual process Ĝ(n) can be evaluated on
(N,X,F), and thus we may write λ̂

(n)
t and Ĝ

(n)
t to denote template copies of λ̂

(n)
j,t and Ĝ

(n)
j,t

for j ∈ Jn.
In terms of the estimates λ̂(n) and Ĝ(n), we estimate LCM by the stochastic process γ̂ (n)

given by

(13) γ̂
(n)
t = 1

|Jn|
∑
j∈Jn

∫ t

0
Ĝ

(n)
j,s dM̂

(n)
j,s ,

where M̂
(n)
j,t = Nj,t − ∫ t

0 λ̂
(n)
j,s ds. We can regard γ̂

(n)
t as a double machine learning estimator

of γt , with the observations indexed by J c
n used to learn models of λ and G, and with obser-

vations indexed by Jn used to estimate γt based on these models. In Section 5.2, we define
the more efficient estimator that uses cross-fitting, but it is instructive to study the simpler
estimator based on sample splitting first.

In practical applications, we do not directly observe the filtration Fj , but rather sam-
ples from the stochastic processes generating the filtration. In accordance with the in-
troductory Cox example, consider Fj and Gj given by Fj,t = σ(Zj,s,Nj,s; s ≤ t) and
Gj,t = σ(Xj,s,Zj,s,Nj,s; s ≤ t) for a third stochastic process Zj , with Zj possibly being
multivariate. Within this setup, a general procedure for numerically computing the LCM is
described in Algorithm 1. Here, historical regression refers to any method, which regresses
the outcome at a given time on the history of the regressors up to that time. For example,
historical linear regression is discussed in Section 6 and various alternative methods are dis-
cussed in Section D in the supplement. The choice of sample split will be discussed further
in Section 5.2 in the context of cross-fitting.

As in Section 2.2, we could suggest estimating the entire function t �→ γt by a simple
plug-in estimator of λ using the representation (6). Figure 4 illustrates the distribution of
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FIG. 4. A time dependent extension of Figure 3 showing the distribution of the sample paths t �→ γ̂
(500)
t,plug−in and

t �→ γ̂
(500)
t,double, the latter with and without using cross-fitting. The data were simulated under H0 where t �→ γt is

the zero function. See Section 6.2 for further details of the data generating process.

estimators of the entire time dependent LCM for this plug-in estimator together with the
double machine learning estimator with and without using cross-fitting. The figure also shows
the distribution of the endpoint being the same distribution shown in Figure 3. The simulation
is under H0, and we see that only the double machine learning estimator with cross-fitting
results in estimated sample paths centered around 0.

3. Interpretations of the LCM estimator. In this section, we provide some additional
perspectives on and interpretations of the LCM. First, we show that the LCM estimator can
be seen as a Neyman orthogonalization of the score statistic for a particular one-parameter
family. The abstract formulation of the residual process (Gt) permits that we transform X

into another Gt -predictable processes. Using this perspective, we may optimize the choice of
the process X in terms of power.

Next, we show that when X is independent of time, the test statistic reduces in a survival
context to certain covariance measures between X-residuals and Cox–Snell residuals, which
we can link to existing test statistics for ordinary conditional independence.

3.1. Neyman orthogonalization of a score statistic. Consider the one-parameter family
of Gt -intensities

λ
β
t = eβXt λt

for β ∈ R. Within this one-parameter family, the hypothesis of conditional local independence
is equivalent to H0 : β = 0. The normalized log-likelihood with n i.i.d. observations in the
interval [0, t] is

�t (β) = 1

n

n∑
j=1

(∫ t

0
log

(
λ

β
j,s

)
dNj,s −

∫ t

0
λ

β
j,s ds

)

= 1

n

n∑
j=1

(∫ t

0
βXj,s + log(λj,s)dNj,s −

∫ t

0
eβXj,s λj,s ds

)
.

Straightforward computations show that

∂β�t (0) = 1

n

n∑
j=1

∫ t

0
Xj,s dMj,s and − ∂2

β�t (0) = 1

n

n∑
j=1

∫ t

0
X2

j,sλj,s ds.
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If λ were known, the score statistic ∂β�t (0) satisfies E(∂β�t (0)) = γt . Moreover, under H0 :
β = 0 we have that −∂2

β�t (0) = 〈∂β�t (0)〉 is a consistent estimate of the asymptotic variance
of the mean zero martingale ∂β�t (0). The hypothesis of local independence—with λ known—
could thus be tested using the score test statistic −∂β�t (0)2/∂2

β�t (0).
The nuisance parameter λ is, however, unknown and we want to avoid restrictive paramet-

ric assumptions about λ. Replacing Xj,t by the residual process Gj,t in the score statistic
∂β�t (0) gives a Neyman orthogonalized score

1

n

n∑
j=1

∫ t

0
Gj,s dMj,s.

This score is linear in λ, which is used in supplementary Section F to show that it satisfies the
Neyman orthogonality condition under H0; cf. Definition 2.1 in Chernozhukov et al. (2018).
In this section, it is also shown that the act of replacing Xt with Gt = Xt −�t can, in fact, be
viewed as concentrating out the intensity of the score statistic in the sense of Newey (1994).
While Neyman orthogonality is never invoked explicitly, it is implicitly a central part of the
asymptotic results for the LCM estimator (in particular Lemma A.7 in the supplement).

The perspective on the LCM from a Neyman orthogonalized score statistic suggests that a
test based on the LCM has most power against alternatives in the one-parameter family λβ .
If it happens that the most important alternatives are of the form

λ
β
t = eβX̄t λt

for some Gt -predictable process X̄t different from Xt , then we should replace Xt by X̄t in
our test statistic, that is, in the residualization procedure. Examples of processes X̄t are

• transformations, X̄t = f (Xt) for a function f

• time-shifts, X̄t = Xt−s for s > 0
• linear filters, X̄t = ∫ t

0 κ(t − s)Xs ds for a kernel κ

• nonlinear filters, X̄t = φ(
∫ t

0 κ(t − s)f (Xs)ds) for a kernel κ and functions f and φ.

Any finite number of such processes could, of course, also be combined into a vector process,
and we could, indeed, generalize the LCM estimator (13) to a vector process. The general-
ization is straightforward.

3.2. Survival time with time-independent covariates. A different perspective on the test
statistic is obtained if X is constant over time, if Nt = 1(T ≤ t) is the counting process of
a survival time T , and if Ft = σ(Ns,Z; s ≤ t) where Z is a vector of additional baseline
variables. Then the Ft -intensity is

λt = 1(T ≥ t)h(t,Z),

where h(t,Z) is the hazard function for T given the baseline Z. In this special case, the
hypothesis of conditional local independence is equivalent to the ordinary conditional inde-
pendence

(14) X ⊥⊥ T |Z.

We also find that

γt = E
(
X

(
1(T ≤ t) − �t∧T

))
,

and in particular γ1 = E(X(1 −�T )) as T ∈ [0,1] by assumption. Since �T is exponentially
distributed with mean 1, we may write

γ1 = −cov(X,�T ).
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Testing if γ1 �= 0 in this particular setup is effectively a test of the conditional independence
(14). When (14) is true, it further holds that �t = E(X|Ft−) = E(X|Z) = �0 is independent
of t , and if we incorporate this into our model of �, the LCM estimator of γ1 equals

(15) γ̂
(n)
1 = 1

|Jn|
∑
j∈Jn

(Xj − �̂j,0)(1 − �̂Tj
).

This is a (nonnormalized) generalized covariance measure (GCM), see (Shah and Peters
(2020)), which is simply the (negative) empirical covariance between the additive residuals
Xj − �̂j,0 and the Cox–Snell residuals �̂Tj

.

Alternatively, consider the quantile residual process Gj,t = Ft(Xj ) − 1
2 where Ft(x) =

P(X ≤ x|Ft−). If (14) is true, it holds again that Ft(x) = F0(x) = P(X ≤ x|Z) is independent
of t , and our LCM estimator becomes

(16) γ̂
(n)
1 = 1

|Jn|
∑
j∈Jn

Ĝj,0(1 − �̂Tj
).

This is likewise an empirical covariance, but now between the generalized residuals and the
Cox–Snell residuals. This is closely related to the partial copula between X and T given Z,
which can be estimated as

1

|Jn|
∑
j∈Jn

Ĝj,0

(
1

2
− exp(−�̂Tj

)

)
.

See Petersen and Hansen (2021) for further details on the partial copula and how this statistic
can be used to test conditional independence.

Under a combined rate condition on estimation of G and �, the endpoint statistics above
are known to be asymptotically Gaussian with mean zero when the hypothesis of conditional
independence in (14) holds. Within this survival setting, the endpoint statistics (15) can fur-
thermore be seen as a score test derivable from a semiparametric efficient score function.
Section E in the supplement gives the details for two specific semiparametric survival mod-
els.

Whenever Ĝj,t = Ĝj,0 is independent of time, for example, if we incorporate (14) into the
residual model, the t-indexed LCM estimator is

γ̂
(n)
t = 1

|Jn|
∑
j∈Jn

Ĝj,0
(
1(Tj ≤ t) − �̂Tj∧t

)
,

which can be seen as a t-indexed extension of (16). For a general, time-dependent residual
process, the full t-indexed LCM estimator is

γ̂
(n)
t = 1

|Jn|
∑
j∈Jn

1(Tj ≤ t)Ĝj,Tj
−

∫ t∧Tj

0
Ĝj,s λ̂s ds.

The general results of this paper show that the t-indexed LCM estimator is asymptotically
distributed as a mean zero Gaussian martingale under H0. This appears to be a novel result
even when X is constant over time. However, the main contributions of this paper is to the
case where X and Z are stochastic processes varying with time—where the hypothesis of
conditional local independence is also distinct from (14).
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4. General asymptotic results. In this section, we derive uniform asymptotic results
regarding the general LCM estimator as a stochastic process. In Section 5, we discuss how to
construct tests of H0 based on the asymptotic results.

We assume that N has a Gt -intensity λt , we let �t = ∫ t
0 λs ds denote the Gt -compensator

of N and let Mt = Nt − �t be the compensated local Gt -martingale. We also recall that γ̂ (n)

denotes the LCM estimator based on sample splitting as defined in Section 2.3. Within this
framework, we consider the decomposition√|Jn|γ̂ (n) = U(n) + R

(n)
1 + R

(n)
2 + R

(n)
3 + D

(n)
1 + D

(n)
2 ,(17)

where the processes U(n),R
(n)
1 ,R

(n)
2 ,R

(n)
3 ,D

(n)
1 and D

(n)
2 are given by

U
(n)
t = 1√|Jn|

∑
j∈Jn

∫ t

0
Gj,s dMj,s ,(18)

R
(n)
1,t = 1√|Jn|

∑
j∈Jn

∫ t

0
Gj,s

(
λj,s − λ̂

(n)
j,s

)
ds,(19)

R
(n)
2,t = 1√|Jn|

∑
j∈Jn

∫ t

0

(
Ĝ

(n)
j,s − Gj,s

)
dMj,s,(20)

R
(n)
3,t = 1√|Jn|

∑
j∈Jn

∫ t

0

(
Ĝ

(n)
j,s − Gj,s

)(
λj,s − λ̂

(n)
j,s

)
ds,(21)

D
(n)
1,t = 1√|Jn|

∑
j∈Jn

∫ t

0
Gj,s(λj,s − λj,s)ds,(22)

D
(n)
2,t = 1√|Jn|

∑
j∈Jn

∫ t

0

(
Ĝ

(n)
j,s − Gj,s

)
(λj,s − λj,s)ds.(23)

Note that the processes D1 and D2 are (almost surely) the zero-process under H0, since the
null is equivalent to λt being a version of λt . We proceed to show that

• the processes U(n) and D
(n)
1 − √|Jn|γ each converge in distribution,

• and the processes R1,R2,R3,D2 converge to the zero process.

For the analysis of each of R1, R2 and D2, sample splitting is used to render the summands
conditionally independent.

These asymptotic properties imply that
√|Jn|(γ̂ (n) − γ ) is stochastically bounded in gen-

eral, so the LCM estimator will asymptotically detect if the LCM is nonzero. Moreover, it
will follow that U(n) drives the asymptotic limit of the LCM estimator under H0. Based on
these general asymptotic results, we derive in Section 5 asymptotic error control for tests
based on the LCM estimator.

4.1. Asymptotics of the LCM estimator. Our asymptotic results are formulated in terms
of uniform stochastic convergence, which has also been discussed extensively in the re-
cent literature on hypothesis testing (Lundborg et al. (2022), Lundborg, Shah and Pe-
ters (2022), Neykov, Balakrishnan and Wasserman (2021), Scheidegger, Hörrmann and
Bühlmann (2022), Shah and Peters (2020)). Uniform convergence allows us to establish uni-
form asymptotic level of our proposed test, as well as power under local alternatives. We
have collected key definitions and results related to uniform convergence in Section B in the
supplement.
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To state uniform assumptions and asymptotic results, we need to indicate a range of pos-
sible sampling distributions for which the assumptions apply and the results hold. For this
purpose, we extend our setup and allow all data to be parametrized by a fixed parameter
set �. The set � is not a priori assumed to have any structure, and θ ∈ � simply indicates
that Nθ , Xθ , λθ , Gθ , etc. have θ -dependent distributions. We generally denote evaluation of
processes or derived quantities for a specific θ -value by a superscript, with the LCM, γ θ ,
in particular, depending on θ . The LCM estimator is likewise written as γ̂ (n),θ = (γ̂

(n),θ
t )

for θ ∈ � to denote its dependence on the sampling distribution. The superscript notation
is, however, heavy and unnecessary in many cases and we will suppress the dependency on
θ ∈ � whenever it is not needed. Any result that does not explicitly involve � should be
understood as a pointwise result for each θ ∈ �.

The parametrization allows us to express convergence in distribution and probability uni-

formly over �, which are denoted by
D/�−−→ and

P/�−−→, respectively. These concepts are defined
rigorously in Definition B.2 in the supplement. We note that uniform convergence reduces to
classical (pointwise) convergence if � is a singleton, which corresponds to fixing the sam-
pling distribution. We also introduce the parameter subset

(24) �0 := {θ ∈ �|H0 is valid},
consisting of all parameter values for which the hypothesis of conditional local independence

holds. Correspondingly, we will use
D/�0−−→ and

P/�0−−→ to denote stochastic convergences uni-
formly over �0.

We are now ready to formulate the underlying assumptions on the data required for our
asymptotic results. These assumptions may appear strong, but we argue in the discussion in
Section 7 that they are not unreasonable from a practical viewpoint.

ASSUMPTION 4.1. There exist constants C,C′ > 0, such that for any parameter value
θ ∈ �:

(i) The Gθ
t -intensity λθ

t of Nθ is càglàd with sup0≤t≤1 λθ
t ≤ C almost surely.

(ii) The residual process Gθ is càglàd with sup0≤t≤1 |Gθ
t | ≤ C′ almost surely.

The estimator, λ̂
(n)
t , of λt and the estimator, Ĝ

(n)
t , of the residual process are assumed to

satisfy the same bounds as λt and Gt . We note that Assumption 4.1(i) implies that Mt is a
true Gt -martingale, and by the innovation theorem, λt = E(λt |Ft−). As a consequence, the
Ft -intensity λt inherits the boundedness from the Gt -intensity λt , and Mt is an Ft -martingale.
More generally, we have the following proposition ensuring that stochastic integrals are true
martingales, for example, that It is a martingale under H0.

PROPOSITION 4.1. Under Assumption 4.1, it holds that each of the processes(∫ t

0
f (Gs)dMs

)
t∈[0,1]

and
(∫ t

0
f

(
Ĝ(n)

s

)
dMs

)
t∈[0,1]

are mean zero, square integrable Gt -martingales for any f ∈ C(R).

To express the asymptotic distribution of U(n), we need its variance function.

DEFINITION 4.2. We define the variance function V : [0,1] → [0,∞] as

V(t) = E

(∫ t

0
G2

s dNs

)
.(25)
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As everything else, the variance function, V = Vθ , is also indexed by the parameter θ ,
which we, for notational simplicity, suppress unless explicitly needed.

By taking f (x) = x2 in Proposition 4.1, Assumption 4.1 implies that for each t ∈ [0,1],

V(t) = E

(∫ t

0
G2

sλs ds

)
< ∞.

Moreover, V(t) is the variance of
∫ t

0 Gs dMs , which under H0 is the same as the variance of
It = ∫ t

0 Gs dMs .
With the assumptions above, we can prove the following proposition about the uniform

distributional limit of the process U(n) in the Skorokhod space D[0,1], the space of càdlàg
functions from [0,1] to R endowed with the Skorokhod topology. A corresponding pointwise
result is an application of Rebolledo’s classical martingale CLT. Our generalization to uni-
form convergence is based on a uniform extension of Rebolledo’s theorem; see Theorem C.4
in Section C in the supplement.

PROPOSITION 4.3. Under Assumption 4.1, it holds that

U(n),θ D/�−−→ Uθ

in D[0,1] as n → ∞, where for each θ ∈ �, Uθ is a mean zero continuous Gaussian mar-
tingale on [0,1] with variance function Vθ .

To control the remainder terms in (17), we will bound the estimation errors in terms of the
2-norm, |||·|||2, on L2([0,1] × �), that is,

|||W |||22 = E

(∫ 1

0
W 2

s ds

)
for any process W ∈ L2([0,1]×�). We will make the following consistency assumptions on
λ̂(n) and Ĝ(n).

ASSUMPTION 4.2. Assume that |Jn| → ∞ when n → ∞ and let

gθ (n) =
∣∣∣∣∣∣∣∣∣Gθ − Ĝ(n),θ

∣∣∣∣∣∣∣∣∣
2

and hθ(n) =
∣∣∣∣∣∣∣∣∣λθ − λ̂(n),θ

∣∣∣∣∣∣∣∣∣
2
.

Then each of the sequences gθ (n), hθ(n), and
√|Jn|gθ (n)hθ (n) converge to zero uniformly

over � as n → ∞, that is,

lim
n→∞ sup

θ∈�

max
{
gθ (n), hθ (n),

√|Jn|gθ (n)hθ (n)
} = 0.

With this assumption, we can establish that the remainder terms also converge uniformly
to the zero process.

PROPOSITION 4.4. Under Assumptions 4.1 and 4.2, it holds that

sup
t∈[0,1]

∣∣R(n),θ
i,t

∣∣ P/�−−→ 0

as n → ∞ for i = 1,2,3.

To control the asymptotic behavior of the LCM estimator in the alternative, we need to
control the two terms D

(n)
1 and D

(n)
2 .
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PROPOSITION 4.5. Let Assumptions 4.1 and 4.2 hold true.

(i) The stochastic process D
(n),θ
1 −√|Jn|γ θ converges in distribution in (C[0,1],‖ · ‖∞)

uniformly over � as n → ∞.

(ii) If Gθ
t = Xθ

t − �θ
t is the additive residual process, then D

(n),θ
2

P/�−−→ 0 in D[0,1] as
n → ∞.

We note that D
(n)
2 might not vanish without an assumption like Gt being the additive

residual process, and it is not clear if D
(n)
2 will even converge in general. We will not pursue

an analysis of the asymptotic behavior of D
(n)
2 in the general case. We note, however, that if

we can estimate G with a parametric rate, that is,
√|Jn|g(n) = O(1). Then it follows from

the Cauchy–Schwarz inequality that D
(n)
2 is stochastically bounded, and D

(n)
1 still dominates

in the alternative where γ �= 0.
We can combine all of the propositions into a single theorem regarding the asymptotics of

the LCM estimator, which we consider as our main result.

THEOREM 4.6. Let Assumptions 4.1 and 4.2 hold true.

(i) It holds that √|Jn|γ̂ (n),θ D/�0−−→ Uθ

in D[0,1] as n → ∞, where for each θ ∈ �0, Uθ is a mean zero continuous Gaussian
martingale on [0,1] with variance function Vθ .

(ii) For the additive residual process, it holds that for every ε > 0 there exists K > 0 such
that

lim sup
n→∞

sup
θ∈�

P
(√|Jn| ·

∥∥γ̂ (n),θ − γ θ
∥∥∞ > K

)
< ε.(26)

Thus, we have established the weak asymptotic limit of
√|Jn|γ̂ (n) under H0. However, the

variance function V of the limiting Gaussian martingale is unknown and must be estimated
from data. We propose to use the empirical version of (25),

V̂n(t) = 1

|Jn|
∑
j∈Jn

∫ t

0

(
Ĝ

(n)
j,s

)2 dNj,s = 1

|Jn|
∑
j∈Jn

∑
τ≤t :	Nj,s=1

(
Ĝ

(n)
j,τ

)2
,(27)

for which we have the following consistency result.

