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We study a class of graphs that represent local independence structures in stochastic processes allowing for corre-
lated noise processes. Several graphs may encode the same local independencies and we characterize such equiv-
alence classes of graphs. In the worst case, the number of conditions in our characterizations grows superpolyno-
mially as a function of the size of the node set in the graph. We show that deciding Markov equivalence of graphs
from this class is coNP-complete which suggests that our characterizations cannot be improved upon substantially.
We prove a global Markov property in the case of a multivariate Ornstein-Uhlenbeck process which is driven by
correlated Brownian motions.

Keywords: Graphical models; stochastic processes; local independence; Markov equivalence;
Ornstein–Uhlenbeck processes

1. Introduction

Graphical modeling studies how to relate graphs to properties of probability distributions [31]. There is
a rich literature on graphical modeling of distributions of multivariate random variables [34], in partic-
ular on graphs as representations of conditional independencies. In stochastic processes, local indepen-
dence can be used as a concept analogous to conditional independence and several papers use graphs
to encode local independencies [3,14,15,37,39,50]. Didelez [13, 15] studies graphical modeling of lo-
cal independence of multivariate point processes. Mogensen et al. [39] also consider diffusions. This
previous work only models direct influence between coordinate processes in a multivariate stochastic
process. We consider the more general case in which the noise processes driving the continuous-time
stochastic process may be correlated. Eichler [17, 19, 20],Eichler and Didelez [21] study this in the time
series case (i.e., stochastic processes indexed by discrete time).

A specific local independence structure can be represented by several different graphs, and the char-
acterization of such Markov equivalence classes is an important question in graphical modeling. We
study these equivalence classes and characterize them. Our characterizations are computationally de-
manding as they may involve exponentially many conditions (as a function of the number of nodes in
the graphs). We prove that deciding Markov equivalence in this class of graphs is coNP-hard, and there-
fore one would not expect to find a characterization which allows the problem of Markov equivalence
to be decided in polynomial time.

Markov properties are central in graphical modeling as they allow us to deduce independence from
graphs. The graphical results in this paper apply to various classes of stochastic processes for which it is
possible to show a so-called global Markov property. As an example, we study systems of linear stochas-
tic differential equations (SDEs), and in particular Ornstein-Uhlenbeck processes. Such models have
been used in numerous fields such as psychology [25], neuroscience [16,43,53], finance [6,51,58], biol-
ogy [5], and survival analysis [2,32]. In this paper, we show that multivariate Ornstein-Uhlenbeck pro-
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cesses with correlated driving Brownian motions satisfy a global Markov property with respect to cer-
tain graphs. Previous work in continuous-time models considers independent noise processes only and
the present work extends this framework to cases where the driving processes are correlated. We em-
phasize that the global Markov property proven in this paper only applies to Ornstein-Uhlenbeck pro-
cesses. In the case of uncorrelated noise, analogous results apply to quite general classes of continuous-
time stochastic processes [15,39] and for this reason we expect that more general continuous-time
versions of the global Markov property are possible, also in the presence of correlated noise. To our
knowledge, the global Markov property in this paper is the first such result allowing correlated noise in
continuous-time models. It is analogous to results in time series models with correlated noise processes
[17,19–21]. The graphical and algorithmic results we present also apply to these time series models.
They also apply to more general continuous-time processes if a similar global Markov property can be
shown.

Many results and ideas in this paper are reminiscent of classical probabilistic graphical models such
as Bayesian networks and chain graph models [34]. In these models, graphs are used as representations
of conditional independencies of a multivariate random vector. Conditional independence is a sym-
metric ternary relation in the sense that if X is conditionally independent of Y given Z then Y is also
conditionally independent of X given Z . When considering graphical modeling of stochastic processes,
we can part ways with the symmetry and obtain a more fine-grained representation of independence
and for this reason we study representations of local independence. The asymmetry of local indepen-
dence also leads to different notions of graphical separation and therefore a different graph-theoretic
framework is needed than in the symmetric case. This is also evident in earlier work on graphical
models of local independence [13,15,18,37].