PROPOSITION 4.7. Under Assumptions 4.1 and 4.2, it holds that

sup
t∈[0,1]

∣∣V̂θ
n (t) − Vθ (t)

∣∣ P/�−−→ 0,

as n → ∞.

We emphasize that V is only the asymptotic variance function of the LCM estimator under
H0. It is always the asymptotic variance function of U(n), but in the alternative the asymp-
totic distribution of γ̂ (n) also involves the asymptotic distribution of D

(n)
1 and is thus more

complicated.
Tests of conditional local independence can now be constructed in terms of univariate

functionals of γ̂ (n) and V̂n that quantify the magnitude of the LCM. The asymptotics of
such test statistics under H0 are described in the following corollary, which is essentially an
application of the continuous mapping theorem.
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COROLLARY 4.8. Let J : D[0,1] × D[0,1] → R be a functional that is continuous on
the closed subset C[0,1]×{Vθ : θ ∈ �0} with respect the uniform topology, that is, the topol-
ogy generated by the norm ‖(f1, f2)‖ = max{‖f1‖∞,‖f2‖∞} for f1, f2 ∈ D[0,1]. Define the
test statistic

D̂θ
n = J

(√|Jn|γ̂ (n),θ , V̂θ
n

)
.

Under Assumptions 4.1 and 4.2, it holds that

D̂θ
n

D/�0−−→ J
(
Uθ,Vθ )

, n → ∞,(28)

where Uθ is a mean zero continuous Gaussian martingale with variance function Vθ .

5. The local covariance test. In this section, we introduce a practically applicable test
based on the LCM estimator. Using the asymptotic distribution of the LCM estimator, we
show that the asymptotic distribution of our proposed test is independent of the sampling dis-
tribution under H0 and has an explicit representation. We show, in addition, uniform asymp-
totic level of the test, and we give a uniform power result for the additive residual process.
Finally, we modify the test to be based on a cross-fitted estimator of the LCM instead of using
sample splitting, and we show uniform level of that test.

To construct a test statistic based on the LCM estimator, it is beneficial that its distribu-
tional limit does not depend on the variance function. As a simple example, consider the
endpoint test statistic: (

V̂n(1)
)− 1

2
√|Jn|γ̂ (n)

1 ,(29)

which under H0 converges in distribution to V(1)− 1
2 U1 by Corollary 4.8. The distribution of

the latter is the standard normal distribution, and in particular it does not depend on V .
Any test statistic constructed from γ̂ (n) should capture deviations of γt away from 0. The

test statistic in (29) does, however, only consider the endpoint of the process, and since γ is
not necessarily monotone, γt may deviate more from 0 for other t ∈ [0,1]. Thus, in order to
increase power against such alternatives we consider the test statistic

T̂n =
√|Jn|√
V̂n(1)

sup
0≤t≤1

∣∣γ̂ (n)
t

∣∣.(30)

We refer to T̂n as the Local Covariance Test statistic (LCT statistic). We proceed to show
that the LCT statistic can be turned into a test of H0 with asymptotic level α, and which has
asymptotic power against any alternative with a nonzero LCM. This is the best we can hope
for of any test based on the LCM estimator.

We note that it might be possible to establish similar results for other norms of the LCM,
for example, a statistic based on a weighted L2-norm. However, since other norms of the
distributional limit U will generally have a distribution with a complicated dependency on V ,
we believe that the LCT statistic is the simplest to construct.

To establish uniform asymptotic level via Corollary 4.8 for tests based on test statistics
such as (30), we need to assume that the asymptotic variances in t = 1 are uniformly bounded
away from zero.

ASSUMPTION 5.1. There exists a δ1 > 0 such that for all θ ∈ � it holds that Vθ (1) ≥ δ1.
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5.1. Type I and type II error control. We proceed to show that under H0, the LCT statistic
is distributed as sup0≤t≤1 |Bt |, where (Bt ) is a standard Brownian motion. From this point
onward, we let S denote a random variable with such a distribution and note that its CDF can
be written as

FS(x) = P(S ≤ x) = 4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
−π2(2k + 1)2

8x2

)
, x > 0.(31)

See, for example, Section 12.2 in Schilling and Partzsch (2014) where the formula is derived
from Lévy’s triple law.

The p-value for a test of H0 equals 1−FS(T̂n), and since the series in (31) converges at an
exponential rate, the p-value can be computed with high numerical precision by truncating
the series. Given a significance level α ∈ (0,1), we also let z1−α denote the (1 − α)-quantile
of FS , which exists and is unique since the right-hand side of (31) is strictly increasing and
continuous. The Local Covariance Test (LCT) with significance level α is then defined by

�n = �α
n = 1

(
FS(T̂n) > 1 − α

) = 1(T̂n > z1−α).(32)

From Theorem 4.6, we can now deduce the asymptotic properties of the LCT under the

hypothesis of conditional local independence. Recall that
D/�0−−→ denotes uniform convergence

in distribution under H0.

THEOREM 5.1. Let Assumptions 4.1, 4.2 and 5.1 hold true. Then it holds that

T̂ θ
n

D/�0−−→ S

as n → ∞. As a consequence, for any α ∈ (0,1),

lim sup
n→∞

sup
θ∈�0

P
(
�α,θ

n = 1
) ≤ α.

In other words, the local covariance test defined in (32) has uniform asymptotic level α.

In general, we cannot expect that the test has power against alternatives to H0 for which the
LCM is the zero function. This is analogous to other types of conditional independence tests
based on conditional covariances, for example, GCM (Shah and Peters (2020)). However,
we do have the following result that establishes power against local alternatives with ‖γ ‖∞
decaying at an order of at most |Jn|−1/2.

THEOREM 5.2. Let Assumptions 4.1 and 4.2 hold true. Using the additive residual pro-
cess it holds that for any 0 < α < β < 1, there exists c > 0 such that

lim inf
n→∞ inf

θ∈Ac,n

P
(
�α,θ

n = 1
) ≥ β,

where Ac,n = {θ ∈ �|‖γ θ‖∞ ≥ c|Jn|−1/2}.

5.2. Extension to cross-fitting. In Section 4, we considered sample splitting with obser-
vations indexed by J c

n used to estimate the two models and with observations indexed by
Jn used to estimate γ . Following Chernozhukov et al. (2018), we can improve efficiency by
cross-fitting, that is, by flipping the roles of Jn and J c

n to obtain a second equivalent estimator
of γ . Heuristically, the two estimators are approximately independent, and thus their aver-
age should be a more efficient estimator. This procedure generalizes directly to a partition
J 1

n ∪ · · · ∪ JK
n = {1, . . . , n} of the indices into K disjoint folds. The partition is assumed to

have a uniform asymptotic density, meaning that |J k
n |/n → 1

K
as n → ∞ for each k.
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We estimate G and λ using (J k
n )c = {1, . . . , n} \ J k

n and subsequently estimate γ using
J k

n . Then the K-fold Cross-fitted LCM estimator, abbreviated as X-LCM, is defined as the
average LCM estimator over the K folds, that is,

γ̌
K,(n)
t = 1

K

K∑
k=1

1

|J k
n |

∑
j∈J k

n

∫ t

0
Ĝ

k,(n)
j,s dM̂

k,(n)
j,s ,(33)

where for each j ∈ J k
n , the processes Ĝ

k,(n)
j and M̂

k,(n)
j are the model predictions of Gj and

Mj , respectively, based on training data indexed by (J k
n )c. We also define a K-fold version

of the variance estimator:

V̌K
n (t) = 1

K

K∑
k=1

1

|J k
n |

∑
j∈J k

n

∫ t

0

(
Ĝ

k,(n)
j,s

)2 dNj,s .(34)

Now, similar to the LCT statistic, the cross-fitted estimator can be used to construct a test
statistic,

Ť K
n =

√
n

V̌K,n(1)
sup

0≤t≤1

∣∣γ̌ K,(n)
t

∣∣,(35)

from which we define the following test of conditional local independence.

DEFINITION 5.3. Let α ∈ (0,1) and let Ť K
n be the test statistic from (35). The K-fold

Cross-fitted Local Covariance Test (X-LCT) with significance level α is defined by

�̌K
n = 1

(
FS

(
Ť K

n

)
> 1 − α

) = 1
(
Ť K

n > z1−α

)
,

where z1−α is the (1 − α)-quantile of the distribution function FS given in (31).

We provide a summary of the computation of the X-LCT in Algorithm 2. The asymptotic
analysis of γ̂ (n) generalizes to γ̌ K,(n), but we will refrain from restating all results for the K-
fold cross-fitted estimator. For simplicity, we focus on the fact that the X-LCT has asymptotic
level α.

THEOREM 5.4. Suppose that Assumption 4.2 is satisfied for every sample split J k
n ∪

(J k
n )c, k = 1, . . . ,K . Under Assumptions 4.1 and 5.1, the X-LCT statistic satisfies

Ť K,θ
n

D/�0−−→ S

for n → ∞. In particular, the X-LCT has uniform asymptotic level α.

Note that cross-fitting recovers full efficiency in the sense that the scaling factor is
√

n

rather than
√|Jn|, which leads to a more powerful test. Moreover, the asymptotic distribution

of Ť K
n does not depend on the number of folds K , and any difference between various choices

of K can thus be attributed to finite sample errors. Larger values of K will allocate more
data to estimation of G and λ, which intuitively should be the harder estimation problem.
Following Remark 3.1 in Chernozhukov et al. (2018), we believe that a default choice of
K = 4 or K = 5 should be reasonable in practice.
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Algorithm 2: K-fold cross-fitted local covariance test (X-LCT)

1 input: processes (Nj ,Xj ,Zj )j=1,...,n, partition J 1
n ∪ · · · ∪ JK

n of indices into K folds;
2 options: historical regression methods for estimation of λ and G given N and Z,
3 discrete time grid T⊂ [0,1], significance level α ∈ (0,1);
4 begin
5 for k = 1, . . . ,K do
6 apply Algorithm 1 on sample split J k

n ∪ (J k
n )c to compute γ̃ k,(n) on grid T;

7 use equation (27) on sample split J k
n ∪ (J k

n )c to compute Ṽk,n(1) ;
8 end
9 compute γ̌ K,(n) = 1

K

∑K
k=1 γ̃ k,(n) on grid T ;

10 compute V̌K,n(1) = 1
K

∑K
k=1 Ṽk,n(1);

11 compute the X-LCT statistic Ť K
n = √

n · maxt∈T |γ̌ K,(n)
t |/

√
V̌K,n(1) ;

12 compute p-value p̌ = 1 − FS(Ť K
n ) by truncating the series in equation (31).

13 end
14 output: the X-LCT �̌K

n = 1(p̌ < α), and optionally the p-value p̌;

6. Simulation study. In this section, we present the results from a simulation study
based on the Cox example introduced in Section 2.2. We elaborate in Section 6.1 on the
full model specification used for the simulation study, which will also illuminate how � and
λ can be modeled and estimated. The results from the simulation study focus on the distri-
bution of the X-LCT statistic Ť K

n and validate the asymptotic level and power of the X-LCT
�̌K

n . The latter is also compared to a hazard ratio test based on the marginal Cox model (11).
The simulations were implemented in Python and the code is available.1

6.1. Cox model continued. Consider the same setup as in Section 2.2. To fully specify
the model, we need to specify the distribution of the processes X, Y and Z. We suppose that
X and Y can be written in terms of Z as

Xt =
∫ t

0
ZsρX(s, t)ds + Vt and Yt =

∫ t

0
ZsρY (s, t)ds + Wt,(36)

where ρX and ρY are two functions defined on the triangle {(s, t) ∈ [0,1]2|s ≤ t}, and where
V = (Vt )0≤t≤1 and W = (Wt)0≤t≤1 are two noise processes with mean zero. The processes
Z, V and W are assumed independent, which implies (10), and thus that N is conditionally
locally independent of X given Ft =FN,Z

t .
The specific dependency of X and Y on Z is known as the historical functional linear

model in functional data analysis (Malfait and Ramsay (2003)). Within this model,

(37) �t = E(Xt |Ft−) =
∫ t

0
ZsρX(s, t)ds,

and on (T ≥ t),

E
(
eYt |Ft

) = e
∫ t

0 ZsρY (s,t)ds
E

(
eWt |T ≥ t

) = eβ̃0(t)+∫ t
0 ZsρY (s,t)ds,

1https://github.com/AlexanderChristgau/nonparametric-cli-test.

https://github.com/AlexanderChristgau/nonparametric-cli-test
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where β̃0(t) = log(E(eWt |T ≥ t)). Since λt = 1(T ≥ t)λ0
t e

βZtE(eYt |Ft ), it follows that on
(T ≥ t),

log(λt ) = β0(t) + βZt +
∫ t

0
ZsρY (s, t)ds,(38)

where the two baseline terms depending only on time have been merged into β0.
The computations above suggest how the estimators λ̂(n) and �̂(n) could be constructed.

That is, λ̂(n) could be based on estimates of β , β0 and ρY from the observations (Tj ,Zj )j∈J c
n
,

and �̂(n) could be based on estimates of ρX from (Xj ,Zj )j∈J c
n
. We would then have

�̂
(n)
j,t =

∫ t

0
Zj,s ρ̂

(n)
X (s, t)ds

for j ∈ Jn where ρ̂
(n)
X denotes the estimate of ρX , and similarly for λ̂

(n)
j,t . Particular choices

of estimators ρ̂
(n)
X and ρ̂

(n)
Y and their theoretical properties are reviewed in Section D in the

supplement. Our conclusion from this review is that for the historical functional linear model,
sufficient rate results should be possible but have not yet been established rigorously.

6.2. Sampling scheme. The actual time-discretized simulations and computations were
implemented using an equidistant grid T = (ti)

q
i=1 with q = 128 time points 0 = t1 < · · · <

tq = 1. Inspired by Harezlak et al. (2007), we generated the processes as follows: let ξ ∈ R
3

and V,W,WW ∈ R
T be independent random variables such that ξ ∼ N (0, I3) and such that

V,W and WW are identically distributed with Vt1,Vt2 − Vt1, . . . , Vtq − Vtq−1

i.i.d.∼ N (0,1/q).
Then the process Z is determined by Zt = ξ1 + ξ2t + sin(2πξ3t) + WWt for t ∈ T. The pro-
cesses X and Y were then given by the historical linear model (36) with kernels ρX and ρY

being one of the following four kernels:

zero: (s, t) �→ 0, constant: (s, t) �→ 1,

Gaussian: (s, t) �→ e−2(t−s)2
, sine: (s, t) �→ sin(4t − 20s).

To compute X and Y , we evaluated the kernels on {(s, t) ∈ T
2|s ≤ t} and approximated

the integrals by Riemann sums. The full intensity for Nt = 1(T ≤ t) was specified with a
Weibull baseline of the form λfull

t = 1(T ≥ t)β1t
2 exp(β2Zt + Yt ), for β1 > 0 and a choice

of β2 ∈ {−1,1}. To sample T , we applied the inverse hazard method, which utilizes that
�full

T is standard exponentially distributed. That is, we sampled E ∼ Exp(1) and numerically
computed T = max{t ∈ T|�full

t < E} as a discretized approximation. For any given parame-
ter setting, the baseline coefficient β1 was chosen sufficiently large to ensure that �full

t ≥ E

would occur before time t = 1 in more that q−1
q

· n samples.
The simulation setting used to sample the data for Figures 3 and 4 was β2 = −1 and

ρX = ρY = constant.
With this setup, Assumption 4.1 is satisfied if V , W and WW were bounded. Since we use

the Gaussian distribution, they are technically not bounded, but they could be made bounded
by introducing a lower and upper cap. Due to the light tails of the Gaussian distribution such
caps would have no noticeable effect on the simulation results, and the results we report are
generated without a cap.

The implementation details for the X-LCT and the hazard ratio test are given in Section G.1
in the supplement.
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FIG. 5. Empirical cumulative distribution functions of simulated p-values for the cross-fitted local covariance
test and the hazard ratio test. The simulated data satisfies the hypothesis of conditional local independence, so
the p-values are supposed to be uniformly distributed, and the CDF should fall on the diagonal dotted line.

6.3. Distributions of p-values under H0. We examine the distributional approximation
Ť K

n

as.∼ S (cf. Theorem 5.4) by comparing the p-values 1 − FS(Ť K
n ) to a uniform distribution.

Figure 5 shows the empirical distribution functions of the p-values computed from data sim-
ulated according to the scheme described in the previous section. The results are aggregated
over the two choices of β2 ∈ {−1,1} since these two settings were found to be similar. For
more detailed results from the experiment see Figure G.1 in Section G in the supplement,
which also includes the p-values corresponding to the endpoint test statistic.

For the hazard ratio test, Figure 5 shows that the p-values are subuniform for the zero ker-
nel. In this case, the marginal Cox model is correct, and the nonuniformity of the p-values can
be explained by the L2-penalization. For the constant and Gaussian kernels, the hazard ratio
test fails completely, whereas for the sine kernel, the mediated effect of Z on T through Y is
more subtle, and the model misspecification only becomes apparent for n = 2000. Overall,
these results are consistent with the reasoning in the Section 2.2: a test based on the misspec-
ified Cox model will wrongly reject the hypothesis of conditional local independence.

For the proposed X-LCT, Figure 5 shows that the associated p-values are slightly anti-
conservative for n = 100. This is to be expected, and can be explained by the finite sample
errors leading to more extreme values of Ť K

n than the approximation by S. As n increases,
these errors become smaller, and for n = 2000 the p-values actually seem to be subuniform.
The subuniformity may be explained by the time discretization, since the maximum of the
process is taken over T rather than [0,1]. Figure G.3 in Section G in the supplement illustrates
the asymptotic effect of the time discretization, which supports this claim. Another support
of this claim is that the endpoint test does not appear to give subuniform p-values for large
n; see Figure G.1. We finally note that the distributions of the p-values for our proposed test
is largely unaffected by the kernel used to generate the data.

6.4. Power against local alternatives. To investigate the power of the X-LCT, we con-
struct local alternatives to H0 in accordance with the right graph in Figure 2 by replacing Yt

by the process Yt + ρ0√
n
Xt . That is, for ρ0 �= 0, blood pressure is then directly affected by

pension savings, and Nt is no longer conditionally locally independent of Xt given Ft . In
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FIG. 6. For each ρ0 ∈ {0,5,10}, the lines show the average rejection rates of our proposed test X-LCT (blue)
and the hazard ratio test (orange) as functions of sample size, with each average taken over 8 different settings.
For each setting, the rejection rate is computed from 400 simulated data sets at a 5% significance level and the
rejection rate is displayed with a dot.

terms of the full intensity, these local alternatives are equivalent to

(39) λfull
t = 1(T ≥ t)β1t

2 exp
(
β2Zt + Yt + ρ0√

n
Xt

)
.

We simulated data for the dependency parameter ρ0 ∈ {0,5,10}. Note that ρ0 = 0 corre-
sponds to our previous sampling scheme with conditional local independence. For each of
the 96 = 4 × 2 × 4 × 3 choices of kernel, β2, n and ρ0, we ran the tests 400 times and com-
puted the p-values. For simplicity, we report the rejection rate at an α = 5% significance level
and the results are shown in Figure 6.

In the leftmost panel, the data was generated under H0 and the plot shows what we noted
previously, namely that the X-LCT holds level for large n, whereas the hazard ratio test does
not. For the local alternatives, ρ0 = 5 and ρ0 = 10, we note that the power of the hazard ratio
test is quite sensitive to the simulation settings. For some settings it has no power, while for
others it has some power.

In contrast, the proposed X-LCT has power against all of the local alternatives. The power
increases with n initially but stabilizes from around n = 1000. This is similar to the behavior
observed under the null hypothesis and is not surprising. We expect that the sample size
needs to be sufficiently large for the nonparametric estimators to work sufficiently well, and
we expect the sufficient sample size to be mostly unaffected by the value of ρ0. For fixed
n, we also note that the power of �̌K

n is fairly robust with respect to the choice of β2 and
the choice of kernel. Overall, we find that the X-LCT is applicable in these settings with
historical effects; it has consistent power against the

√
n alternatives while controlling type I

error for n reasonably large.
In Section G.2 in the supplement, we provide additional numerical results for time-varying

alternatives, and we compare the X-LCT with its endpoint counterpart.