1.1. Overview and organization

The paper consists of two parts. In the first part (Section 2), we describe local independence for Itô
processes. The basic definitions relating to local independence and local independence graphs apply to
a wide range of stochastic processes and for this reason we start from this general class. In Subsection
2.2, we state the global Markov property which relates the graphical representations used in this paper
to local independence statements. In Subsection 2.3, we consider the smaller class of Itô diffusions.
First, we show that in a certain subclass of Itô diffusions one can obtain a very simple relation between
the local independence structure of a stochastic process and the conditional independence structure
of its equilibrium distribution. However, in general local independence structure cannot be deduced
from conditional independence in the equilibrium distribution and we show this with an example using
the class of Ornstein-Uhlenbeck processes. We finish this section by proving that the global Markov
property holds in Ornstein-Uhlenbeck processes driven by correlated noise.

The second part of the paper (Sections 3, 4, 5) provides results on directed correlation graphs (cDGs)
– the class of graphs that we use to represent local independencies in a stochastic process with corre-
lated noise. Section 3 defines cDGs and introduces the fundamental graphical definitions we need. Sec-
tion 4 gives a characterization of the cDGs that encode the same independencies. This directly leads to
an algorithm for checking equivalence of cDGs. This algorithm runs in exponential time (in the number
of nodes in the graphs). In Section 5 we state another characterization of Markov equivalence and we
prove that deciding Markov equivalence of cDGs is coNP-complete.

The two parts of the paper are connected by the global Markov property which allows us to infer
local independencies from properties of a cDG. Using the global Markov property, e.g., in the class of
Ornstein-Uhlenbeck processes with correlated noise, the results of the paper allow us to reason about
the local independence structure of a stochastic process on the basis of a graph which represents both
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direct influence between coordinate processes and the correlation structure of the noise processes. The
graphical results of the second part describe for which processes the global Markov property implies
the same local independence structure. This enables structure learning based on local independence,
i.e., recovering the graphical structure from observation of the process.

Proofs that were omitted from the main text can be found in the supplementary material [38].

2. Local independence
Before diving into a formal introduction, we will consider a motivating example.

Example 1. Consider the three-dimensional Ornstein-Uhlenbeck process which solves the following
stochastic differential equation
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t )T is a standard four-dimensional Brownian motion. In this example, all entries

in the matrices M and σ0 above that are not explicitly 0 are assumed nonzero.
The interpretation of the stochastic differential equation via the Euler-Maruyama scheme yields the

update equation
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where εt ∼ N(0, I). The Euler-Maruyama scheme evaluated in t = nΔ for n ∈ N0 gives a process,
(X̃nΔ)n≥0, which, as Δ→ 0, converges to the Ornstein-Uhlenbeck process, (Xt)t≥0, solving the stochas-
tic differential equation. From the update equations we see that the infinitesimal increment of each
coordinate depends on the value of that coordinate, and in addition the β-coordinate increment de-
pends on the α-coordinate (because Mβα ≠ 0). Moreover, the increments for coordinates β and γ are
correlated as they share the noise variable ε4

t . Figure 1 (left) provides a graphical representation with
arrows readily read from the drift matrix, M , and the diffusion matrix, σ0σ

T
0 . The ‘unrolled’ graph

(Figure 1, right) is a directed acyclic graph (DAG) which corresponds to the Euler-Maruyama scheme
and provides a discrete-time representation of the dynamics.

A central purpose of this paper is to clarify the mathematical interpretation of local independence
graphs with blunt edges such as the one in Figure 1 (left), and our results include a characterization
of all graphs with equivalent mathematical content. As showcased in the example above, we allow a
nondiagonal σ0σ

T
0 which is a novelty in graphical modeling of continuous-time stochastic processes.

2.1. Itô processes and local independence graphs

We will for the purpose of this paper focus on vector-valued, continuous-time stochastic processes with
continuous sample paths. Thus let X = (Xt)t∈T denote such an n-dimensional process with time index
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Figure 1. A local independence graph (left) and an ‘unrolled’ graph (right) where time is made explicit (see
Example 1). The two graphs represent the same local independence structure of a stochastic process, X . A node δ
for δ ∈ {α, β,γ} represents the increments of the Xδ

t -process at time t. On the right, the ε4-process is a ‘white noise’
process which creates dependence between Xβ

t and Xγ
t . In the ‘rolled’ version of the graph (left) this is represented

by a blunt edge, β��γ. When unrolling a local independence graph to obtain a graphical representation in terms
of lagged variables, one could also choose to include αs → βt in the unrolled graph for all s < t if α→ β in the
local independence graph (see also [12,27,55] and [37, supplementary material]).

t ∈ T ⊆ R and with Xt = (Xα
t )α∈[n] ∈ Rn being a real-valued vector indexed by [n] = {1, . . . ,n}. The

time index set, T , will in practice be of the forms [0,T], [0,∞), or R, however, we will in general just
assume that T is an interval containing 0.

We use local independence [1,9,15,52] to give a mathematically precise definition of what it means
for the historical evolution of one coordinate, α ∈ [n], to not be predictive of the infinitesimal increment
of another coordinate, β ∈ [n], given the historical evolution of a set of coordinates, C ⊆ [n]. As such, it
is a continuous-time version of Granger causality [see, e.g., 24], and its formulation is directly related
to filtration problems for stochastic processes. In a statistical context, local independence allows us to
express simplifying structural constraints that are directly useful for forecasting and such constraints
are also useful for causal structure learning.

The process X is defined on the probability space (Ω,F,P) and we let σ(Xδ
s ; s ≤ t,δ ∈ D) ⊆ F denote

the σ-algebra on Ω generated by Xδ
s for all s ∈ T up to time t and all δ ∈ D. For technical reasons, we

define FD
t to be the P-completion of the σ-algebra

⋂
t′>t

σ(Xδ
s ; s ≤ t′,δ ∈ D),

so that (FD
t )t∈T is a complete, right-continuous filtration for all D ⊆ [n]. We will let Ft =F [n]t denote

the filtration generated by all coordinates of the process. Within this setup we will restrict our attention
to Itô processes with continuous drift and constant diffusion coefficient.

Definition 2 (Regular Itô process). We say that X is a regular Itô process if there exists a continuous,
Ft -adapted process, λ, with values in Rn and an n× n invertible matrix σ such that

Wt =σ−1 (Xt − X0 −∫
t

0
λsds)

is an Ft -adapted standard Brownian motion.
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One reason for the interest in the general class of Itô processes is the fact that they are closed under
marginalization. That is, the marginal of an Itô process when marginalizing over a set of coordinate
processes is again an Itô process which follows from Theorem VI.8.4 in [49]. A regular Itô process is
sometimes written in differential form as

dXt = λtdt +σ dWt . (1)

Here λt is known as the drift of the process and σ as the (constant) diffusion coefficient (an n × n
matrix). We define the diffusion matrix for a regular Itô process as the positive definite matrix

Σ =σσT . (2)

If we consider the more general case where there may be more noise processes than observed processes,
we can define the process Xt , as in Example 1, as the solution of the stochastic differential equation

dXt = λtdt +σ0 dWt (3)

for an m-dimensional standard Brownian motion W and with the diffusion coefficient σ0 an n × m
matrix. If σ0 has rank n, such a solution is also a regular Itô process with diffusion matrix Σ = σ0σ

T
0 .

Indeed, we can take σ = (σ0σ
T
0 )1/2 in Definition 2. Observe also that for any regular Itô process,

Xt − X0 −∫
t

0
λsds =σWt

is an Ft -martingale and ∫
t

0 λsds is the compensator of Xt in its Doob-Meyer decomposition.

Definition 3. Let X be a regular Itô process with drift λ, and let A,B,C ⊆ [n]. We say that B is locally
independent of A given C, and write A /→ B ∣C, if for all β ∈ B the process

t ↦ E (λβt ∣ FC
t )

is a version of

t ↦ E (λβt ∣ FC∪A
t ) .

We note that local independence is asymmetric in the sense that B being locally independent of A
given C does not imply that A is locally independent of B given C. Let α, β ∈ [n]. It follows immediately
from the definition that α /→ β ∣ [n] ∖ {α} if λβt is F [n]∖{α}t -measurable. That is, if λβt does not depend
on the sample path of the α-coordinate.

We define a local independence graph below and this generalizes the definitions of Didelez [15] and
Mogensen and Hansen [37] in the context of continuous-time stochastic processes to allow a nondi-
agonal diffusion matrix, Σ. Eichler [17] gives a related definition in the case of time series (discrete
time) with correlated noise and uses the term path diagram (see also Definition 6). Moreover, local
independence graphs can be seen as abstract generalizations of continuous-time Bayesian networks. In
these models, a multivariate continuous-time Markov process in a finite state space is represented by
a graph in which edges indicate how transition intensities of a coordinate process depend on the states
of other coordinate processes [40,41]. Didelez [14] describes the connection between this model class
and local independence.
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Definition 4 (Local independence graph). Consider a regular Itô process with diffusion matrix Σ. A
local independence graph is a graph, D, with nodes [n] such that for all α, β ∈ [n]

α /→D β ⇒ α /→ β ∣ [n] ∖ {α}

and such that for α ≠ β

α /""D β ⇒ Σαβ = 0

where →D denotes a directed edge in D and ""D denotes a blunt edge.