7. Discussion. The LCM was introduced as a functional parameter that quantifies devi-
ations from the hypothesis H0 of conditional local independence. We showed how the pa-
rameter may be expressed in several ways, but that it is the representation in terms of the
residual process that allows us to estimate the LCM with a

√
n-rate under H0 without para-

metric model assumptions. The residual process was introduced as an abstract model of Xt

for each t given the history up to time t , and we showed that such a residualization could
be viewed as a form of orthogonalization. Similar ideas have been used recently for clas-
sical conditional independence testing, such as GCM (Shah and Peters (2020)), tests based
on the partial copula (Petersen and Hansen (2021)) and GHCM (Lundborg, Shah and Peters
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(2022)). It is, however, not possible to use any of these to test H0, which cannot be expressed
as a classical conditional independence. Our test based on the LCM is the first nonparametric
test of conditional local independence with substantial theoretical support, and we propose to
test H0 in practice by using X-LCT based on the cross-fitted estimator of LCM.

Contrary to the tests of conditional independence mentioned above, we need sample
splitting—even under H0—to achieve our asymptotic results. We do not believe that this
can be avoided. The standard argument to avoid this uses classical conditional independence
in a crucial way, which does not translate into our framework—basically because we condi-
tion on information that changes with time. Our simulation study also indicates that sample
splitting or cross-fitting is needed in practice for the LCM estimator to be unbiased under H0.

While our cross-fitted estimator of the LCM, the X-LCM, share some of the general pat-
terns of other double machine learning procedures—including the overall decomposition
(17)—our analysis and results required a range of generalizations of known results and some
novel ideas. The asymptotic distribution of the leading term, U(n), is also a well-known con-
sequence of Rebolledo’s CLT; see, for example, Section V.4 in (Andersen et al. (1993)) for
related results in the context of survival analysis. However, we generalized this result to uni-
form convergence in the Skorokhod space D[0,1], and we introduced new techniques for
handling the remainder terms. These novel techniques are made necessary by the decompo-
sition (17) being a decomposition of stochastic processes indexed by time. We outline below
the three most important technical contributions we made.

First, to obtain uniform control of level and power, all asymptotic results in Section 4 are
formulated in terms of uniform stochastic convergence. Since this notion of convergence had
not previously been considered on general metric spaces, and especially not on the Skorokhod
space, we had to develop the necessary theory. This development could be of independent
interest, and we have collected the general definitions and main results on uniform stochastic
convergence in metric spaces in Section B in the supplement. This framework also allowed
us to show a uniform version of Rebolledo’s martingale CLT in Section C in the supplement.

Second, to establish distributional convergence under H0, we need to control the remain-
der terms R

(n)
i,t uniformly over t . The third term, R

(n)
3 , is simple to bound, and by exploiting

Doob’s submartingale inequality, the second term, R
(n)
2 , can also be bounded. The most dif-

ficult first term, R
(n)
1 , was controlled using stochastic equicontinuity via an exponential tail

bound and the use of the chaining lemma. The necessary general uniform stochastic equicon-
tinuity and chaining arguments are collected in Section C.3 in the supplement.

Third, to achieve rate results in the alternative, the processes D
(n)
1 and D

(n)
2 must be con-

trolled. The process D
(n)
1 does, like U(n), not involve any estimation, and its distributional

convergence follows from a general CLT argument for continuous stochastic processes. The
term D

(n)
2 is more difficult to handle, as it may not have mean zero if Gt is not the additive

residual process. However, Xt cancels out in Ĝ
(n)
t − Gt for the additive residual process,

which makes the difference Ft -predictable, and D
(n)
2 can then be bounded similar to R

(n)
1 .

For a general residual process, it seems possible for D
(n)
2 to have a bias of order

√|Jn|g(n).
Our main result, Theorem 4.6, is stated under two assumptions. The second, Assump-

tion 4.2, is a straightforward generalization to our setup of similar assumptions in the double
machine learning literature on rates of convergence for the two estimators used. Both esti-
mation errors are measured using a 2-norm, and it is plausible that we can relax one norm
to a weaker form of convergence if we simultaneously strengthen the other norm. The first
assumption, Assumption 4.1, requires uniform bounds on both λ and G. This is a strong as-
sumption but perhaps not particularly problematic from a practical viewpoint. Indeed, G is
a process we can choose, and we can thus make it bounded if necessary. And though many
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theoretically interesting counting process models have unbounded intensities, a large cap on
the intensity will make no difference in practice. We believe, nevertheless, that it is possible
to relax Assumption 4.1 to a weaker form of control on the magnitudes of λ and G as func-
tions of time, for example, moment bounds uniform in θ . However, such a generalization will
come at the expense of considerably more technical proofs, and we did not pursue this line
of research.

A major practical question is whether we can estimate λ and G with sufficient rates, for

example, n− 1
4 +ε . In Section D in the supplement, we give an overview of some known and

some conjectured rate results for specific forms of λ and �. Beyond parametric models,
we conclude that the existing rate results are scarce, and we regard it is as an independent
research project to establish rates for general historical regression methods.

Another question is whether we can replace the counting process N by a more general
semimartingale. Commenges and Gégout-Petit (2009) define conditional local independence
for a class of special semimartingales, and Mogensen, Malinsky and Hansen (2018) and
Mogensen and Hansen (2022) show global Markov properties for local independence graphs
of certain Itô processes, which are, in particular, special semimartingales. Thus, conditional
local independence is well-defined beyond counting processes, and we believe that most defi-
nitions and results of this paper would generalize beyond N being a counting process. Besides
some additional technical challenges, the major practical obstacle with such a generaliza-
tion is that we cannot realistically assume to have completely observed sample paths of Itô
processes, say. The discrete time nature of the observations should then be included in the
analysis, and this is beyond the scope of the present paper.

Irrespectively of the remaining open problems, the simulation study demonstrated some
important properties of our proposed test, the X-LCT. First, it was fairly simple to implement
for the specific example considered using some standard estimation techniques that were not
tailored to the specific model class. Second, it had good level and power properties and clearly
outperformed the test based on the misspecified marginal Cox model. Third, both Neyman
orthogonalization as well as cross-fitting were pivotal for achieving the good properties of
the test.
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SUPPLEMENTARY MATERIAL

Supplementary article (DOI: 10.1214/23-AOS2323SUPPA; .pdf). The supplementary ar-
ticle (Christgau, Petersen and Hansen (2023)) contains proofs of results from the main text,
auxiliary results, additional discussions and figures.

Computer code (DOI: 10.1214/23-AOS2323SUPPB; .zip). Computer code that repro-
duces numerical results for the simulation study in Section 6.
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This is the supplementary material for Christgau, Petersen and Hansen
(2023), hereafter referred to as the main text.

In Section A, we give the proofs of the results of the main text. In Section B, we formulate
a general uniform asymptotic theory for metric spaces, whereafter we specialize the theory
to the Skorokhod space D[0,1] and chaining of stochastic processes. In Section C, we state
Rebolledo’s martingale central limit theorem, and then we generalize the result to a uniform
version that is used in the proofs. In Section D, we discuss estimation of the intensity λ and
the residual process G in practice. In particular, we compare known rate results with the rates
required in Assumption 4.2. In Section E, we compare the LCM estimator with existing work
in semiparametric survival models. In Section F, we provide mathematical details regarding
Neyman orthogonality. Finally, Section G contains additional details, numerical results, and
figures related to the simulation study of Section 6.

A. Proofs of results in the main text.

A.1. Proof of Proposition 2.5. The process Gt is càglàd and Gt-predictable by assump-
tion, and the process I = (It) is a stochastic integral of Gt w.r.t. a local Gt-martingale under
the hypothesis H0. It is thus also a local Gt-martingale under H0. By definition, I0 = 0, and
if I is a martingale, γt = E(It) = E(I0) = 0. �

A.2. Proof of proposition 2.6. Suppose thatH is non-negative, càglàd and Gt-predictable,
then since

∫ t
0 HsdMs is a local Gt-martingale it follows by monotone convergence along a

localizing sequence that

(1) E
(∫ t

0
HsdNs

)
= E

(∫ t

0
Hsλsds

)
=

∫ t

0
E(Hsλs)ds

for all t ∈ [0,1]. We can apply the identity above with H the positive and negative part of
G, respectively, and the integrability assumption ensures that (1) also holds with H =G. It
follows that

γt = E(It) = E
(∫ t

0
Gs(λs − λs)ds

)
=

∫ t

0
E (Gs(λs − λs)) ds.

The latter expectation is indeed a covariance since E(Gs) = E(E(Gs | Fs−)) = 0. �

A.3. Proof of Lemma 4.1. Before proving Lemma 4.1, we first state general martingale
criteria in the context of counting processes.

LEMMA A.1. Let (Ht) be a locally bounded Gt-predictable process, let N be a counting
process with a Gt-intensity λt, and let Mt =Nt −

∫ t
0 λsds.

If
∫ 1

0 λsds (or equivalently N1) is integrable, then Mt and M2
t −

∫ t
0 λsds are each Gt-

martingales. If, in addition,
∫ 1

0 H
2
sλsds is integrable, then

∫ t
0 HsdMs is a mean zero square

integrable martingale.
1

https://imstat.org/journals-and-publications/annals-of-statistics/


2

PROOF. The first part is Lemma 2.3.2 and Theorem 2.5.3 in Fleming and Harrington
(2011). For the second part, assume that

∫ 1
0 λsds and

∫ 1
0 H

2
sλsds are both integrable. In this

case, the Gt-predictable quadratic variation of M is 〈M〉(t) =
∫ t

0 λsds by the first part. Then
it remains to note that (Ht) is a locally bounded Gt-predictable process, so the conditions of
Theorem 2.4.4 in Fleming and Harrington (2011) are satisfied if

∫ 1
0 H

2
sλsds is integrable.

This establishes the second part.

We now return to the proof of Lemma 4.1. Let f ∈ C(R), and we shall prove that∫ t
0 f(Gs)dMs is a mean zero, square integrable Gt-martingale. The proof for the integral

with f(Ĝ
(n)
s ) is identical.

Continuity of f implies that Cf := supx∈[−C′,C′] |f(x)| <∞ and that (f(Gt)) is a Gt-
predictable process. By Assumption 4.1, the process (f(Gt)) is almost surely bounded by
Cf and therefore

E
(∫ 1

0
f(Gs)

2λsds

)
≤C2

fC <∞.

Thus we can apply Lemma A.1 to conclude that
∫ t

0 f(Gs)dMs is a mean zero, square inte-
grable Gt-martingale. �

A.4. Proof of Proposition 4.3. As noted elsewhere, the explicit parametrization of all
objects by θ is notationally heavy, and there will thus be an implicit parameter value θ ∈Θ
in most of the subsequent constructions and arguments.

To simplify notation we write

U
(n)
t =

∑
j∈Jn

∫ t

0
H

(n)
j,s dMj,s, where H

(n)
j,s =

Gj,s√
|Jn|

.

We will use a uniform extension of Rebolledo’s martingale central limit theorem on the se-
quence (U (n))n≥1 to show the result. See Section C for a discussion of Rebolledo’s CLT and
Theorem C.4 for its uniform extension.

Define G̃nt be the smallest right continuous and complete filtration generated by the fil-
trations {Gj,t | j ∈ Jn}. We can apply Lemma 4.1 to each of the terms of U (n) to conclude
that the j-th term is a square integrable, mean zero Gnj,t-martingale. By independence of the
observations for each j, we can enlarge the filtration for each term and conclude that they
are also square integrable, mean zero G̃nt -martingales. Thus U (n) is also a square integrable,
mean zero G̃nt -martingale.

To apply Theorem C.4 first establish that the conditions in Equation (11) are fulfilled. By
Proposition C.5, we have that〈

U (n)
〉
(t) =

∑
j∈Jn

∫ t

0

(
H

(n)
j,s

)2
λj,sds=

1

|Jn|
∑
j∈Jn

∫ t

0
G2
j,sλj,sds.

By directly applying the bounds from Assumption 4.1, we see that the square mean of∫ t
0 G

2
sλsds is bounded by C2(C ′)4. Thus, for fixed t ∈ [0,1], the uniform law of large num-

bers (Shah and Peters, 2020, Lemma 19) gives that〈
U (n)

〉
(t) =

1

|Jn|
∑
j∈Jn

∫ t

0
G2
j,sλj,sds

P/Θ−−→ E
(∫ t

0
G2
sλsds

)
= V(t)
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for n→∞, since the integrals are i.i.d. with the same distribution as
∫ t

0 G
2
sλsds. This estab-

lishes the first part of the condition in Equation (11). For the second part, we also have from
Proposition C.5 that〈

U (n)
ε

〉
(t) =

∑
j∈Jn

∫ t

0

(
H

(n)
j,s

)2
1
(
|H(n)

j,s | ≥ ε
)

dΛj,s

=
1

|Jn|
∑
j∈Jn

∫ t

0
G2
j,s1

(
|Gj,s| ≥ ε

√
|Jn|

)
λj,sds(2)

for each t ∈ [0,1] and ε > 0. From Assumption 4.1, we note that for n sufficiently large such
that |Jn|> (C ′)2/ε2, it holds that P

(
|Gj,s| ≥ ε

√
|Jn|

)
= 0 for all j ∈ Jn. As a consequence,

the terms in (2) are almost surely zero for n sufficiently large uniformly over Θ. It follows
that

〈
U

(n)
ε

〉
(t)

P/Θ−−→ 0, which establishes the second part of (11).
We finally note that the collection of variance functions, (Vθ)θ∈Θ, is uniformly equicon-

tinuous and bounded above under Assumption 4.1. This is established in Lemma A.2 below.
We have thus verified all the conditions of Theorem C.4, so we conclude that

U (n),θ D/Θ−−→ U θ

in D[0,1] as n→∞, where U θ is a mean zero continuous Gaussian martingale with variance
function Vθ . �

Note that the convergence of (2) is established directly from the uniform bounds in As-
sumption 4.1. However, the convergence could also be established under a milder conditions
with alternative arguments. For example, under the weaker assumption of uniformly bounded
variance functions, dominated convergence can be used to establish L1-convergence.

In the proof above we invoked the following lemma, which we will also use in several
proofs in the sequel.

LEMMA A.2. Under Assumption 4.1, the collections (γθ)θ∈Θ and (Vθ)θ∈Θ are each
uniformly Lipschitz and in particular uniformly equicontinuous. Moreover, it holds almost
surely that

sup
t∈[0,1]

|γt| ≤ 2CC ′ and V(1) = E
(∫ 1

0
G2
sλsds

)
≤C(C ′)2.

PROOF. For any 0≤ s < t≤ 1, a direct application of Assumption 4.1 and Proposition 4.1
yields

|γt − γs| ≤ E
∣∣∣∣∫ t

s
GudNu −

∫ t

s
Guλudu

∣∣∣∣≤ E
(∫ t

s
|Gu|(λu + λu)du

)
≤ 2CC ′(t− s),

and similarly,

V(t)−V(s) = E
(∫ t

s
G2
uλudu

)
≤C(C ′)2(t− s).

This establishes the first part. The bounds follow from inserting (s, t) = (0, t) in the first
inequality and (s, t) = (0,1) in the second inequality.
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A.5. Proof of Proposition 4.4. We will divide the proof into three lemmas for each of the
remainder terms R(n)

1 ,R
(n)
2 and R(n)

3 , where we establish convergence to the zero-process
uniformly over t and θ. However, note that the notion of uniform convergence differs for the
process index, t ∈ [0,1], and the parameter, θ ∈Θ, as we need to show that

∀i ∈ {1,2,3}∀ε > 0 : lim
n→∞

sup
θ∈Θ

P
(

sup
t∈[0,1]

|Rθi,t|> ε
)

= 0.

For a general discussion of the relation between weak convergence and convergence in
probability uniformly as a stochastic process, see Newey (1991). For a general discussion of
uniform stochastic convergence over a distribution parameter, see Section B and the refer-
ences contained therein. In Section B.3, we discuss the combination of both convergences.

As in the proof of Proposition 4.3, G̃nt denotes the smallest right continuous and complete
filtration generated by the filtrations {Gj,t | j ∈ Jn}. Analogously, we let G̃n,ct be the smallest
right continuous and complete filtration generated by the filtrations {Gj,t | j ∈ Jcn}. We start
by considering R(n)

3 , since this is the easiest case.

LEMMA A.3. Under Assumption 4.2 it holds that supt∈[0,1] |R(n)
3,t |

P/Θ−−→ 0.

PROOF. We will show the result by showing that

sup
θ∈Θ

E
(

sup
0≤t≤1

|R(n),θ
3,t |

)
→ 0

as n→∞. Using that the random variables

sup
0≤t≤1

∣∣∣Gj,t − Ĝ(n)
j,t

∣∣∣ · sup
0≤t≤1

∣∣∣λj,t − λ̂(n)
j,t

∣∣∣
for j ∈ Jn are identically distributed for each fixed n≥ 2, we have that

E
(

sup
0≤t≤1

|R(n)
3,t |
)

= E

 sup
0≤t≤1

∣∣∣∣∣∣ 1√
|Jn|

∑
j∈Jn

∫ t

0

(
Gj,s − Ĝ(n)

j,s

)(
λj,s − λ̂(n)

j,s

)
ds

∣∣∣∣∣∣


≤ 1√
|Jn|

∑
j∈Jn

E
(

sup
0≤t≤1

∫ t

0

∣∣∣Gj,s − Ĝ(n)
j,s

∣∣∣ · ∣∣∣λj,s − λ̂(n)
j,s

∣∣∣ds)

=
√
|Jn|E

(∫ 1

0

∣∣∣Gs − Ĝ(n)
s

∣∣∣ · ∣∣∣λs − λ̂(n)
s

∣∣∣ds)

≤
√
|Jn|E

√∫ 1

0

(
Gs − Ĝ(n)

s

)2
ds

√∫ 1

0

(
λs − λ̂(n)

s

)2
ds


≤
√
|Jn|

√
E
(∫ 1

0

(
Gs − Ĝ(n)

s

)2
ds

)√
E
(∫ 1

0

(
λs − λ̂(n)

s

)2
ds

)
=
√
|Jn|g(n)h(n).

By Assumption 4.2,
√
|Jn|g(n)h(n)→ 0 uniformly over Θ as n→∞, so the result follows.



5

Next we proceed to the remainder process R(n)
2 .

LEMMA A.4. Under Assumptions 4.1 and 4.2, it holds that supt∈[0,1] |R(n)
2,t |

P/Θ−−→ 0.

PROOF. We first write

R
(n)
2,t =

1√
|Jn|

∑
j∈Jn

∫ t

0

(
Gj,s − Ĝ(n)

j,s

)
dMj,s,

and note that R(n)
2,t is a square integrable, mean zero G̃nt -martingale conditionally on G̃n,c1 .

This follows by applying Lemma 4.1 to each of the terms, which are i.i.d. conditionally on
G̃n,c1 . We conclude that the squared process (R

(n)
2,t )2 is a G̃nt -submartingale conditionally on

G̃n,c1 . By Doob’s submartingale inequality we have that

P
(

sup
0≤t≤1

|R(n)
2,t | ≥ ε

)
= P

(
sup

0≤t≤1

(
R

(n)
2,t

)2
≥ ε2

)
= E

(
P
(

sup
0≤t≤1

(
R

(n)
2,t

)2
≥ ε2 | G̃n,c1

))

≤
E
(

Var
(
R

(n)
2,1 | G̃n,c1

))
ε2

for ε > 0. The collection of random variables(∫ 1

0

(
Gj,s − Ĝ(n)

j,s

)
dMj,s

)
j∈Jn

are i.i.d. conditionally on G̃n,c1 . Therefore,

Var
(
R

(n)
2,1 | G̃n,c1

)
=

1

|Jn|
∑
j∈Jn

Var

(∫ 1

0

(
Gj,s − Ĝ(n)

j,s

)
dMj,s | G̃n,c1

)

= E
(∫ 1

0

(
Gs − Ĝ(n)

s

)2
d〈M〉s | G̃n,c1

)
= E

(∫ 1

0

(
Gs − Ĝ(n)

s

)2
λsds | G̃n,c1

)
≤C ·E

(∫ 1

0

(
Gs − Ĝ(n)

s

)2
ds | G̃n,c1

)
where we have used that λt is bounded by Assumption 4.1 (i). Thus

E
(

Var
(
R

(n)
2,1 | G̃n,c1

))
≤C ·E

(∫ 1

0

(
Gs − Ĝ(n)

s

)2
ds

)
=C · g(n)2,

and we conclude that

P
(

sup
0≤t≤1

|R(n)
2,t | ≥ ε

)
≤ C · g(n)2

ε2
→ 0,

as n→∞ uniformly over Θ by Assumption 4.2.
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Before proving thatR(n)
1 converges weakly to the zero-process, we will need two auxiliary

lemmas. The first is a conditional version of Hoeffding’s lemma, which lets us conclude
conditional sub-Gaussianity. Recall that a mean zero random variable A is sub-Gaussian
with variance factor ν > 0 if

logE(exA)≤ x2ν

2

for all x ∈R. See, for example, Boucheron, Lugosi and Massart (2013), Lemma 2.2, for the
classical unconditional version.

LEMMA A.5 (conditional Hoeffding’s lemma). Let Y be a random variable taking val-
ues on a bounded interval [a, b], satisfying E[Y |G] = 0 for a σ-algebra G.

Then logE(exY | G)≤ (b− a)2x2/8 almost surely for all x ∈R.

PROOF. Fix x ∈R. By convexity of the exponential function we have

exy ≤ b− y
b− ae

xa +
y− a
b− a e

xb, y ∈ [a, b].

Inserting Y in place of y and taking the conditional expectation yields

E[exY | G]≤ b

b− ae
xa − a

b− ae
xb = eL(x(b−a))

almost surely, where L(h) = ha
b−a + log(1 + a−eha

b−a ). Standard calculations show that L(0) =

L′(0) = 0, and the AM-GM inequality implies

L′′(h) =− abeh

(b− aeh)2
≤ 1

4
.

Thus, a second order Taylor expansion yields that L(h)≤ 1
8h

2, and it follows that logE[exY |
G]≤ (b−a)2

8 x2 as desired.

For the next lemma define for s, t ∈ [0,1] with s < t

W s,t =
1

t− s

∫ t

s
Gu(λu − λ̂(n)

u )du.

LEMMA A.6. Let Assumption 4.1 hold true. Then, for any 0 ≤ s < t ≤ 1, it holds that
E(W s,t | G̃n,c1 ) = 0 and that W s,t is sub-Gaussian conditionally on G̃n,c1 with variance factor
ν = (2CC ′)2, that is,

logE(exW
s,t | G̃n,c1 )≤ 2(xCC ′)2

for all s < t and x ∈R.

PROOF. For fixed u ∈ [0,1], note that

E
(
Gu

(
λu − λ̂(n)

u

)
| G̃n,c1

)
= E

(
E
(
Gu

(
λu − λ̂(n)

u

)
| Fs− ∨ G̃n,c1

)
| G̃n,c1

)
= E

(
E (Gu | Fs−)

(
λu − λ̂(n)

u

)
| G̃n,c1

)
= 0,(3)

where we have used that λt − λ̂(n)
t is Ft-predictable conditionally on G̃n,c1 , that Gt is in-

dependent of G̃n,c1 since it is Gt-predictable, and that E (Gs | Fs−) = 0 per definition. By
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applying the conditional Fubini theorem (Schilling, 2017, Theorem 27.17), we conclude that
E(W s,t | G̃n,c1 ) = 0.

We can now use the conditional version of Hoeffding’s lemma formulated in Lemma A.5.
Indeed, we have that for all s < t

|W s,t| ≤ 1

t− s

∫ t

s
|Gu||(λu − λ̂(n)

u )|du

≤ sup
0≤u≤1

|Gu| sup
0≤u≤1

|(λu − λ̂(n)
u )| ≤ 2CC ′

by Assumption 4.1. Hence, for all s < t, Lemma A.5 lets us conclude that
logE(exW

s,t | G̃n,c1 )≤ 2(xCC ′)2, x ∈R.

Then we have the following regarding R(n)
1 .

LEMMA A.7. Under Assumptions 4.2 and 4.1 it holds that supt∈[0,1] |R(n)
1,t |

P/Θ−−→ 0.

PROOF. The proof consists of two parts. First we show that for each t ∈ [0,1] it holds that

R
(n)
1,t

P/Θ−−→ 0

for n→∞. Then we show stochastic equicontinuity of the process R(n)
1 uniformly over Θ,

and by Lemma B.16 it follows that

sup
t∈[0,1]

|R(n)
1,t |

P/Θ−−→ 0.

This is a direct generalization of Theorem 2.1 in Newey (1991). The collection of random
variables (

Gj,s

(
λj,s − λ̂(n)

j,s

))
j∈Jn

are i.i.d. conditionally on G̃n,c1 . Therefore, an application of the conditional Fubini theorem
yields

E(R1,t | G̃n,c1 ) =
1√
|Jn|

∑
j∈Jn

∫ t

0
E
(
Gj,s

(
λj,s − λ̂(n)

j,s

)
| G̃n,c1

)
ds= 0

where the last equality follows from the computation in (3). Whence E(R
(n)
1,t ) = 0, and

Var(R
(n)
1,t ) = E(Var(R

(n)
1,t | G̃n,c1 )), so

Var(R
(n)
1,t ) = E

 1

|Jn|
∑
j∈Jn

Var

(∫ t

0
Gj,s

(
λj,s − λ̂(n)

j,s

)
ds | G̃n,c1

)
= E

(
E

((∫ t

0
Gs

(
λs − λ̂(n)

s

)
ds

)2

| G̃n,c1

))

= E

((∫ t

0
Gs

(
λs − λ̂(n)

s

)
ds

)2
)

≤ (C ′)2E
(∫ t

0

(
λs − λ̂(n)

s

)2
ds

)
≤ (C ′)2h(n)2
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where we have used Assumption 4.1 (ii). Hence by Chebychev’s inequality, it holds for all
ε > 0 that

P(|R(n)
1,t |> ε)≤

Var(R
(n)
1,t )

ε2
≤ (C ′)2h(n)2

ε2
−→ 0

as n→∞ uniformly over Θ by Assumption 4.2. This completes the first part of the proof.
For the second part, we use a chaining argument based on the exponential inequality in
Lemma A.6. We let

W s,t
j =

1

t− s

∫ t

s
Gj,u

(
λj,u − λ̂(n)

j,u

)
du

and

A=
1√
|Jn|

∑
j∈Jn

W s,t
j =

1

t− s(R
(n)
1,t −R

(n)
1,s ).

Using that (W s,t
j )j∈Jn are i.i.d. conditionally on G̃n,c1 we have by Lemma A.6 that E(A) = 0

and that

logE
(
exA
)

= logE
(
E
(
exA | G̃n,c1

))
= logE

∏
j∈Jn

E
(
e

x√
|Jn|

W s,t
j | G̃n,c1

)
≤ logE

(
e
x2ν

2

)
=
x2ν

2
.

Hence A is also sub-Gaussian with variance factor ν. This implies that

P(|A|> η)≤ 2e−
η2ν

2

for all η > 0. Rephrased in terms of R(n)
1 this bound reads

P
(
|R(n)

1,t −R
(n)
1,s |> η(t− s)

)
≤ 2e−

η2ν

2

for all η > 0 and s < t. It now follows from the chaining lemma, Pollard (1984) Lemma
VII.9, that R(n)

1 is stochastic equicontinuous. Since the variance factor ν = (2CC ′)2 does
not depend on θ ∈Θ, we have stochastic equicontinuity uniformly over Θ by Corollary B.19.
This completes the second part of the proof and we are done.

Note that the second part of the proof above establishes stochastic equicontinuity by a
bound on the probability that the increments of the process are large. This is a well known
technique, see, e.g., Example 2.2.12 in van der Vaart and Wellner (1996), from which the
same conclusion will follow if

E(|R(n)
1,t −R

(n)
1,s |p)≤K|t− s|1+r

for K,p, r > 0.
Proposition 4.4 now follows from combining the Lemmas A.7, A.4, and A.3.
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A.6. Proof of Proposition 4.5. We separate the discussion of D(n)
1 and D

(n)
2 into the

Lemmas A.8 and A.10, respectively, which together amount to Proposition 4.5.

LEMMA A.8. Suppose that Assumptions 4.1 and 4.2 hold. Then the stochastic process
D

(n)
:=D

(n)
1 −

√
|Jn| · γ converges in distribution in C[0,1] uniformly over Θ.

PROOF. Let D(n)
:=D

(n)
1 −

√
|Jn| · γ and note that

D
(n)

= |Jn|−
1

2

∑
j∈Jn

Wj ,

where Wj is given by Wj,t :=
∫ t

0 Gj,s(λj,s − λj,s)ds− γt for each j ∈ Jn. By assumption,
the variables {Wj : j ∈ Jn} are i.i.d. with the same distribution as the process W given by
Wt :=

∫ t
0 Gs(λs − λs)ds − γt. For each θ ∈ Θ, let Γθ be a Gaussian process with mean

zero and covariance function (s, t) 7→ cov(W θ
s ,W

θ
t ), which is well-defined by computations

shown below.
We will show thatD(n),θ D/Θ−−→ Γθ inC[0,1] by applying Lemma B.14, which is an example

of Prokhorov’s method of "tightness + identification of limit". We first prove that for any
given k ∈N and 0≤ t1 < t2 < · · ·< tk ≤ 1,

D(n) := (D
(n)
t1 ,D

(n)
t2 , . . . ,D

(n)
tk )

D/Θ−−→ (Γθt1 ,Γ
θ
t2 , . . . ,Γ

θ
tk).

To this end we will apply the uniform CLT of Lundborg, Shah and Peters (2022, Proposition
19) to the sequence of random vectors D(n) ∈ Rk, i.e., the sequence of normalized sums of
i.i.d. copies of W := (Wt1 , . . . ,Wtk). The process (Wt) is mean zero and hence W is also
mean zero. For any t ∈ [0,1] we observe that

Var(Wt) = Var(Wt + γt)≤ E

[(∫ t

0
|Gs| · |λs − λs|ds

)2
]
≤ 2C2(C ′)2.

Therefore the trace of Var(W) is uniformly bounded, which is implies the trace condi-
tion in Proposition 19 of Lundborg, Shah and Peters (2022). From Hölder’s inequality and
Minkowski’s inequality, we note that for any a,b ∈Rk

‖a + b‖32 ≤ k3/2‖a + b‖33 ≤ k3/2(‖a‖3 + ‖b‖3)3 ≤ 8k3/2(‖a‖33 + ‖b‖33).

Combining the above with Assumption 4.1 and Lemma A.2 yields that

E[‖W‖32]≤CkE
[(∫ 1

0
|Gs| · |λs − λs|ds

)3
]

+Ck sup
t∈[0,1]

|γt|3 ≤ 16CkC
3(C ′)3,

where Ck = 8k5/2. Hence Proposition 19 of Lundborg, Shah and Peters (2022) lets us con-
clude that D(n) D/Θ−−→ N (0,Var(W)). By definition of Γθ , this is equivalent to D(n) D/Θ−−→
(Γθt1 ,Γ

θ
t2 , . . . ,Γ

θ
tk).

We now argue that (D
(n)

) and (Γθ) are stochastically equicontinuous uniformly over Θ.
From the definition of Γθ and by Assumption 4.1, it follows that

E[(Γθt − Γθs)
2] = E[(Wt −Ws)

2]≤ (2CC ′(t− s))2.(4)

Hence 1
t−s(Γ

θ
t − Γθs) is Gaussian with a variance bounded over Θ and 0 ≤ s < t ≤ 1. In

particular, it is sub-Gaussian with a uniform variance factor over Θ and 0≤ s < t≤ 1. Since
W is uniformly bounded over Θ, an application of Hoeffding’s Lemma yields that At,sj :=
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1
t−s(Wj,t −Wj,s) is also sub-Gaussian with a variance factor ν that is uniform over Θ, 0≤
s < t≤ 1, and j ∈ Jn. Letting As,t• = 1

t−s(D
(n)
t −D

(n)
s ), we have

EexA
s,t
• =

∏
j∈Jn

E[ex|Jn|
−1/2As,tj ]≤

∏
j∈Jn

e
x2ν

2|Jn| = ex
2ν/2.

Hence As,t• is also sub-Gaussian with a variance factor uniformly over Θ and 0≤ s < t≤ 1.
From the uniform chaining lemma, Corollary B.19, we now conclude that both (Γθ) and

(D
(n)

) are stochastically equicontinuous uniformly over Θ. By Proposition B.20, this means
that the collection (D

(n),θ
) is sequentially tight and that (Γθ), which is constant in n, is

uniformly tight.
Now we have shown convergence of the finite-dimensional marginals and appropri-

ate tightness conditions, so Lemma B.14 lets us conclude that D(n) D/Θ−−→ Γθ weakly in
C[0,1].

Before moving on to the term D
(n)
2 , we first note that Lemma A.8 implies that stochastic

boundedness, as we will use this result in the proof of Theorem 4.6.

LEMMA A.9. Suppose that Assumptions 4.1 and 4.2 hold. ThenD(n)
:=D

(n)
1 −

√
|Jn| ·γ

is stochastically bounded uniformly over Θ, i.e., for every ε > 0 there exists K > 0 such that

lim sup
n→∞

sup
θ∈Θ

P
(
‖D(n),θ‖∞ >K

)
< ε.

PROOF. We have established in the proof of Lemma A.8, under the same conditions, that
D

(n),θ D/Θ−−→ Γθ weakly in C[0,1]. By the uniform continuous mapping theorem formulated in

Proposition B.6, it follows that ‖D(n),θ‖∞
D/Θ−−→ ‖Γθ‖∞. From Bengs and Holzmann (2019)

Theorem 4.1 we then obtain that

lim sup
n→∞

sup
θ∈Θ

P(‖D(n),θ‖∞ >K)≤ sup
θ∈Θ

P(‖Γθ‖∞ >K)≤ E‖Γθ‖∞
K

.

Hence it suffices to argue that E‖Γθ‖∞ is uniformly bounded over Θ. To this end, we note that
Equation (4) shows that square means of the increments of Γθ are smaller that those of a stan-
dard Brownian motion scaled by 2CC ′. Then the Sudakov–Fernique comparison inequality
(Adler et al., 2007, Theorem 2.2.3) allows us to leverage this relationship to the expected uni-
form norms, i.e., E‖Γθ‖∞ ≤ 2CC ′E(supt∈[0,1] |Bt|). It can be verified that E(supt∈[0,1] |Bt|)
is finite, and in fact, equal to

√
π/2 as shown in saz (2019).

LEMMA A.10. Suppose that Assumptions 4.1 and 4.2 hold, and that Gt =Xt−Πt is the
additive residual process. Then D(n)

2

P/Θ−−→ 0 in D[0,1] as n→∞.

PROOF. Note first that the terms in D(n)
2 are i.i.d. conditionally on G̃n,c1 , with the same

distribution as the process ξ given by

ξt =
1√
|Jn|

∫ t

0
(Ĝ(n)

s −Gs)(λs − λs)ds.

Since λt is independent of G̃n,c1 , we have from the innovation theorem that

E(λt | Ft− ∨ G̃n,c1 ) = E(λt | Ft−) = λt.
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For the additive residual process we also note that Gt − Ĝ(n)
t = Π̂

(n)
t −Πt is Ft-predictable

conditionally on G̃n,c1 . It now follows that√
|Jn| ·E[ξt | G̃n,c1 ] =

∫ t

0
E[(Ĝ(n)

s −Gs)(λs − λs) | G̃n,c]ds

=

∫ t

0
E[(Ĝ(n)

s −Gs)(E[λs | Fs− ∨ G̃n,c]− λs) | G̃n,c]ds= 0.

We can therefore conclude that D(n)
2 is mean zero conditionally on G̃n,c. Using that the terms

of D(n)
2 are i.i.d. conditionally on G̃n,c once more, we now obtain that

Var(D
(n)
2,t | G̃n,c) = |Jn| ·Var(ξt | G̃n,c) = E

[(∫ t

0
(Ĝ(n)

s −Gs)(λs − λs)ds
)2 ∣∣∣G̃n,c]

≤ 4C2 ·E
(∫ 1

0
(Ĝ(n)

s −Gs)2ds
∣∣∣G̃n,c) .

Taking expectation of the above we have Var(D
(n)
2,t ) = E(Var(D

(n)
2,t | G̃n,c))≤ 4C2g(n)2. By

Chebyshev’s inequality we get for all ε > 0

P
(
|D(n)

2,t |> ε
)
≤ 4C2g(n)2

ε2
,

and by Assumption 4.2 we conclude that D(n)
2,t

P/Θ−−→ 0 for each t ∈ [0,1].
We know apply the same chaining argument used in the proofs of Lemma A.7 and Lemma

A.8. From Assumption 4.1, we have for 0 ≤ s < t ≤ 1 that |ξt − ξs| ≤ 4
√
|Jn|CC ′(t− s).

Hence the conditional Hoeffding’s lemma (Lemma A.5) yields that

As,tj =
1

t− s

∫ t

s
(Ĝ

(n)
j,s −Gj,s)(λj,s − λj,s)ds

is sub-Gaussian conditionally on G̃n,c1 with a variance factor ν that is uniform over Θ and
s < t (cf. the proof of Lemma A.6). Letting As,t• = 1

t−s(D
(n)
2,t −D

(n)
2,s ), we have for any x ∈R

E
(
exA

s,t
•

)
= E

(
E
[
exA

s,t
• | G̃n,c1

])
= E

( ∏
j∈Jn

E
[
ex|Jn|

−1/2As,tj | G̃n,c1

])
≤
∏
j∈Jn

e
x2ν

2|Jn| = ex
2ν/2,

soAs,t• is also sub-Gaussian uniformly over s < t and Θ. In terms ofD(n)
2 , this means that we

can apply the uniform chaining lemma, Corollary B.19, and conclude that it is stochastically
equicontinuous uniformly over Θ.

SinceD(n)
2,t

P/Θ−−→ 0 for each t ∈ [0,1] and (D
(n)
2 ) is stochastically equicontinuous uniformly

over Θ, Lemma B.16 now lets us conclude that supt∈[0,1] |D(n)
2,t |

P/Θ−−→ 0 and we are done.

A.7. Proof of Theorem 4.6. Before proving Theorem 4.6, we first prove that the collec-
tion of Gaussian martingales from Proposition 4.3 is tight in C[0,1] (see Definition B.7).

LEMMA A.11. Let (U θ)θ∈Θ be the collection of Gaussian martingales from Proposi-
tion 4.3, i.e., U θ is a mean zero continuous Gaussian martingale with variance function Vθ .
Under Assumption 4.1, (U θ)θ∈Θ is uniformly tight in C[0,1].
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PROOF. We will use Theorem 7.3 in Billingsley (2013), which characterizes tightness of
measures in C[0,1]. The first condition of the theorem is trivially satisfied for (U θ)θ∈Θ since
P(U θ0 = 0) = 1 for all θ ∈Θ.

By Proposition C.2, U θ has a distributional representation as a time-transformed Brownian
motion such that (U θt )t∈[0,1]

D
= (BVθ(t))t∈[0,1], where B is a Brownian motion. Recall that

Brownian motion is α-Hölder continuous for α ∈ (0, 1
2), which means that

K(α) = sup
s 6=t

|Bt −Bs|
|t− s|α <∞.

Note also that the collection of variance functions is uniformly Lipschitz by Lemma A.2 with
uniform Lipschitz constant C0, say. It follows that for every ε > 0,

lim
δ→0+

sup
θ∈Θ

P
(

sup
|t−s|<δ

|U θt −U θs |> ε
)

= lim
δ→0+

sup
θ∈Θ

P
(

sup
|t−s|<δ

|BVθ(t) −BVθ(s)|> ε
)

≤ lim
δ→0+

sup
θ∈Θ

P
(
K(α) sup

|t−s|<δ
|Vθ(t)−Vθ(s)|α > ε

)
= lim
δ→0+

P
(
K(α)Cα0 δ

α > ε
)

= 0.

This establishes the second condition of Theorem 7.3 in Billingsley (2013), and we thus
conclude that (U θ)θ∈Θ is uniformly tight in C[0,1].

We now return to the proof of Theorem 4.6.
For part i), we first note that under H0 we can take λt = λt, which implies that both D(n)

1

and D(n)
2 equal the zero-process.