A local independence graph can be inferred directly from λ and Σ, see also Definition 6 below.

2.2. The global Markov property

Graphical representations of local independence are mostly of interest when they can be used to infer
nontrivial results about additional local independencies. This is the case when a global Markov property
holds (its definition uses the concept of μ-separation which will be defined in Section 3).

Definition 5 (The global Markov property). Let X be a regular Itô process for which the coordinate
processes are indexed by [n] and let D be a local independence graph for X (Definition 4). We say
that X satisfies the global Markov property with respect to D if for all A,B,C ⊆ [n] it holds that if B is
μ-separated by A given C in D, then B is locally independent of A given C in the distribution of X .

We note that μ-separation is a property of the graph which means that when the global Markov
property holds, we can read local independencies from the graph alone. Mogensen et al. [39] show that
regular Itô processes with a diagonal σ satisfy the global Markov property with respect to their local
independence graphs – assuming certain integrability constraints are satisfied – and one can read local
independencies from the graph using a straightforward algorithm. This allows us to answer a filtration
question: for D ⊆ [n] and β ∈ [n], which coordinates in D does

E (λβt ∣ FD
t )

depend upon? We conjecture that the global Markov property holds for nondiagonal σ in a broad class
of processes, but this cannot be shown using the same techniques as in [39]. We do, however, show
in Theorem 10 that for a particular class of Itô diffusions the global Markov property does in fact
hold for the canonical local independence graph that will be defined below. The proof uses an explicit
representation of the conditional expectation processes within this particular class of processes and
therefore does not generalize to all Itô processes. Global Markov properties have also been proven in
(discrete-time) time series models [22]. These results and the analogy to Markov properties in DAG-
based models suggest that generalization of Theorem 10 is possible, even if other methods of proof are
needed.

The global Markov property can be seen to be somewhat similar to that of chain graphs under the
MVR interpretation [11,56] (see also [30]). In this sense, one can think of Theorem 10 as analogous to
extending the global Markov property from DAGs to chain graphs.
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2.3. Itô diffusions

A regular Itô diffusion is a regular Itô process such that the drift is of the form

λt = λ(Xt)

for a continuous function λ ∶Rn→Rn. In differential form,

dXt = λ(Xt) dt +σ dWt .

Itô diffusions with a constant diffusion coefficient are particularly interesting examples of Itô pro-
cesses. They are Markov processes, but they are not closed under marginalization and we need to
consider the larger class of Itô processes to obtain a class which is closed under marginalization.

The following definition introduces a canonical local independence graph which we will use to show
a global Markov property. To our knowledge, this is a novel definition in this context, though it is very
similar in spirit to path diagrams [61,62] and other mixed graph representations of multivariate random
variables. Analogous definitions can also be found in discrete-time processes [17].

Definition 6 (Canonical local independence graph). Let X be a regular Itô diffusion with a continu-
ously differentiable drift λ ∶Rn →Rn and diffusion matrix Σ. The canonical local independence graph
is the graph, D, with nodes [n] such that for all α, β ∈ [n]

∂αλβ ≠ 0 ⇔ α→D β

and such that for α ≠ β
Σαβ ≠ 0 ⇔ α""D β.

As ∂αλβ = 0 implies that λβt = λβ((Xδ
t )δ∈[n]∖{α}) is F [n]∖{α}t -measurable, the following result is

an immediate consequence of Definitions 4 and 6.

Proposition 7. The canonical local independence graph is a local independence graph.

Definition 6 gives a simple operational procedure for determining the canonical local independence
graph for a regular Itô diffusion directly from λ and Σ, though it is not guaranteed to be neither a
unique nor a minimal local independence graph. If, for instance, X = (Xα,Xβ,Xγ) is a process with
λβ = XγXα then α → β in the canonical local independence graph, but if X satisfies the constraint

Xα + Xγ = 0, then α /→ β ∣ {β,γ}. This follows from λβ = XγXα = −(Xγ)2 being F{β,γ}t -adapted. It is
thus possible that λβ has a functional form that appears to depend on the coordinate α, while actually
α /→ β ∣ [n] ∖ {α}.