Combining Propositions 4.3 and 4.4 with the uniform version of Slutsky’s theorem formu-
lated in Lemma B.5, we conclude that√

|Jn|γ̂(n) = U (n)︸︷︷︸
D/Θ0−−→Uθ

+R
(n)
1 +R

(n)
2 +R

(n)
3︸ ︷︷ ︸

P/Θ−−→0

+D
(n)
1 +D

(n)
2︸ ︷︷ ︸

=0 under H0

P/Θ0−−→ U θ,

in D[0,1] as n→∞, where U θ is the Gaussian martingale from Proposition 4.3.
For part ii) we can, in addition to Propositions 4.3 and 4.4, apply Proposition 4.5 and

Lemma A.9. Using the triangle inequality on the decomposition (17) yields that√
|Jn| · ‖γ̂(n) − γ‖∞ ≤‖U (n)‖∞ + ‖D(n)

1 −
√
|Jn|γ‖∞

+ ‖R(n)
1 ‖∞ + ‖R(n)

2 ‖∞ + ‖R(n)
3 ‖∞ + ‖D(n)

2 ‖∞.
All the terms in the second line converge in probability to zero uniformly over Θ. Combined
with the convergences established in Proposition 4.3 and Lemma A.8, we obtain that

lim sup
n→∞

sup
θ∈Θ

P
(√
|Jn| · ‖γ̂(n),θ − γθ‖∞ >K

)
≤ sup
θ∈Θ

P
(
‖U θ‖∞ >K/6

)
+ sup
θ∈Θ

P
(
‖Γθ‖∞ >K/6

)
,(5)

where Γθ is the limiting Gaussian process from (the proof of) Lemma A.8. The last term in
(5) can be made arbitrarily small for K sufficiently large by Lemma A.9. Lemma A.11 states
that the family (U θ)θ∈Θ is tight in C[0,1], and hence the family (‖U θ‖∞)θ∈Θ is tight in R≥0.
This implies that the first term in (5) can also be made arbitrarily small for K sufficiently
large. This establishes (26) and we are done.
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A.8. Proof of Proposition 4.7. Consider the decomposition of the variance function es-
timator given by

V̂n(t) =A
(n)
t +B

(n)
t + 2C

(n)
t

where

A
(n)
t =

1

|Jn|
∑
j∈Jn

∫ t

0
G2
j,sdNj,s,

B
(n)
t =

1

|Jn|
∑
j∈Jn

∫ t

0

(
Gj,s − Ĝ(n)

j,s

)2
dNj,s,

C
(n)
t =

1

|Jn|
∑
j∈Jn

∫ t

0
Gj,s

(
Gj,s − Ĝ(n)

j,s

)
dNj,s.

We first consider the asymptotic limit of A(n), which is the empirical mean of |Jn| i.i.d.
samples of the process

∫ t
0 G

2
sdNs. Under Assumption 4.1, we can apply the first part of

Lemma A.1 which states M2
t −Λt is a martingale. We use this fact to note that

E(N2
1 ) = E((M1 + Λ1)2)≤ 2

(
E(M2

1) +E(Λ2
1)
)

= 4E
((∫ 1

0
λsds

)2
)
≤ 4C2.

Now, another use of Assumption 4.1 shows that
∫ t

0 G
2
sdNs has a second moment bounded

by 4(CC ′)2. Thus we can apply the uniform law of large numbers (Shah and Peters, 2020,
Lemma 19) to conclude for each t ∈ [0,1],

A
(n)
t =

1

|Jn|
∑
j∈Jn

∫ t

0
G2
j,sdNj,s

P/Θ−−→ E
(∫ t

0
G2
sdNs

)
= V(t).

Note also that A(n) and V are non-decreasing and that the collection (Vθ)θ∈Θ is uniformly
equicontinuous by Lemma A.2. These are exactly the conditions for Lemma B.13, so we can
automatically conclude that supt∈[0,1] |A(n)

t −V(t)| P/Θ−−→ 0.
Next we show that the remainder terms B(n) and C(n) converge uniformly to zero in

expectation. Similarly to the proof of Lemma A.4, we have under Assumptions 4.1 and 4.2,

E
(

sup
0≤t≤1

B
(n)
t

)
= E(B

(n)
1 ) = E

 1

|Jn|
∑
j∈Jn

∫ 1

0

(
Gj,s − Ĝ(n)

j,s

)2
λj,sds


= E

E

 1

|Jn|
∑
j∈Jn

∫ 1

0

(
Gj,s − Ĝ(n)

j,s

)2
λj,sds | G̃c1


= E

(∫ 1

0

(
Gs − Ĝ(n)

s

)2
λsds

)
≤C · g(n)2 −→ 0

as n→∞ uniformly over Θ. Lastly, we see that

E
∣∣∣∣ sup
0≤t≤1

C
(n)
t

∣∣∣∣≤ E
(

sup
0≤t≤1

|C(n)
t |
)
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≤ E

 1

|Jn|
∑
j∈Jn

sup
0≤t≤1

∫ t

0
|Gj,s||Gj,s − Ĝ(n)

j,s |λj,sds


= E

 1

|Jn|
∑
j∈Jn

∫ 1

0
|Gj,s||Gj,s − Ĝ(n)

j,s |λj,sds


= E

E

 1

|Jn|
∑
j∈Jn

∫ 1

0
|Gj,s||Gj,s − Ĝ(n)

j,s |λj,sds | G̃c1


= E

(∫ 1

0
|Gs||Gs − Ĝ(n)

s |λsds
)

≤CC ′E
(∫ 1

0
|Gs − Ĝ(n)

s |ds
)

≤CC ′ · g(n)−→ 0

as n→∞ uniformly over Θ by Assumption 4.2. Combining the convergences established
for A(n), B(n), and C(n), we get by a generalized Slutsky (Lemma B.11) that

sup
t∈[0,1]

|V̂n(t)−V(t)| P/Θ−−→ 0.

A.9. Proof of Corollary 4.8. Under Assumptions 4.1 and 4.2 we know by Theorem 4.6
and Proposition 4.7 that√

|Jn|γ̂(n),θ D/Θ0−−→ U θ and V̂θn
P/Θ0−−→Vθ(6)

in D[0,1] as n→∞. If we were to show pointwise convergence of the test statistic, this
would now be a straightforward consequence of the continuous mapping theorem. However,
to show uniform convergence, we will need an additional tightness argument.

Let (θn)n∈N ⊂Θ0 be an arbitrary sequence. Proposition B.3 then states that it suffices to
show that there exists a subsequence (θk(n))n∈N ⊆ (θn)n∈N, with k : N→N strictly increas-
ing, such that

(7) lim
n→∞

dBL
(
D̂
θk(n)

k(n) ,J (U θk(n) ,Vθk(n))
)

= 0.

Here dBL denotes the bounded Lipschitz metric defined in Section B. By Lemma A.11, the
collection (U θ)θ∈Θ is tight in C[0,1] under Assumption 4.1. Therefore, Prokhorov’s theorem
(Kallenberg, 2021, Theorem 23.2) asserts that there exists a subsequence (θa(n))⊂ (θn), and

a C[0,1]-valued random variable Ũ such that U θa(n)
D−→ Ũ in C[0,1].

Likewise, Lemma A.2 states that the collection (V θ)θ∈Θ is uniformly bounded and uni-
formly equicontinuous under Assumption 4.1. Thus the Arzelà-Ascoli theorem yields that
there exists a further subsequence (θb(n)) ⊂ (θa(n)) and a function Ṽ ∈ C[0,1] such that
‖Vθb(n) − Ṽ‖∞→ 0.

Combining the convergences of U θb(n) and Vθb(n) with those in Equation (6), it follows
from the triangle inequality of the metric dBL that also√

|Jb(n)|γ̂(b(n)),θb(n)
D−→ Ũ and V̂θb(n)

b(n)

P−→ Ṽ,
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in D[0,1] as n→∞. Now we may use that convergence in Skorokhod topology is equivalent
to convergence in uniform topology whenever the limit variable continuous, see e.g. Kallen-
berg (2021, Theorem 23.9). Hence the convergences above also hold in (D[0,1],‖ · ‖∞).

Since V is deterministic, this implies the joint convergences

(U θb(n) ,Vθb(n))
D−→ (Ũ , Ṽ) and

(√
|Jb(n)|γ̂(b(n)),θb(n) , V̂θb(n)

b(n)

)
D−→ (Ũ , Ṽ)

in the product space D[0,1]×D[0,1] endowed with the uniform topology. Since (Ũ , Ṽ) ∈
C[0,1]× {Vθ : θ ∈Θ0} takes values in the continuity set of J by assumption, the classical
continuous mapping theorem lets us conclude that

J (U θb(n) ,Vθb(n))
D−→J (Ũ , Ṽ) and D̂

θb(n)

b(n) = J
(√
|Jb(n)|γ̂(b(n)),θb(n) , V̂θb(n)

b(n)

)
D−→J (Ũ , Ṽ)

as n→∞. Now another application of the triangle inequality with J (Ũ , Ṽ) as intermediate
value shows that (7) holds with k(n) = b(n), so we are done. �

A.10. Proof of Theorem 5.1. We will apply Corollary 4.8 with the functional J given by

J (f1, f2) = 1(f2 6= 0)
‖f1‖∞√
|f2(1)|

, f1, f2 ∈D[0,1].

Under Assumption 5.1, it suffices to check continuity of J on the set Υ given by

Υ :=C[0,1]× {f ∈C[0,1] | δ1 ≤ |f(1)|} ⊃C[0,1]× {Vθ : θ ∈Θ0}.
To see that J is continuous on Υ in the uniform topology, we note that it can be written as a
composition of the continuous maps

Υ−→ [0,∞)× [δ1,∞), (f1, f2) 7→ (‖f1‖∞, |f2(1)|),

[0,∞)× [δ1,∞)−→R, (x1, x2) 7→ x1√
x2
.

Thus it follows from Corollary 4.8 that

T̂n =

√
|Jn| supt∈[0,1] |γ̂(n)

t |√
V̂n(1)

= J
(√
|Jn|γ̂(n), V̂n

)
D/Θ0−−→J (U,V) =

‖U‖∞
V(1)

.

With (Bu) a Brownian motion it follows by Proposition C.2 that

‖U‖∞√
V(1)

D
=

sup0≤t≤1 |BV(t)|√
V(1)

=
sup0≤u≤V(1) |Bu|√

V(1)

D
= sup

0≤t≤1
|Bt| D= S,(8)

where we have used that V is continuous and that Brownian motion is scale invariant. This
establishes the first part of the theorem.

For the second part, we first note that the distribution of S is absolutely continuous with re-
spect to Lebesgue measure, which follows from Equation (31). Then we can use Theorem 4.1
of Bengs and Holzmann (2019) to conclude that

lim sup
n→∞

sup
θ∈Θ
|P(T̂n ≤ z1−α)− (1− α)|= 0.

It follows from the triangle inequality that

lim sup
n→∞

sup
θ∈Θ

P(Ψα
n = 1) = lim sup

n→∞
sup
θ∈Θ

P(T̂n > z1−α)≤ α.

�



16

A.11. Proof of Theorem 5.2. Let 0 < α < β < 1 be given. The second part of Theo-
rem 4.6 permits us to choose K > 0 sufficiently large such that

lim sup
n→∞

sup
θ∈Θ

P
(

(
√
|Jn|‖γ̂(n),θ − γθ‖∞)>K

)
< 1− β.(9)

We then choose c >K + z1−α
√

1 +C(C ′)2 such that for all θ ∈Ac,n, it holds that√
|Jn|‖γθ‖∞ − z1−α

√
1 + Vθ(1)≥ c− z1−α

√
1 +C(C ′)2 >K,

where we have used Lemma A.2 in the first inequality. The (reverse) triangle inequality now
yields that for any θ ∈Ac,n

(Ψθ
n = 0) = (T̂ θn ≤ z1−α) =

(
‖γ̂(n),θ‖∞ ≤

√
V̂θn(1)

z1−α√
|Jn|

)

⊆
(
‖γθ‖∞ −

∥∥∥γ̂(n),θ − γθ
∥∥∥
∞
≤
√
V̂θn(1)

z1−α√
|Jn|

)

⊆E(n),θ
1 ∪E(n),θ

2 ,

where

E
(n),θ
1 =

(√
|Jn|

∥∥∥γ̂(n),θ − γθ
∥∥∥
∞
>K

)
,

E
(n),θ
2 =

(
V̂θn(1)> 1 + Vθ(1)

)
⊆
(
|V̂θn(1)−Vθ(1)|> 1

)
.

From Proposition 4.7 we know that lim supn→∞ supθ∈Θ P(E
(n),θ
2 ) = 0, so from the choice

of K we conclude that

lim sup
n→∞

sup
θ∈Θ

P(Ψn = 0)≤ lim sup
n→∞

sup
θ∈Θ

P(E
(n),θ
1 )< 1− β.

The desired statement follows from substituting P(Ψn = 0) = 1− P(Ψn = 1) into the above
equation and simplifying.

A.12. Proof of Theorem 5.4. Assume that H0 holds and note that Assumptions 4.1 and
4.2 are satisfied for every sample split Jkn ∪ (Jkn)c, k = 1, . . . ,K .

We consider the decomposition in Equation (17) for each sample split Jkn ∪ (Jkn)c, and
denote the corresponding processes by Uk,(n), Rk,(n)

1 , Rk,(n)
2 , Rk,(n)

3 , Dk,(n)
1 , and Dk,(n)

2 . For
each fold k ∈ {1, . . . ,K}, we can then apply the results in Section 4 for a single data split:

• By Proposition 4.3, we have that Uk,(n) D/Θ−−→ U in D[0,1], where U is a mean zero contin-
uous Gaussian martingale with variance function V .

• By Proposition 4.4, Rk,(n)
`

P/Θ−−→ 0 in (D[0,1],‖ · ‖∞) as n→∞.
• Under H0, the processes Dk,(n)

1 and Dk,(n)
2 are equal to the zero process almost surely.

Recall that the folds are assumed to have uniform asymptotic density, which is equivalent to√
n√

K|Jkn |
→ 1 as n→∞. Thus we may also conclude that for each fixed k and `,

√
n√

K|Jkn |
Uk,(n) D/Θ−−→ U and

√
n

K
√
|Jkn |

R
k,(n)
`

P/Θ−−→ 0,
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where the convergences hold in the Skorokhod and uniform topology, respectively. Now the
key observation is that

U1,(n) ⊥⊥ · · · ⊥⊥ UK,(n).

To see this, note that Uk,(n) is constructed from (Gj ,Mj)j∈Jk only, and by the i.i.d. assump-
tion of the data, the collections (Gj ,Mj)j∈J1 , . . . , (Gj ,Mj)j∈JKn are jointly independent. We
can therefore apply Lemma B.12 iteratively to the sequences

√
n√

K|J1
n|
U1,(n), . . . ,

√
n√

K|JKn |
UK,(n)

to conclude that their sum is uniformly convergent to the sum of K independent copies of U .
Using the convolution property of the Gaussian distribution, it therefore follows that

ǓK,(n) :=
1√
K

K∑
k=1

√
n√

K|Jkn |
Uk,(n) D/Θ−−→ U

in D[0,1] as n→∞. By the uniform Slutsky theorem formulated in Lemma B.11, we can
therefore conclude that

√
nγ̌K,(n) = ǓK,(n) +

K∑
k=1

√
n

K
√
|Jkn |

(
R
k,(n)
1 +R

k,(n)
2 +R

k,(n)
3 +D

k,(n)
1 +D

k,(n)
2

)
D/Θ0−−→ U

in D[0,1] as n→∞. Note that we use θ ∈ Θ0 to ensure that Dk,(n)
1 + D

k,(n)
2 is equal to

the zero process almost surely. Since the limit (U θ)θ∈Θ0
is tight in C[0,1] by Lemma A.11,

Proposition B.9 lets us conclude that
√
n‖γ̌K,(n)‖∞

D/Θ0−−→‖U‖∞.
Consider now the cross-fitted variance estimator at its endpoint

V̌K,n(1) =
1

K

K∑
k=1

1

|Jkn |
∑
j∈Jkn

∫ 1

0

(
Ĝ
k,(n)
j,s

)2
dNj,s.

From Proposition 4.7, we see that V̌K,n(1) is an average ofK variables converging uniformly
in probability to V(1) in the uniform topology. Hence V̌K,n(1) also converges uniformly in
probability to V(1) in the uniform topology. We can then apply Theorem 6.3 of Bengs and
Holzmann (2019), which is a uniform version of Slutsky’s theorem, to conclude that

ŤKn =

√
n‖γ̌K,(n)‖∞
V̌K,n(1)

D/Θ0−−→ ‖U‖∞V(1)

D
= S,

as n→∞, where last equality in distribution was established in (8).
Following the second part of the proof of Theorem 5.1, we conclude in the X-LCT has

uniform asymptotic level. �

B. Uniform stochastic convergence. In this section, we discuss weak convergence of
random variables with values in a metric space uniformly over a parameter set Θ. The unifor-
mity over the parameter set can be used, for example, to establish uniform asymptotic level
as well as power under local alternatives.

The content of this section extends the works of Bengs and Holzmann (2019) and Kasy
(2019), and we especially build upon Appendix B of Lundborg, Shah and Peters (2022), in
which uniform stochastic convergence is considered in separable Banach spaces and Hilbert
spaces. The space space (D[0,1],‖ ·‖∞) of càdlàg functions endowed with the uniform norm
is a Banach space, but it is unfortunately not separable. Therefore we extend the notion of
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uniform stochastic convergence to random variables in metric spaces, with the condition
that the limit is supported on a separable set. This allows to consider uniform weak conver-
gence in two important special cases: i) convergence in (D[0,1],‖ · ‖∞) towards variables in
(C[0,1],‖ · ‖∞), and ii) convergence in D[0,1] endowed with the Skorokhod metric.

The Skorokhod space D[0,1] is, if not specified otherwise, equipped with the complete
Skorokhod metric d◦, which makes it a Polish space, i.e., a complete and separable metric
space. See for example Section 12 in Billingsley (2013) for a discussion of the Skorokhod
space and in particular Equation (12.16) for a definition of d◦.

B.1. Uniform stochastic convergence in metric spaces. Throughout this section we con-
sider a background probability space (Ω,F,P) and let (D, dD) denote a generic metric space.
We define BL1(D) as the set of real-valued functions on D with Lipschitz norm bounded
by 1, that is, functions f : D→ R with ‖f‖∞ ≤ 1 and |f(x) − f(y)| ≤ dD(x, y) for every
x, y ∈D. LetM1(D) denote the set of Borel probability measures on D. We then define the
bounded Lipschitz metric onM1(D) by

dBL(µ,ν) := sup
f∈BL1(D)

∣∣∣ ∫ fdµ−
∫
fdν

∣∣∣, µ, ν ∈M1(D).

For any pair (X,Y ) of D-valued random variables we use the shorthand notation

dBL(X,Y ) = dBL(X(P), Y (P)) = sup
f∈BL1(D)

|E(f(X)− f(Y ))|.

If the underlying metric space is ambiguous for dBL, we will specify that it is the bounded
Lipschitz metric onM1(D) by writing dBL(D). Our interest in the bounded Lipschitz metric
is due to its characterization of weak convergence.

PROPOSITION B.1. Let X,X1,X2, . . . be a sequence of D-valued random variables.
Assume that there exists a separable subset D0 ⊆ D such that P(X ∈ D0) = 1. Then the
following are equivalent:

• The sequence (Xn)n≥1 converges in distribution to X , i.e., for all f ∈Cb(D) it holds that
E[f(Xn)]→ E[f(X)] as n→∞.

• It holds that dBL(Xn,X)→ 0 as n→∞.

PROOF. See Theorem 1.12.2, Addendum 1.12.3, and the following discussion in van der
Vaart and Wellner (1996).

To discuss uniform stochastic convergence, we will for the remaining part of this section
let Θ be fixed set, which is used as a (possible) parameter set for every random variable. We
say that a collection (Xθ)θ∈Θ of D-valued random variables is separable if there exists a
separable subset D0 ⊆ D such that P(Xθ ∈ D0) = 1 for all θ ∈Θ. If D is a separable metric
space, then any collection of D-valued random variables is automatically separable.

Now Lemma B.1 justifies the following generalization of weak convergence uniformly
over Θ:

DEFINITION B.2. Let (Xθ
n)n∈N,θ∈Θ and (Xθ)θ∈Θ be collections of D-valued random

variables and assume that (Xθ)θ∈Θ is separable. We say that:

(i) Xθ
n converges uniformly in distribution over Θ to Xθ in D, and write Xθ

n
D/Θ−−→Xθ , if

lim
n→∞

sup
θ∈Θ

dBL(D)(X
θ
n,X

θ) = 0.
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(ii) Xθ
n converges uniformly in probability over Θ to Xθ in D, and write Xθ

n
P/Θ−−→Xθ , if

lim
n→∞

sup
θ∈Θ

P(dD(Xθ
n,X

θ)> ε) = 0

for every ε > 0.

If for some µ ∈M1(D), it holds that Xθ
n
D/Θ−−→Xθ with Xθ(P) = µ for all θ ∈Θ, we also

write Xθ
n
D/Θ−−→ µ. Similarly, we may replace the limit random variable Xθ by a point x ∈ D

by interpreting x as the constant map (θ,ω) 7→ x for θ ∈Θ and ω ∈Ω.
Note that if the parameter set Θ = {θ0} is a singleton, then each type of uniform con-

vergence reduces to the corresponding classical definition of convergence in distribution or
probability. If D is a separable Banach space, we note that Definition B.2 coincides with
Definition 3 in Lundborg, Shah and Peters (2022).

PROPOSITION B.3. Let (Xθ
n)n∈N,θ∈Θ and (Xθ)θ∈Θ be collections of D-valued random

variables and assume (Xθ)θ∈Θ is separable. Then the following are equivalent:

a) Xθ
n
D/Θ−−→Xθ as n→∞.

b) For any sequence (θn)n∈N ⊆Θ it holds that dBL(Xθn
n ,X

θn)→ 0 as n→ 0.
c) For any sequence (θn)n∈N ⊆ Θ there exists a subsequence (θk(n))n∈N, with k : N→ N

strictly increasing, such that

lim
k→∞

dBL(X
θk(n)

k(n) ,X
θk(n)) = 0.

Moreover, Xθ
n

P/Θ−−→Xθ if and only if for any sequence (θn)n∈N ⊆Θ and any ε > 0 it holds
that

lim
n→∞

P(dD(Xθn
n ,X

θn)> ε) = 0.

PROOF. This is essentially Lemma 1 in Kasy (2019) for D-valued random variables,
except that we have added the equivalent condition c). The proof for the characteriza-
tion of uniform convergence in probability is identical to the one given by Kasy (2019),
so we focus on the equivalence between a), b), and c). To this end, we to prove that
a) =⇒ b) =⇒ c) =⇒ a).

The fact that a) implies b) follows directly from applying the bound

dBL(Xθn
n ,X

θn)≤ sup
θ∈Θ

dBL(Xθ
n,X

θ)

and taking the limit as n→∞. We also see that b) implies c) since any sequence is a subse-
quence of itself.

We show that c) implies a) by contraposition. Assume the negation of a), that is, there
exists an ε > 0 and a sequence (θn)n∈N ⊆Θ such that

dBL(Xθn
n ,X

θn)> ε

for all n ∈ N. Then, for all subsequences (θk(n)) of (θn), it holds that dBL(X
θk(n)

k(n) ,X
θk(n))

does not converge to zero. This implies the negation of c).

Proposition B.3 will allow us to extend many results for classical stochastic convergence
to uniform stochastic convergence.
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COROLLARY B.4. Let (Xθ
n)n∈N,θ∈Θ be a collection of D-valued random variables and

let x ∈D. Then Xθ
n
D/Θ−−→ x if and only if Xθ

n
P/Θ−−→ x.

PROOF. For any sequence (θn)n∈N ⊆Θ, recall thatXθn
n
D−→ x if and only ifXθn

n
P−→ x, see

e.g. Lemma 5.1 in Kallenberg (2021). Hence the statement follows directly from Proposition
B.3 (combined with Proposition B.1).

Our goal is to prove uniform versions of Slutsky’s theorem for D[0,1], Rebolledo’s central
limit theorem, and the chaining lemma for stochastic processes. To prove Slutsky’s lemma
for D[0,1], we first prove a general result for metric spaces.

LEMMA B.5. Let (Xθ,Xθ
n, Y

θ
n )n∈N,θ∈Θ be a collection of D-valued random variables

and assume that (Xθ)θ∈Θ is separable. If Xθ
n
D/Θ−−→Xθ and dD(Xθ

n, Y
θ
n )

P/Θ−−→ 0, then it also

holds that Y θ
n
D/Θ−−→Xθ .

PROOF. By the triangle inequality of the bounded Lipschitz metric, we observe that

sup
θ∈Θ

dBL(Y θ
n ,X

θ)≤ sup
θ∈Θ

dBL(Y θ
n ,X

θ
n) + sup

θ∈Θ
dBL(Xθ

n,X
θ).

The last term converges to zero by the assumption of Xθ
n
D/Θ−−→ Xθ . For the other term, let

ε > 0 and use the partition

(dD(Xθ
n, Y

θ
n )≤ ε)∪ (dD(Xθ

n, Y
θ
n )> ε)

to obtain that

dBL(Xθ
n, Y

θ
n ) = sup

f∈BL1(D)
|E[f(Xθ

n)− f(Y θ
n )]|

≤ ε+ sup
f∈BL1(D)

E[|f(Xθ
n)− f(Y θ

n )|1(dD(Xθ
n, Y

θ
n )> ε)]

≤ ε+ P(dD(Xθ
n, Y

θ
n )> ε).

Taking the supremum over Θ and the limit superior for n→∞ finishes the proof.

The following formulation of the continuous mapping theorem is analogous to Theorem 1
in Kasy (2019). The proof is almost identical, but we repeat it here for completeness.

PROPOSITION B.6. Let (D1, d1) and (D2, d2) be metric spaces, and let Φ: D1 −→ D2

be a Lipschitz continuous map. Let (Xθ
n)n∈N,θ∈Θ and (Xθ)θ∈Θ be collections of D1-valued

random variables, and assume (Xθ)θ∈Θ is separable.

If Xθ
n
D/Θ−−→Xθ in D1, then Φ(Xθ

n)
D/Θ−−→Φ(Xθ) in D2.

PROOF. Note first that if Xθ is in a separable subset D0 ⊆ D1, then the variables Φ(Xθ)
for θ ∈ Θ are all in the separable subset Φ(D0) ⊆ D2. Hence it is well-defined to consider
uniform convergence in distribution towards (Φ(Xθ))θ∈Θ. Let f ∈ BL1(D2) and let K be
the Lipschitz constant of Φ. Consider the map

g : D1 −→R, g(x) = min(1,K−1)f(Φ(x)).
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Then ‖g‖∞ ≤ ‖f‖∞ ≤ 1 and for all x, y ∈D1,

|g(x)− g(y)| ≤min(1,K−1)d2(Φ(x),Φ(y))

≤min(1,K−1)Kd1(x, y)≤ d1(x, y)

Hence g ∈BL1(D1). It follows that

dBL1(D2)(Φ(Xθ
n),Φ(Xθ)) = sup

f∈BL1(D2)
|E[f(Φ(Xθ

n))− f(Φ(Xθ))]|

≤ 1

min(1,K−1)
sup

g∈BL1(D1)
|E[g(Xθ

n)− g(Xθ)]|

≤max(1,K) · dBL1(D1)(X
θ
n,X

θ)

Taking the supremum over Θ and the limit superior as n→∞ finish the proof.

We will also need the following two notions of tightness.

DEFINITION B.7. Let (µθ)θ∈Θ be a family of probability measures on D, and let
(Xθ)θ∈Θ and (Xθ

n)n∈N,θ∈Θ be collections of D-valued random variables.

i) We say that (µθ)θ∈Θ is tight if for any ε > 0, there exists a compact set K ⊆D such that
supθ∈Θ µ

θ(Kc)< ε. We say that (Xθ)θ∈Θ is uniformly tight if the collection of distribu-
tions (Xθ(P))θ∈Θ is tight.

ii) The sequence ((Xθ
n)θ∈Θ)n∈N of collections is said to be sequentially tight if for any

sequence (θn)n∈N ⊂Θ, the sequence of distributions (Xθn
n (P))n∈N is tight.

Definition B.7 i) is a classical concept, whereas sequential tightness was introduced by
Lundborg, Shah and Peters (2022) and relaxes uniform tightness for sequences of variables
parametrized over an infinite set.

The importance of tightness is mainly due to Prokhorov’s theorem (Kallenberg, 2021,
Theorem 23.2), which states that if D is a Polish space1, then (µθ)θ∈Θ is tight if and only if
all sequences in (µθ)θ∈Θ have a weakly convergent subsequence.

The continuous mapping theorem in Proposition B.6 is more restrictive than the classical
theorem as it requires Lipschitz continuity. However, we also have an alternative version of
uniform continuous mapping when the limit variable is tight.

PROPOSITION B.8. Let (D1, d1) and (D2, d2) be Polish spaces, and let (Xθ
n)n∈N,θ∈Θ

and (Xθ)θ∈Θ be collections of D1-valued random variables. Assume (Xθ)θ∈Θ is uniformly
tight, and let Φ: D1 −→D2 be a map that is continuous on the support of (Xθ)θ∈Θ.

If Xθ
n
D/Θ−−→Xθ in D1, then Φ(Xθ

n)
D/Θ−−→Φ(Xθ) in D2.

PROOF. Same as the proof of Proposition 10 in Lundborg, Shah and Peters (2022), but
with norms of differences replaced by metric distances.

B.2. Uniform stochastic convergence in Skorokhod space. In this section we consider the
special case where (D, dD) is the Skorokhod space (D[0,1], d◦). We can also equip D[0,1]
with the uniform norm, ‖x‖∞ = supt∈[0,1] |xt|, and it known that weak convergence based
on either ‖ · ‖∞ or d◦ are equivalent when the limit is continuous. We now extend this result
to stochastic convergence uniformly over Θ.

1The ‘only if’ part does not require separability nor completeness.
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PROPOSITION B.9 (Skorokhod equivalence). Let (Xθ
n)n∈N,θ∈Θ be a collection of

D[0,1]-valued random variables and let (Xθ)θ∈Θ be a uniformly tight collection of C[0,1]-

valued random variables. Then Xθ
n
D/Θ−−→ Xθ in (D[0,1], d◦) if and only if Xθ

n
D/Θ−−→ Xθ in

(D[0,1],‖ · ‖∞). In the affirmative, ‖Xθ
n‖∞

D/Θ−−→ ‖X‖∞.

PROOF. To avoid ambiguity in the topology on D[0,1], we will throughout this proof
use D◦ to denote the metric space (D[0,1], d◦) and we use D∞ to denote the Banach space
(D[0,1],‖ · ‖∞). Note also that C[0,1] is separable within D∞, so (Xθ)θ∈Θ is separable, and

hence the convergence Xθ
n
D/Θ−−→Xθ is well-defined in the non-separable space D∞.

The ‘if’ part is clear since d◦(x, y)≤ ‖x− y‖∞ for all x, y ∈D[0,1].

For the ‘only if’ part, assume that Xθ
n
D/Θ−−→Xθ in D◦ and let (θn)⊆Θ be an arbitrary se-

quence. Since (Xθn(P)) is tight, Prokhorov’s Theorem asserts that there exists a subsequence

(θk(n)) and a probability distribution µ on C[0,1] such that Xθk(n)(P)
wk−−→ µ in D◦. By the

triangle inequality

dBL(D◦)(X
θk(n)

k(n) , µ)≤ dBL(D◦)(X
θk(n)

k(n) ,X
θk(n)) + dBL(D◦)(X

θk(n) , µ)→ 0, n→ 0.

This shows that also X
θk(n)

k(n) (P)
wk−−→ µ in D◦. Now we can use that weak convergence in

the Skorokhod topology and the uniform topology are equivalent when the limit is contin-
uous (Kallenberg, 2021, Theorem 23.9 (iii)). We therefore conclude that the convergences
Xθk(n)(P)

wk−−→ µ and Xθk(n)

k(n) (P)
wk−−→ µ also hold in D∞. But then another use of the triangle

inequality shows that

dBL(D∞)(X
θk(n)

k(n) ,X
θk(n))≤ dBL(D∞)(X

θk(n)

k(n) , µ) + dBL(D∞)(µ,X
θk(n))→ 0.

Since (θk(n)) is a subsequence of the arbitrarily chosen sequence (θn), we conclude that

Xθ
n
D/Θ−−→Xθ in D∞ by Proposition B.3.

Finally, as the uniform norm is Lipschitz continuous as a map from D∞ to R, the contin-
uous mapping theorem formulated in Proposition B.6 yields that

Xθ
n
D/Θ−−→Xθ in D∞ =⇒ ‖Xθ

n‖∞
D/Θ−−→ ‖X‖∞.

This establishes the last part of the lemma.

Using ‖µ‖∞ to denote the pushforward measure for any µ ∈M1(D([0,1])) we restate the
result above for a fixed limit distribution.

COROLLARY B.10. Let (Xθ
n)n∈N,θ∈Θ be a collection ofD[0,1]-valued random variables

and let µ be a probability measure on C[0,1]. Then Xθ
n
D/Θ−−→ µ in (D[0,1], d◦) if and only if

Xθ
n
D/Θ−−→ µ in (D[0,1],‖ · ‖∞). In the affirmative, ‖Xθ

n‖∞
D/Θ−−→ ‖µ‖∞.

PROOF. Since µ is a probability measure on the Polish space C[0,1], it is, in particular,
tight (Billingsley, 2013, Theorem 1.3). Hence the statement is a special case of Proposi-
tion B.9.

Now we are ready to prove a uniform version of Slutsky’s theorem in the Skorokhod space.

LEMMA B.11 (Uniform Slutsky in Skorokhod space). Let (Xθ,Xθ
n, Y

θ
n )n∈N,θ∈Θ be a

collection of D[0,1]-valued random variables such that Y θ
n

P/Θ−−→ 0 and Xθ
n
D/Θ−−→ Xθ in

D[0,1]. Then it holds that Xθ
n + Y θ

n
D/Θ−−→Xθ .
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PROOF. Since Y θ
n

P/Θ−−→ 0, Corollary B.10 implies that ‖Y θ
n ‖∞

D/Θ−−→ 0, and Corollary B.4

implies that ‖Y θ
n ‖∞

P/Θ−−→ 0. Using the trivial estimate d◦(x + y,x) ≤ ‖(x + y) − x‖∞ =

‖y‖∞ for x, y ∈D[0,1], it follows that d◦(Xθ
n + Y θ

n ,X
θ
n)

P/Θ−−→ 0. Combining the latter with

Xθ
n
D/Θ−−→Xθ , the desired conclusion now follows from Lemma B.5.

We also have a related result for sums of independent sequences.

LEMMA B.12. Let (Xθ
n, Y

θ
n )n∈N,θ∈Θ be a collection of D[0,1]-valued random variables

and let (Xθ)θ∈Θ and (Y θ)θ∈Θ be uniformly tight collections of C[0,1]-valued random vari-

ables. Assume that Xθ
n
D/Θ−−→ Xθ and Y θ

n
D/Θ−−→ Y θ in D[0,1], and that for each θ ∈ Θ and

n ∈ N, it holds that Xθ
n ⊥⊥ Y θ

n . Let Zθ have distribution Xθ(P) ∗ Y θ(P), that is, the same
distribution as the sum of two independent copies of each of Xθ and Y θ .

Then it also holds that Xθ
n + Y θ

n
D/Θ−−→ Zθ in (D[0,1],‖ · ‖∞).

PROOF. We may assume without loss of generality that Xθ ⊥⊥ Y θ and that Zθ = Xθ +
Y θ . Let (θn)⊆Θ be an arbitrary sequence. By tightness of (Xθ)θ∈Θ and (Y θ)θ∈Θ, we can
apply Prokhorov’s theorem twice to obtain probability measures µ and ν on C[0,1], and

a subsequence (θk(n)), such that Xθk(n)(P)
wk−−→ µ and Y θk(n)(P)

wk−−→ ν. Hence the product
measures converge,

Xθk(n)(P)⊗ Y θk(n)(P)
wk−−→ µ⊗ ν,

in C[0,1] as n→∞, see, for example, Theorem 2.8 (ii) in Billingsley (2013).

Since Xθ
n
D/Θ−−→Xθ in D[0,1] by assumption and (Xθ) is uniformly tight in C[0,1], Propo-

sition B.9 implies that the convergence also holds in (D[0,1],‖ · ‖∞). The triangle inequality
now yields

dBL(X
θk(n)

k(n) , µ)≤ dBL(X
θk(n)

k(n) ,X
θk(n)) + dBL(Xθk(n) , µ)→ 0,

so also X
θk(n)

k(n) (P)
wk−−→ µ in (D[0,1],‖ · ‖∞). An analogous computation shows that

Y
θk(n)

k(n) (P)
wk−−→ ν, and hence also

X
θk(n)

k(n) (P)⊗ Y θk(n)

k(n) (P)
wk−−→ µ⊗ ν

in the product space D[0,1]×D[0,1] endowed with the uniform product topology. From the
independence statements Xθ ⊥⊥ Y θ and Xθ

n ⊥⊥ Y θ
n , we have thus shown that

(Xθk(n) , Y θk(n))
D−→ µ⊗ ν and (X

θk(n)

k(n) , Y
θk(n)

k(n) )
D−→ µ⊗ ν

in the uniform product topology. Since addition +: D[0,1]×D[0,1]→D[0,1] is continuous
with respect to this topology, we conclude by the classical continuous mapping theorem that

Zθk(n) =Xθk(n) + Y θk(n)
D−→ µ ∗ ν and X

θk(n)

k(n) + Y
θk(n)

k(n)

D−→ µ ∗ ν.
It now follows that

dBL(X
θk(n)

k(n) + Y
θk(n)

k(n) ,Z
θk(n))

≤ dBL(X
θk(n)

k(n) + Y
θk(n)

k(n) , µ ∗ ν) + dBL(µ ∗ ν,Zθk(n))→ 0.

Since (θk(n)) is a subsequence of the arbitrarily chosen sequence (θn), we conclude that

Xθ
n + Y θ

n
D/Θ−−→ Zθ in (D[0,1],‖ · ‖∞) by Proposition B.3.
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We also need the following lemma, which is a generalization of the classical result: point-
wise convergence of a sequence of monotone functions towards a continuous limit is in fact
uniform over compact intervals.

LEMMA B.13. Let (Xθ
n)n∈N,θ∈Θ be a collection ofD[0,1]-valued random variables with

non-decreasing sample paths. Let (fθ)θ∈Θ ⊂ C[0,1] be a uniformly equicontinuous collec-

tion of non-decreasing functions. If Xθ
n(t)

P/Θ−−→ fθ(t) for each t ∈ [0,1], then it also holds
that

sup
t∈[0,1]

|Xθ
n(t)− fθ(t)| P/Θ−−→ 0.

PROOF. Let ε > 0. By uniform equicontinuity we can find 0 = t1 < · · ·< tk = 1 such that
fθ(ti)−fθ(ti−1)< ε/2 for all θ and i. Using thatXθ

n and fθ are non-decreasing, we observe
that for ti−1 ≤ t≤ ti:

Xθ
n(t)− fθ(t)≤Xθ

n(ti)− fθ(ti) + ε/2,

Xθ
n(t)− fθ(t)≥Xθ

n(ti−1)− fθ(ti−1)− ε/2.
Combining the inequalities over the entire grid we have

sup
t∈[0,1]

|Xθ
n(t)− fθ(t)| ≤ max

i=0,...,k
|Xθ

n(ti)− fθ(ti)|+ ε/2.

By assumption, Xθ
n(t)

P/Θ−−→ fθ(t) for each t, and in particular

max
i=0,...,k

|Xθ
n(ti)− fθ(ti)|

P/Θ−−→ 0

as n→∞. We therefore conclude that

sup
θ∈Θ

P
(

sup
t∈[0,1]

|Xθ
n(t)− fθ(t)|> ε

)
≤ sup
θ∈Θ

P
(

max
i=0,...,k

|Xθ
n(ti)− fθ(ti)|> ε/2

)
−→ 0

as n→∞.

The last auxiliary result of this section is an example of Prokhorov’s method of “tightness
+ identification of limit”.

LEMMA B.14. Let (D, dD) be either (C[0,1],‖·‖∞) or (D[0,1], d◦), and let (Xθ,Xθ
n)n∈N,θ∈Θ

be a collection of D-valued random variables with (Xθ)θ∈Θ separable. Suppose that

• The finite dimensional marginals converge uniformly: for any 0≤ t1 < · · ·< tk ≤ 1

πt1,...,tk(X
θ
n)

D/Θ−−→ πt1,...,tk(X
θ), n→∞,

where πt1,...,tk : D→Rk is the projection given by πt1,...,tk(x) = (x(t1), . . . , x(tk)).
• (Xθ

n)n∈N,θ∈Θ is sequentially tight.
• (Xθ)n∈N,θ∈Θ is uniformly tight.

Then Xθ
n
D/Θ−−→Xθ as n→∞.