Example 8 (Smoluchowski diffusion). In this example we link the notion of local independence and
the local independence graph to classical undirected graphical models (see, e.g., [31]) for a special
class of diffusions that are widely studied in equilibrium statistical physics. A Smoluchowski diffusion
is a regular Itô diffusion with

λ(x) = −∇V(x)
for a continuously differentiable function V ∶ Rn → R and σ =

√
2τI for a constant τ > 0. Thus the

diffusion matrix Σ = 2τI is diagonal. The function V is called the potential and τ is called a temperature
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parameter. Since the drift is a gradient, the dynamics of a Smoluchowski diffusion are a gradient flow
perturbed by white noise. If V(x)→∞ for ∥x∥→∞ and

Z = ∫ e−
1
τV(x)dx <∞,

the diffusion has the Gibbs measure with density

π(x) = 1
Z

e−
1
τV(x)

as equilibrium distribution, see Proposition 4.2 in [42]. When V is twice differentiable, Definition 6
gives the canonical local independence graph, D, with arrows α→D β whenever ∂αλβ = −∂α∂βV ≠ 0.
Since

∂αλβ = −∂α∂βV = −∂β∂αV = ∂βλα
the graph D enjoys the symmetry property that α→D β if and only if β→D α. We denote by G the
undirected version of D, i.e., α −G β if and only if α→D β if and only if β→D α (see Figure 2). For
any α, β ∈ [n] with α /−G β it follows from ∂α∂βV = ∂β∂αV = 0 that

V(x) =V1(xα, x−{α,β}) +V2(xβ, x−{α,β})

where x−{α,β} denotes the vector x with coordinates xα and xβ removed. From this decomposition of V
we see that π has the pairwise Markov property with respect to G, and it follows from the Hammersley-
Clifford theorem that π factorizes according to G. That is, the potential has the following additive
decomposition

V(x) = ∑
c∈C(G)

Vc(xc)

where C(G) denotes the cliques of G. This establishes a correspondence between local independencies
for a Smoluchowski diffusion and Markov properties of its equilibrium distribution.

We emphasize that the link in Example 8 between local independencies representing structural con-
straints on the dynamics on the one side and Markov properties of an equilibrium distribution on the
other side is a consequence of the symmetry of the drift of Smoluchowski diffusions combined with the

α β γ

A

α β γ

B

Figure 2. A: Canonical local independence graph of a Smoluchowski diffusion such that ∂α∂γV = ∂γ∂αV = 0
(see Example 8). B: The equilibrium distribution of a Smoluchowski diffusion with canonical local independence
graph as in A satisfies a Markov property with respect to this undirected graph. This would not be true of a general
Ornstein-Uhlenbeck process with local independence graph as in A (see Example 9). This is an example of the
fact that the conditional independencies of the equilibrium distribution need not reflect the local independencies
of a stochastic process.
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diffusion matrix being a scalar multiple of the identity matrix. For diffusions with a non-gradient drift
or with a more complicated diffusion matrix the equilibrium distribution may have no conditional in-
dependencies even though there are strong structural constraints on the dynamics of the process which
can be expressed in terms of a sparse local independence graph. A simple process which can illustrate
this is the Ornstein-Uhlenbeck process.

Example 9 (Ornstein-Uhlenbeck process). A regular Itô diffusion with drift

λ(x) = M(x − μ)

for an n × n matrix M and an n-dimensional vector μ is called a regular Ornstein-Uhlenbeck process.
With D its canonical local independence graph, α→D β whenever Mβα ≠ 0, and α /→ β ∣ [n] ∖ {α} if
Mβα = 0. If M is a stable matrix (all eigenvalues have negative real parts), then the Ornstein-Uhlenbeck
process has an invariant Gaussian distribution N(μ,Γ∞) where Γ∞ solves the Lyapunov equation,

MΓ∞ + Γ∞MT + Σ = 0,

see Proposition 3.5 in [42] or Theorem 2.12 in [28].
If M is also symmetric, then λ is a gradient, and if Σ = 2τI we see that the solution of the Lyapunov

equation is Γ∞ = −τM−1, and λ is the negative gradient of the quadratic potential

V(x) = −1
2
(x − μ)T M(x − μ) = τ

2
(x − μ)TΓ−1

∞ (x − μ).