PROOF. The statement is analogous to Proposition 18 in Lundborg, Shah and Peters
(2022), the difference being that the functionals 〈·, h〉 in Lundborg, Shah and Peters (2022)
have been replaced by the functionals πt1,...,tk .

The proof of Lundborg, Shah and Peters (2022) also works in our case, given that the
finite dimensional marginals form a separating class for the both the Borel algebra on C[0,1]
and the Borel algebra on D[0,1]. This is established in Billingsley (2013), Example 1.3 and
Theorem 12.5 (iii).
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B.3. Chaining in time uniformly over a parameter. We extend the basic chaining ar-
guments to hold uniformly over Θ. Our arguments closely follow those of Pollard (1984,
Chapter VII.2.) and Newey (1991). The results are formulated for processes indexed over a
general metric space T , but we will only apply the results in the case T = [0,1]. We have the
following extension of stochastic equicontinuity to the uniform setting.

DEFINITION B.15. A collection of sequences(
Z(n),θ

)
n∈N,θ∈Θ

=
(
Z

(n),θ
t

)
t∈T,n∈N,θ∈Θ

of stochastic processes indexed over a metric space (T,d) is called stochastically equicontin-
uous uniformly over Θ if for all ε, η > 0 there exists δ > 0 such that

lim sup
n→∞

sup
θ∈Θ

P
(

sup
s,t∈T : d(s,t)≤δ

∣∣Z(n),θ
s −Z(n),θ

t

∣∣> ε
)
< η.

In Section 2.8.2 of van der Vaart and Wellner (1996), the same definition is given in the
context of empirical processes. Recall that we write, e.g., Z(n) as a shorthand for Z(n),θ

and let the dependency on θ be implicit for notational ease. We also write supd(s,t)≤δ as a
shorthand for sups,t∈T : d(s,t)≤δ . Definition B.15 is a direct extension of pointwise stochastic
equicontinuity. Accordingly, Theorem 2.1 from Newey (1991) generalizes as follows:

LEMMA B.16. Let (Z
(n)
t )t∈T,n∈N be a sequence of stochastic processes indexed by a

compact metric space T . Assume that (Z
(n)
t ) is stochastically equicontinuous uniformly over

Θ and that for each t ∈ T it holds that Z(n)
t

P/Θ−−→ 0. Then supt∈T |Z(n)
t |

P/Θ−−→ 0 as n→∞.

PROOF. Let ε, η > 0 be given, and let δ > 0 be the corresponding distance obtained from
the uniform stochastic equicontinuity of (Z(n)). By compactness of T there exists a finite set
T ∗ ⊆ T such that T =

⋃
t∈T ∗ B(t, δ). By the triangle inequality we get that

sup
t∈T
|Z(n)
t |= sup

t∈T ∗
sup

s∈B(t,δ)
|Z(n)
s | ≤ sup

t∈T ∗
|Z(n)
t |+ sup

t∈T ∗
sup

s∈B(t,δ)
|Z(n)
s −Z(n)

t |.

Since T ∗ is finite, it follows that supt∈T ∗ |Z(n)
t |

P/Θ−−→ 0, which combined with the inequality
implies that

lim sup
n→∞

sup
θ∈Θ

P
(

sup
t∈T
|Z(n)
t |> 2ε

)
≤ 0 + lim sup

n→∞
sup
θ∈Θ

P
(

sup
t∈T ∗

sup
s∈B(t,δ)

|Z(n)
t −Z(n)

t |> ε
)
≤ η.

As ε, η > 0 were chosen arbitrarily, we conclude that supt∈T |Z(n)
t |

P/Θ−−→ 0.

To establish uniform stochastic equicontinuity we extend the chaining lemma to a uniform
setting. To formulate the theorem we first need some classical definitions related to chaining.

DEFINITION B.17. Let T be a compact metric space. A subset T ∗ ⊆ T is called a δ-net
if
⋃
t∈T ∗ B(t, δ) = T . The covering number

N(δ) =N(δ,T ) := min{ |T ∗| : T ∗ ⊆ T,T ∗ is a δ-net}
is the smallest possible cardinality of a δ-net, which is finite by compactness. The associated
covering integral is

J(δ) =

∫ δ

0
(2 log(N(ε)/ε))

1

2 dε, 0≤ δ ≤ 1.
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LEMMA B.18. Let (T,d) be a metric space with finite covering integral J(·) and let
(Zθt )t∈T,θ∈Θ be a collection of stochastic processes indexed by T with continuous sample
paths. Assume there is a uniform constant ς > 0 such that, for all s, t ∈ T and η > 0,

sup
θ∈Θ

P
(
|Zθs −Zθt |> η · d(s, t)

)
≤ 2e−

η2

2ς2 .

Then, for all 0< ε< 1,

sup
θ∈Θ

P
(

sup
d(s,t)≤ε

|Zθs −Zθt |> 26ςJ(ε)
)
≤ 2ε.

PROOF. The lemma is a direct consequence of classical chaining lemma (Pollard, 1984,
page 144). For each θ ∈Θ, the conditions of the chaining lemma are met for (Zθt )t∈T with
sub-exponential factor ς . This implies, in particular, that for any θ ∈Θ and 0< ε< 1,

P
(

sup
d(s,t)≤ε

|Zθs −Zθt |> 26ςJ(ε)
)
≤ 2ε,

which is equivalent to the conclusion of the lemma.

This immediately implies the following corollary.

COROLLARY B.19. Let (T,d) be a metric space with finite covering integral J(·) and let
(Z(n),θ) be a sequence of stochastic processes on T with continuous sample paths. Assume
there exists a constant ς > 0 such that, for all s, t ∈ T and η > 0 and n ∈N,

sup
θ∈Θ

P
(
|Z(n),θ
s −Z(n),θ

t |> η · d(s, t)
)
≤ 2e−

η2

2ς2 .

Then (Z(n)) is stochastically equicontinuous uniformly over Θ.

For stochastic processes with continuous sample paths, stochastic equicontinuity turns out
to be equivalent to sequential tightness (Definition B.7 ii)).

PROPOSITION B.20. Let (Z(n),θ)n∈N,θ∈Θ be a collection of C[0,1]-valued random vari-
ables such that P(Z

(n),θ
0 = 0) = 1 all n ∈N and θ ∈Θ. The following are equivalent:

1. (Z(n),θ) is stochastically equicontinuous uniformly over Θ.
2. (Z(n),θ) is sequentially tight.

PROOF. The equivalence is a straightforward application of Theorem 7.3 in Billingsley
(2013). Condition (i) of the aforementioned theorem is satisfied for any sequence of measures
from the collection (Z(n),θ(P))n∈N,θ∈Θ, since Z(n),θ

0 = 0 almost surely for all n and θ. For
any sequence (θn)⊆Θ, stochastic equicontinuity uniformly over Θ implies condition (ii) of
Theorem 7.3 in Billingsley (2013) for the measures ((Z(n),θn)(P)). We therefore conclude
that stochastic equicontinuity uniformly over Θ implies sequential tightness.

On the contrary, assume that (Z(n),θ) is sequentially tight and let ε, η > 0 be given. For
each n, choose θn such that

sup
θ∈Θ

P
(

sup
|s−t|≤δ

∣∣Z(n),θ
s −Z(n),θ

t

∣∣≥ ε)≤ P
(

sup
|s−t|≤δ

∣∣Z(n),θn
s −Z(n),θn

t

∣∣≥ ε)+
1

n
.

Since ((Z(n),θn)(P)) is tight by assumption, condition (ii) of Theorem 7.3 asserts that there
exists δ,N > 0 such that

P
(

sup
|s−t|≤δ

∣∣Z(n),θn
s −Z(n),θn

t

∣∣≥ ε)< η

for n≥N . Combining both inequalities and taking the limit superior finish the proof.
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C. The Functional Martingale CLT. In this section we state Rebolledo’s martingale
CLT (Rebolledo, 1980) based on its formulation in Andersen et al. (1993), and then we
extend the result to a uniform version without fixed variance functions. The one-dimensional
case suffices for our purpose, so for simplicity, every local martingale in the following is a
real-valued stochastic process. For a local square integrable martingale (Mt), we let 〈M〉(t)
denote its quadratic characteristic. The theorem requires a condition on the jumps of the local
martingales, for which we will need the following definition.

DEFINITION C.1. Let Mt be a local square integrable Ft-martingale. For any ε > 0, we
define 〈Mε〉(t) to be the quadratic characteristic of the pure jump-process given by

t 7→
∑

0≤s≤t
Ms1(|∆Ms|> ε).

We also need a representation of Gaussian martingales, which ensures their continuity.

PROPOSITION C.2. Let (Bt)t∈[0,∞) be a Brownian motion on [0,∞) with continuous
sample paths. For every non-decreasing f ∈C[0,1], the process (Bf(t))t∈[0,1] is a continuous
mean zero Gaussian martingale on [0,1] with variance function f .

Consequently, if U = (Ut)t∈[0,1] is a mean zero Gaussian martingale with a continuous
variance function V , then U has the distributional representation

(10) (Ut)t∈[0,1]
D
= (BV (t))t∈[0,1].

PROOF. Let f ∈ C[0,1] be non-decreasing. From the properties of Brownian motion, it
follows directly that the time-transformed process (Bf(t))t∈[0,1] is a mean zero Gaussian
process with variance function f . Since f is continuous, each sample path t 7→ Bf(t) is a
composition of continuous functions and thus continuous itself. Since f is non-decreasing,
the time-transformation also preserves the martingale property. This establishes the first part.

For the second part, recall that the covariance function of a martingale is determined by its
variance function. Hence the first part implies that the right-hand side in (10) is a Gaussian
process with the same mean and covariance structure as the left-hand side. Since the distri-
bution of a Gaussian processes is uniquely determined by its mean and covariance structure,
the equality in distribution follows.

Proposition C.2 is a simple, distributional variant of the Dubins-Schwarz theorem, see Re-
vuz and Yor (2013), Chapter V, Theorems 1.6 and 1.7. The Dubins-Schwarz theorem implies
that, in fact, Ut = BV (t) for t ∈ [0,1], where B is a Brownian motion on [0, V (1)]. For the
purpose of this work we only need the simpler, distributional equality (10).

We can now formulate Rebolledo’s CLT for local martingales. To this end, note that Propo-
sition C.2 ensures the existence of the continuous Gaussian limit martingale U when the
variance function V is continuous.

THEOREM C.3 (Rebolledo’s CLT). Let (U (n))n∈N be a sequence a local square inte-
grable martingales in D[0,1], possibly defined on different sample spaces and with different
filtrations for each n ∈N. Let U be a continuous Gaussian martingale with continuous vari-
ance function V : [0,1]→ [0,∞), and assume that U (n)

0 = U0 = 0. Suppose that for every
t ∈ [0,1] and ε > 0,

〈U (n)〉(t) P−→ V (t) and 〈U (n)
ε 〉(t)

P−→ 0,

as n→∞. Then it holds that U (n) D−→ U in D[0,1] as n→∞.
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PROOF. This is a special case of Theorem II.5.2 in Andersen et al. (1993).

The general formulation of Rebolledo’s CLT above, which allows for n-dependent sample
spaces and filtrations, can now be leveraged to obtain a uniform version via the sequential
characterization of uniform stochastic convergence.

THEOREM C.4 (Uniform Rebolledo CLT). For each n ∈N and θ ∈Θ:

• Let F (n),θ = (F (n),θ
t )t∈[0,1] be a filtration satisfying the usual conditions.

• Let U (n),θ
t be a local square integrable F (n),θ

t -martingale in D[0,1] with U (n),θ
0 = 0.

• Let V θ : [0,1]→ [0,∞) be a non-decreasing function with V θ(0) = 0.

Assume that (V θ)θ∈Θ is uniformly equicontinuous and that supθ∈Θ V
θ(1)<∞. Assume fur-

ther that for every ε > 0 and t ∈ [0,1],

〈U (n),θ〉(t) P/Θ−−→ V θ(t) and 〈U (n),θ
ε 〉(t) P/Θ−−→ 0,(11)

as n→∞. Then it holds that

U (n),θ D/Θ−−→ U θ, n→∞,

in D[0,1] uniformly over Θ, where for each θ ∈Θ, U θ is a mean zero continuous Gaussian
martingale on [0,1] with variance function V θ .

PROOF. We will use the characterization of uniform convergence as stated in Proposi-
tion B.3 c). To this end, let (θn)⊆Θ be an arbitrary sequence. By assumption (Vθn)n∈N is a
uniformly equicontinuous and bounded sequence of functions on a compact interval, so the
Arzelà–Ascoli theorem states that there exists a subsequence θk(n), with k : N→ N strictly
increasing, and a function Ṽ ∈C[0,1] such that

sup
t∈[0,1]

|V θk(n)(t)− Ṽ (t)| −→ 0, n→∞.

Since each function V θk(n) is non-decreasing, it follows that Ṽ is non-decreasing. It also holds
that Ṽ (0) = limn→∞ V

θk(n)(0) = 0, and therefore Ṽ is the variance function of a continuous
Gaussian martingale Ũ with Ũ0 = 0.

By assumption of the convergences in (11), we may conclude that

|〈U (k(n)),θk(n)〉(t)− Ṽ (t)| ≤ |〈U (k(n)),θk(n)〉(t)− V θk(n)(t)|︸ ︷︷ ︸
P−→0

+ |V θk(n)(t)− Ṽ (t)|︸ ︷︷ ︸
→0

P−→ 0

and that 〈U (k(n)),θk(n)

ε 〉(t)→ 0 as n→∞. Thus we have established the conditions of the
classical Rebolledo CLT – Theorem C.3 – for the sequence U (k(n)),θk(n) and the Gaussian
martingale Ũ with variance function Ṽ . We therefore conclude that

U (k(n)),θk(n)
D−→ Ũ

in D[0,1] as n→∞.
We now establish that the sequence (U θk(n)) also converges in distribution to Ũ in C[0,1],

and in particular also in D[0,1]. To this end, we use the characterization of convergence in
distribution in C[0,1] from Theorem 7.5 in Billingsley (2013), which states that we need to
show that
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1. For all 0≤ t1 < · · ·< tm ≤ 1, it holds that

(U
θk(n)

t1 , . . . ,U
θk(n)

tm )
D−→ (Ũt1 , . . . , Ũtm), n→∞.

2. For all ε > 0

lim
δ→0+

lim sup
n→∞

P
(

sup
|t−s|<δ

|U θk(n)

t −U θk(n)

s |> ε
)

= 0.

The first condition is clear since all the marginals are multivariate Gaussian, and the mean
and variance of the sequence converges to the mean and variance of the limit distribution.
The second condition follows from the same computation as in the proof of Lemma A.11. By
Theorem 7.5 in Billingsley (2013) we therefore conclude that

U θk(n)
D−→ Ũ , for n→∞,

in C[0,1], and hence also in D[0,1].
We can now apply the triangle inequality for the bounded Lipschitz metric to conclude

that

dBL(U (k(n)),θk(n) ,U θk(n))≤ dBL(U (k(n)),θk(n) , Ũ) + dBL(Ũ ,U θk(n))−→ 0.

Since (θn) ⊆ Θ was an arbitrary sequence, we conclude that U (n),θ D/Θ−−→ U θ by Proposi-
tion B.3.

The following proposition gives explicit expressions for the quadratic characteristics that
appear in Rebolledo’s CLT in the special case where the local martingales are given as
stochastic integrals with respect to a compensated counting processes.

PROPOSITION C.5. Let N1, . . . ,Nn be counting processes and assume that for each j =

1, . . . , n, Nj has an absolutely continuous F (n)
t -compensator Λj,t such that Mj,t = Nj,t −

Λj,t is a locally square integrableF (n)
t -martingale. LetH1, . . . ,Hn be locally boundedF (n)

t -
predictable processes, and define the process U (n)

t =
∑n

j=1

∫ t
0 Hj,sdMj,s. Then U

(n)
t is a

local square integrable F (n)
t -martingale, and for any t, ε > 0 it holds that

〈U (n)〉(t) =

n∑
j=1

∫ t

0
H2
j,sdΛj,s,

〈U (n)
ε 〉(t) =

n∑
j=1

∫ t

0
H2
j,s1(|Hj,s| ≥ ε)dΛj,s.

PROOF. See the discussion following Theorem II.5.2 in Andersen et al. (1993), in partic-
ular equations (2.5.6) and (2.5.8).

D. Estimation of λ and G. The asymptotic theory for estimation of the LCM crucially
relies on λ̂(n) and Ĝ(n) being consistent, and more importantly, having a product error decay-
ing at an n−1/2-rate. Therefore, a central question when applying the test, is how to model λ
and G.

In principle, we could use parametric models to learn λ̂(n) and Ĝ(n), and under such mod-
els it should be possible to achieve n−1/2-rates. For example, if we consider a parametrization
(t, θ) 7→ λt(θ) which is κ(t)-Lipschitz in θ ∈Θ⊆Rp for each t, then

h(n)2 =E

(∫ 1

0
(λt(θ0)− λt(θ̂(n)))2dt

)
≤ ‖κ‖2L2([0,1])E‖θ0 − θ̂(n)‖2Rp .
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Thus the rates from parametric asymptotic theory can be converted to rates for g and h.
However, it is of greater interest if sufficient rates can be achieved with nonparametric

estimators. Below we give concrete examples of nonparametric models and discuss which
rates are achievable. For simplicity, we focus on the case where Ft =FN,Zt and where Gt =
Xt −Πt as in the introductory example.

D.1. Nonparametric functional estimation of Π. As seen in Section 6.1, assumptions on
the form of Π turn the general estimation problem into a concrete problem of estimating a
function.

If the system is Markovian, it can be reasonable to assume a functional concurrent model.
The model asserts that Πt = µ(t,Zt) for a bivariate function µ, and a survey of methods for
estimating µ is given by Maity (2017). Notably, Jiang and Wang (2011) achieve an n−1/3-
rate of g(n) under certain regularity and moment assumptions, see their Theorem 3.3. That
result also holds if Z is replaced by a linear predictor βTZ of several covariates.

Consider again the historical linear regression model from Section 6.1, and assume that
the effect of Z on X is homogeneous over time. That is, ρX(s, t) = ρ̃X(t− s) for some func-
tion ρ̃X . This submodel is known as the functional convolution model, since Π can be written
as the convolution of Z and ρ̃X . Applying the Fourier transform converts it into a (com-
plex) linear concurrent model, so by Plancherel’s theorem one can leverage the convergence
rates from the concurrent model. Manrique (2016, Theorem 16) uses this idea to transfer
the n−1/4-rate of the functional ridge regression estimator (Manrique, Crambes and Hilgert,
2018) to the convolution model, which holds under modest moment conditions on the data.
With additional distributional assumptions, we conjecture that faster rate results for the linear
concurrent model can also be leveraged to the convolution model. Şentürk and Müller (2010)
consider a similar model under the assumption that

ρX(s, t) = 1(t−∆≤ s≤ t)ρ̃1
X(t)ρ̃2

X(t− s),
for two functions ρ̃1

X and ρ̃2
X and a lag ∆> 0. They establish a pointwise rate result for the

response curve, but it is not obvious how to cast their result as a polynomial rate for g(n).
For the full historical functional linear model we are not aware of any published rate

results. Yuan and Cai (2010); Cai and Yuan (2012) establish rates on the prediction error
for scalar-on-function regression, and Yao, Müller and Wang (2005) establish various rates
for function-on-function regression, but in a non-historical setting. Based on the former, we
give a heuristic for which rates are achievable for g(n) in this model. If Π̂ is based on a kernel
estimate ρ̂(n)

X of ρX , then Tonelli’s theorem yields

g(n)2 =
∣∣∣∣∣∣∣∣∣Π− Π̂(n)

∣∣∣∣∣∣∣∣∣2
2

= E

(∫ 1

0

(∫ t

0
(ρX(s, t)− ρ̂(n)

X (s, t))Zsds

)2

dt

)

=

∫ 1

0
E

((∫ t

0
(ρX(s, t)− ρ̂(n)

X (s, t))Zsds

)2
)

dt.

Theorem 4 in Cai and Yuan (2012) asserts that we, under certain regularity conditions, can
estimate ρX(·, t) such that

E

((∫ t

0
(ρX(s, t)− ρ̂(n)

X (s, t))Zsds

)2
)

decays at a n−2rt/(2rt+1)-rate for a fixed t. Here rt is a constant describing the eigenvalue
decay of a certain operator related to the autocovariance of Z and the regularity of ρX . As a
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concrete example, if Z is a Wiener process and ρX(·, t) ∈Wm
2 ([0, t]) is in the m-th Sobolev

space for each t > 0, then rt = 1 +m and g(n) will converge at an n−(1+m)/(2m+3)-rate, see
the discussion after Corollary 8 in Yuan and Cai (2010). Based on these arguments, we believe
that the desired n−(1/4+ε)-rate for g(n) is achievable with suitable regularity assumptions on
Z and ρX .

D.2. Estimation of λ. Within the framework of the Cox model, Wells (1994) demonstrate
that the baseline intensity can be estimated with rate n−2/5 using a standard kernel smoothing
technique. With the parametric n−1/2-rate on the remaining parameters, this translates readily
into h(n) =O(n−2/5).

We suspect that the same rate should also be attainable in a sparse setting with high-
dimensional covariates, for example by applying the smoothing approach of Wells (1994) to
the baseline hazard estimators of e.g. Fang, Ning and Liu (2017) and Hou, Bradic and Xu
(2023).

Hiabu et al. (2021) consider the more general multiplicative intensity model with λt =
1(T ≥ t)f(t,Zt)), where f has a multiplicative structure over its arguments. They introduce
an estimator with optimal rate h(n) = n−2/(5+d), where d is the dimension of Z . For d > 3,
we therefore need faster rates on g(n) in order for the LCT to maintain type I error control.

Omitting the multiplicative structure on f , Bender et al. (2020) propose a general frame-
work for nonparametric estimation of Markovian intensities. They survey existing methods
such as gradient boosted trees and neural networks and relate them to this setting. Based on
real and synthetic data, they find that both gradient boosted trees and neural networks out-
perform the Cox model in terms of predictive performance as measured by the Brier score.
In essence, the framework relies on discretizing time and approximating the intensity with
successive Poisson regressions. Using the same idea, Rytgaard, Eriksson and van der Laan
(2021) argue that h(n) = o(n−1/4) can be achieved for time-independent covariates.

Similarly, Rytgaard, Gerds and van der Laan (2022) mention that h(n) = o(n−1/4) can
be achieved for estimation of intensities in a multivariate point process with a uniformly
bounded number of events, which we place into a general modeling framework below.

D.3. Estimation of λ and Π for counting processes. In Sections 2 and 4 we considered
the setup where N was a counting process adapted to a filtration Ft, which could contain
information on baseline covariates and covariate processes that were not necessarily counting
processes. In this section we explore how our testing framework can be applied when all
stochastic processes of interest are counting processes.

More specifically, let (Nd
t )d∈[p] be a p-dimensional counting process. For a, b ∈ [p] and

C ⊂ [p]\{b} with a 6= b and a ∈C we are interested in testing the hypothesis that Na is con-
ditionally locally independent of N b given the filtration, FCt , generated by NC = (Nd)d∈C .

We can cast this setup in the framework of Section 2 as follows. Naturally, we let N =Na

and Ft =FCt . The auxiliary process X is chosen to be càglàd and predictable with respect to
the filtration, Fbt , generated by N b. For example, we could choose Xt =N b

t−. But Xt could
be any functional of N b such as Xt = f(N b

t−) for a suitable function f or a linear filter of
N b,

Xt =

∫ t−

0
κ(t− s)dN b

s ,

where κ is a suitable kernel function, see also Section 3.1. In principle, the process X could
also depend on the process NC , but it is important that the filtration, Gt, generated by Ft and
Xt is strictly larger than Ft, i.e., Xt should depend on N b, in order to get a non-trivial test as
explained in Section 2.
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In the framework of counting processes, we can approach the estimation of both λ and Π in
a unified and general way as follows: Let (τj , zj)j≥1 be the marked point process associated
with the counting process NC , i.e., (τj)j≥1 is a sequence of almost surely strictly increasing
event times located at the jumps of NC , and (zj)j≥1 for zj ∈ C are the corresponding event
types.

Since both λt and Πt are real-valued and FCt−-measurable for each fixed t≥ 0, they can be
represented as measurable functions of {(τj , zj) | τj < t, zj ∈C}. Hence, we can model both
λ and Π using any sequence-to-number model. For the intensity process, Rytgaard, Gerds
and van der Laan (2022) propose a sequence of HAL estimators when the total event count
is uniformly bounded. As an alternative, Xiao et al. (2019) propose using a recurrent neural
network (LSTM). Unless there is a uniform bound on the total number of events, as assumed
by Rytgaard, Gerds and van der Laan (2022), there are currently no published results available
on the rates of convergence for nonparametric estimation of sequence-to-number functions.

E. Relation to semiparametric survival models. In this section, we relate the LCM to
existing work on treatment effects in survival analysis. We resume to the setting of Section
3.2, that is, the case where Nt = 1(T ≥ t) is the counting process of a survival time, X is a
baseline treatment variable, and where Ft = σ(Ns,Z;s ≤ t) for additional baseline covari-
ates Z . Supposing that X is also non-negative, we may consider two different models for the
intensity:

λ×t = 1(T ≥ t)λ(t) exp(θX + φ(Z)),(12)

λ+
t = 1(T ≥ t)(ϑX +ϕ(t,Z)),(13)

where θ,ϑ ∈R are treatment parameters of interest, and where λ,φ,ϕ deterministic nuisance
functions. The model in (12) is known as the partially linear Cox model (PLCM, Sasieni
(1992)), and the additive model in (13) was considered by Dukes et al. (2019) among others.

While the parameters θ and ϑ are difficult to compare directly, the hypothesis of condi-
tional local independence corresponds to the hypothesis of zero treatment effect within each
of the models, and testing this hypothesis can be done using a score test.

Sasieni (1992) shows that within the PLCM, the efficient score for θ is given by

S×(θ;λ,φ) =

∫ 1

0
(X − α∗(t)− h∗(Z))(dNt − 1(T ≥ t)λ(t)eθX+φ(Z)dt),(14)

where (α∗, h∗) are defined as the minimizers E(X−α(T )−h(Z))2. Recall that, whenX and
Z are time-independent, the null hypothesis H0 of conditional local independence reduces to
the conditional independence statement X ⊥⊥ T | Z . Consequently, it holds that α∗(T ) = 0
and h∗(Z) = E[X | Z] = Π0 under H0. Evaluating the efficient score at θ = 0 under H0

therefore gives

S×(0;λ,φ) =

∫ 1

0
(X −Π0)(dNt − 1(T ≥ t)λ(t)eφ(Z)dt) = (X −Π0)(1−ΛT (λ,φ)).

We see that the empirical version of S× is exactly the endpoint of the LCM estimator with
additive residual process (cf. Equation 16). This means that our test, the X-LCT, can under
the PLCM be interpreted as a score test based on the efficient score.

A similar connection can be made for the additive model. Dukes et al. (2019) show that
the efficient score for ϑ is given by

S+(ϑ;ϕ) =

∫ 1

0

(
X − E[(ϑX +ϕ(t,Z))−1Xe−ϑXt | Z]

E[(ϑX +ϕ(t,Z))−1e−ϑXt | Z]

)
(dNt −λt(ϑ,φ)dt)

(ϑX +ϕ(t,Z))
.



33

Plugging in ϑ= 0 and simplifying under H0 yields

S+(0;ϕ) =

∫ 1

0

(X −E[X | Z])

ϕ(t,Z)
(dNt − 1(T ≥ t)ϕ(t,Z)dt) =

∫ 1

0

(X −Π0)

λt
(dNt − λtdt).

We recognize the empirical version of S+ as the endpoint of the LCM estimator with the
time-constant X replaced by the hazard weighted process X/λt.

Other works that consider effect estimation based on orthogonal scores include Huang
(1999); Fang, Ning and Liu (2017); Niu et al. (2022); Zhong, Mueller and Wang (2022) for
the PLCM and Hou, Bradic and Xu (2023) for the additive model in (13).

We also suspect, as the derivations in Section 3.1 likewise suggest, that the LCM is still
an efficient score for certain semiparametric survival models even when the covariates vary
with time, but we are not aware of existing results on such a connection.

F. Details on Neyman-orthogonality. In this section, we first show by direct computa-
tion that the LCM is Neyman orthogonal with respect to both general residual processes and
intensities. We then show that the LCM with an additive residual process can be viewed as a
concentrated-out score in the sense of Newey (1994).

F.1. General Neyman orthogonality. The definition of Neyman orthogonality by Cher-
nozhukov et al. (2018, Def. 2.1.) requires that we formally define function spaces for the
collections of nuisance parameters. However, to avoid extensive technical specifications (and
redundant model assumptions), we prove a simpler – but more general – condition, from
which Neyman orthogonality can be derived within specific semiparametric models.

First, we generalize the integral It from Definition 2.4 to a function of pairs (x, y) of
càglàd functions, given by

It(x, y) =

∫ t

0
xs(dNs − ysds).

With this notation, the LCM is given by γt = E[It(G,λ)], where G is a residual process and
λ is the Ft-intensity of N . We assume for simplicity that λ and G are bounded such that the
expectation is well-defined.

Now let G̃t be an arbitrary bounded Gt-predictable càglàd process, and let λ̃t be an arbi-
trary bounded Ft-predictable càglàd process. We establish the following orthogonality con-
dition: under H0 it holds that

∂rE[It(G+ r(G̃−G), λ+ r(λ̃− λ)]
∣∣
r=0

= 0.(15)

Indeed, observe that

It(G+ r(G̃−G),λ+ r(λ̃− λ))

= (1− r)2It(G,λ) + r(1− r)(It(G, λ̃) + It(G̃, λ)) + r2It(G̃, λ̃),

from which it follows that

∂rE[It(G+ r(G̃−G), λ+ r(λ̃− λ)]
∣∣
r=0

= 2 ·E[It(G,λ)] +E[It(G, λ̃)] +E[It(G̃, λ)].

The first term is zero under H0 by Proposition 2.5, and the third term vanishes under H0 by
the same argument. For the second term, we note that

E[It(G, λ̃)] = γt +E
[∫ t

0
Gs(λs − λ̃s)ds

]
= γt +

∫ t

0
E
[
E [Gs | Fs−] (λs − λ̃s)

]
ds= γt,

which also vanishes under H0. This lets us conclude that (15) holds under H0.
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F.2. Concentrating-out. To derive the concentrated-out score, we first need to formalize
the nuisance parameters and the collection thereof. We consider the case where Ft = FN,Zt
for a process Z = (Zt), and let DX and DZ denote the respective sample spaces of the X
and Z . We posit the following semiparametric model for the intensity:

λt(β,h) = 1(T ≥ t)eβXth(t,Z),

where h : [0,1] × DZ → [0,∞) is a function such that t 7→ h(t,Z) is an FZt -predictable
càglàd process. Denote the collection of such functions by T1. To make the space not depen-
dent on the particular instantiation of the process Z , we could also take it to be the set:{

(ht)t∈[0,1] ∈
∫ ⊕

[0,1]
L2(DZ |[0,t),R)dt

∣∣∣ t 7→ ht((zs)s<t) is a bounded nonnegative

càglàd function for all (zs)0≤s≤1 ∈DZ

}
,

where
∫ ⊕ denotes the direct integral, and where DZ |[0,t) is the path space DZ restricted to

the domain [0, t).
Recall that the likelihood at t= 1 is given by

`1(β,h) =

∫ 1

0
log(λs(β,h))dNs −

∫ 1

0
λs(β,h)ds.

We show that concentrating out the nuisance parameter h of `1(β,h) yields to the LCM with
additive residual process under H0.

Let P0 be fixed distribution satisfying H0 with ground truth β0 = 0 and h0 ∈ T1. Suppose
that for each β ∈ (−ε, ε) in a neighborhood of zero, there is a function $β ∈ T1 such that

$β(t,Z) = EP0
[eβXt | T ≥ t,FZt−].

The first step of concentrating-out is to maximize the expected likelihood over h. We claim
that for each fixed β, the function h∗β := h0/$β ∈ T1 maximizes the objective u(h) :=

EP0
[`1(β,h)] over h ∈ T1.

Since the logarithm is concave and λ(β,h) is linear in h, it follows that u is a concave
objective. Moreover, one can show that h∗β is the unique critical point of u by equating its
Gateaux derivative to zero and invoking the fundamental lemma of the calculus of variations.
For simplicity, we settle with verifying (see below) that the Gateaux derivative is zero at h∗β .
From these properties we may conclude that the global maximum of u is attained at h∗β .

A straightforward differentiation shows that for any h̃ ∈ T1,

∂r`1(β,h∗β + r · h̃) |r=0=

∫ 1

0

h̃(s,Z)

h∗β(s,Z)
dNs −

∫ 1

0
λs(β, h̃)ds.

Because h̃(t,Z)
h∗β(t,Z) is Gt-predictable and Nt −

∫ t
0 λs(0, h

0)ds is a Gt-martingale, taking expec-
tation under P0 yields that

∂ru(h∗β + r · h̃) |r=0 = E[∂r`1(β,h∗ + r · h̃) |r=0]

= E

[∫ 1

0

h̃(s,Z)

h∗β(s,Z)
λs(0, h

0)ds−
∫ 1

0
λs(β, h̃)ds

]

= E
[∫ 1

0
1(T ≥ s)

(
$β(t,Z)− eβXs

)
h̃(s,Z)ds

]
=

∫ 1

0
E
[
1(T ≥ s)

(
$β(t,Z)−E[eβXs | T ≥ t,FZs−]

)
h̃(s,Z)

]
ds= 0,
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where we have used that h̃(s,Z) is Fs-predictable.
Now, by the method of concentrating-out, we are led to consider nuisance functions of the

form

ηh : (−ε, ε)−→T1,

ηh(β) =

(
(t, z) 7→ h(t, z)

$β(t, z)

)
,

for any h ∈ T1, which in particular includes ηh0
(β) = h∗β . The resulting concentrating-out

score is therefore

ψ(β, ηh) =
∂`1(β, ηh(β))

∂β

=

∫ 1

0

(
Xs −

∂β$β(t,Z)

$β(t,Z)

)
dNs −

∫ 1

0

(
Xs

$β(t,Z)
− ∂β$β(t,Z)

$β(t,Z)2

)
λ(β,h)ds

=

∫ 1

0

(
Xs −

EP0
[Xse

βXs | T ≥ s,FZs−]

E[eβXs | T ≥ s,FZs−]

)
dNs

−
∫ 1

0

(
Xs

EP0
[eβXs | T ≥ s,FZs−]

− EP0
[Xse

βXs | T ≥ s,FZs−]

(EP0
[eβXs | T ≥ s,FZs−])2

)
λ(β,h)ds.

After plugging in β = 0 and simplifying we see that

ψ(0, ηh) =

∫ 1

0
(Xs −E[Xs | Fs−])(dNs −λ(0, h)ds).

This shows that the concentrating-out score evaluated at β = 0 is exactly the score for the
endpoint of the LCM estimator.
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G. Additional details of simulation study. This section contains additional details, nu-
merical results, and figures related to the simulations of Section 6.
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FIG G.1. Empirical distribution functions of p-values for the three different conditional local independence tests
considered, simulated under the sampling scheme described in Section 6. The dotted line shows y = x corre-
sponding to a uniform distribution.
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FIG G.2. Sample paths of γ̌K,(500) fitted on data sampled from three different alternatives as described in
Section 6.4. Here (X,Y,Z) are sampled from the scheme described in Section 6, with both ρX and ρY being the
constant kernel and with β =−1. For each alternative, 100 paths are shown. The empirical mean functions and
the endpoint distributions are highlighted and computed based on 500 samples.
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G.1. Implementation of estimators and tests. For our proof-of-concept implementation
we used two simple off-the-shelf estimators.

To estimate λ we used the BoXHED2.0 estimator from Pakbin et al. (2021), based on the
works of Wang et al. (2020) and Lee, Chen and Ishwaran (2021). In essence, the estimator
is a gradient boosted forest adapted to the setting of hazard estimation with time-dependent
covariates. The maximum depth and number of trees were tuned by 5-fold cross-validation
over the same grid as in Pakbin et al. (2021). For computational ease, the hyperparameters
were tuned once on the entire dataset instead of tuning them on each fold Jkn . In principle,
this may invalidate the asymptotic properties of Ψ̌K

n since it breaks the independence between
λ̂k,(n) and (Tj ,Xj ,Zj)j∈Jkn , but we believe that this dependency is negligible.

To estimate the predictable projection Πt = E(Xt | Ft−), we fitted a series of linear least
squares estimators by regressingXt on (Zs)s∈T:s<t for each t ∈ T. To stabilize the estimation
error g(n), we added a small L2-penalty with coefficient 0.001 fixed across all experiments
for simplicity. Since Xt was sampled from a discretized historical linear model, the error
g(n) should in principle converge with a classical n−1/2-rate. The historical linear regression
estimator from the scikit-fda library was also considered initially, but we found that
fitting this model was too computationally expensive for a simulation study with cross-fitting.
In principle, in our time-continuous setting, we would like to use a functional estimator of Π
that would utilize the regularity along s and t. Initial experiments, however, suggested that the
simpler historical regression described above gave similar results as using the scikit-fda
library, and we went with the less time consuming implementation.

Based on these estimators, the X-LCT was implemented based on Algorithm 2. Following
the recommendation by Chernozhukov et al. (2018, Remark 3.1.), we computed the X-LCT
with K = 5 folds. The associated p-value was computed with the series representation of FS
truncated to the first 1000 terms.

We compared our results for X-LCT with a hazard ratio test in the possibly misspeci-
fied marginal Cox model given by (11). This test was computed using the lifelines library
(Davidson-Pilon, 2021), specifically the CoxTimeVaryingFitter model. The model
was fitted with an L2-penalty with a coefficient set to 0.1 (the default), and as a consequence
the hazard ratio test is expected to be conservative.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 Quantiles

16

32

64

128

256

FIG G.3. Empirical distribution functions of p(q) = 1−FS(M(q)), where M(q) = (M
(q)
t )t=1,...,q is a random

walk with Gaussian increments such thatM(q)
q has unit variance for each q ∈ {2` : `= 4, . . . ,8}. Each empirical

distribution function is based on N = 20 000 samples.



38

100 500 1000 2000
sample size n

0.05

0.10

0.15

0.20

0.25

R
ej

ec
ti

on
ra

te
(α

=
5%

)

Null hypothesis H0

100 500 1000 2000
sample size n

Local alternative Astep

100 500 1000 2000
sample size n

Local alternative Acos

X-LCT X-LCM Endpoint Test

FIG G.4. The plots show the average rejection rate of the double machine learning tests based on the supremum
statistic (blue) and the endpoint statistic (red).

G.2. Comparison with endpoint statistic. We compare the X-LCT, which is based on the
uniform norm of the X-LCM, with its endpoint counterpart. More precisely, we consider the
test statistic (

V̌K,n(1)
)− 1

2
√
nγ̌

K,(n)
1 ,

which is asymptotically standard normal under H0. With the simulation settings in Sec-
tion 6.4, the X-LCT turns out to be more or less indistinguishable from the corresponding
endpoint test. This is because the alternatives considered have corresponding LCMs, which
are most extreme towards t= 1. Therefore, the supremum and the endpoint behave similarly
in these cases.

For this reason we consider local alternatives that result in a non-monotonic LCM. Us-
ing the same expression for the intensity (39), but with a time-varying ρ0, we consider the
alternatives

Astep : ρ0(t) = 5 · 1(t≤ 0.4)− 5 · 1(t > 0.4),

Acos : ρ0(t) = 7 · cos(4π · t).
The idea behind the alternative Astep is that the LCM should be increasing on [0,0.4] and
decreasing on (0.4,1]. Figure G.2 shows sample paths of γ̌K,(n) for data simulated under
each of the alternatives ρ0 = 5, Astep and Acos. The figure illustrates that t 7→ |γ̌K,(n)

t | is,
indeed, mostly maximal towards t= 1 for the alternative ρ0 = 5, but not for the time-varying
alternatives Astep and Acos.

With the same sampling scheme for (X,Y,Z) as in Section 6.2, we conducted an analo-
gous experiment with 400 runs for each setting. Figure G.4 shows the rejection rates for the
two tests.

Under the hypothesis of conditional local independence, the left plot in Figure G.4 shows
that the endpoint test behaves similarly to Ψ̌K

n as expected. Both tests have power against
the local alternatives, but for Astep the power does not seem to stabilize before n = 2000.
This is different from the previous settings, and can be explained by a slower convergence
of the intensity estimator due to the more complex dependency on X . For both of the local
alternatives, we observe that Ψ̌K

n is more powerful than the endpoint test, with the difference
being largest for Astep. In conclusion, these results show that the supremum test dominates
the endpoint test in certain situations.
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