Thus the equilibrium distribution is in a Gaussian graphical model represented by an undirected graph
G in which the edges are determined by the non-zero entries of Γ−1

∞ = − 1
τ M . For this Smoluchowski

diffusion we see very explicitly that the edge α − β is in G if and only if both α→ β and β→ α are
in D. However, it is not difficult to find an asymmetric but stable matrix M such that Γ−1

∞ is a dense
matrix, even if Σ = I, and the canonical local independence graph cannot in general be determined from
Markov properties of the invariant distribution.

For a general M and general Σ, and with D ⊆ [n], we see that

E (λβt ∣ FD
t ) = ∑

δ∈V

Mβδ (E (Xδ
t ∣ FD

t ) − μδ)

= ∑
δ∈pa(β)

Mβδ (E (Xδ
t ∣ FD

t ) − μδ) ,

where pa(β) = {δ ∣ Mβδ ≠ 0} denotes the set of parents of β in D. Thus determining if α /→ β ∣ C
(Definition 3) amounts to determining if

E (Xδ
t ∣ FC

t )

are versions of

E (Xδ
t ∣ F

C∪{α}
t )

for δ ∈ pa(β). In words, if we can predict the values of all the processes Xδ
t , for δ ∈ pa(β), that enter

into the drift of coordinate β just as well from the C-histories as we can from the C ∪ {α}-histories,
then β is locally independent of α given C.
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As a final component of this section, we state a result showing that an Ornstein-Uhlenbeck process,
X , satisfies a global Markov property with respect to a cDG, D, when D is the canonical local inde-
pendence graph of X (Definition 6). As we identify the coordinate processes of X with nodes in D, we
use [n] to denote both the node set of D and the index set of the coordinate processes of X . In the case
of a diagonal Σ, the global Markov property for Itô processes was shown in [39] under some regularity
conditions, and we extend this to the case of nondiagonal Σ, i.e., allowing correlated driving Brownian
motions, for Ornstein-Uhlenbeck processes.

We assume that the Ornstein-Uhlenbeck process, X = (Xt)t≥0, is started at time zero and before
stating the global Markov property, we will describe a condition on the initial distribution, that is, the
distribution of X0. Let D be a cDG. We say that the distribution of X0 is compatible with D if for all
disjoint A,B,C ⊆ [n] it holds that A⊥m B ∣C inD (see a definition of m-separation in the supplementary
material [38]) implies that XA

0 and XB
0 are conditionally independent given XC

0 . This is a quite natural
assumption on the distribution of X0 in the following sense. From D, we can construct a directed mixed
graph (DMG), G, by simply replacing blunt edges in D with bidirected edges. Such a DMG has been
used as a graphical representation of a linear structural equation model [30],

X0 = μ+ BX0 + ε,

where the directed edges of G represent the nonzero entries of the matrix B and the bidirected edges
of G represent a nonzero correlation in the covariance of the Gaussian noise term ε. If X0 is generated
from a linear structural equation model with sparsity represented by G (the DMG corresponding to
D), then it follows from global Markov properties in this model class that the distribution of X0 is
compatible with D [30,57].

Theorem 10. Let X = (Xt)t≥0 be a regular Ornstein-Uhlenbeck process, let D be its canonical lo-
cal independence graph (Definition 6), and let A,B,C ⊆ [n]. Assume that X0 is a (non-degenerate)
multivariate Gaussian vector and that X0 is independent of the Brownian motion driving the Ornstein-
Uhlenbeck process. Assume furthermore that the distribution of X0 is compatible with D. Then X
satisfies the global Markov property with respect to D.

The result allows us to infer sparsity in the dependence structure in the evolution of the process
from structural sparsity encoded by a cDG and μ-separation. The proof of Theorem 10 is found in the
supplementary material [38] and it uses a set of equations describing the conditional mean processes,
t ↦E [XU

t ∣ FW
t ], [n] =U

.∪W , see [33]. From these somewhat explicit representations, one can reason
about the measurability of the conditional mean processes. If every local independence in X implies a
μ-separation in D, we say that X is faithful to D. One could possibly use similar techniques to show
faithfulness results in the class of Ornstein-Uhlenbeck processes.

The following sections of the paper will develop the graph theory needed to answer questions about
local independence via properties of a local independence graph. This theory can be applied as long as
the processes considered have the global Markov property.

3. Directed correlation graphs

A graph is a pair (V,E) where V is a set of nodes and E is a set of edges. Each node represents a
coordinate process and therefore we will let V = {1,2 . . . ,n} = [n] when we model a stochastic process
X = (Xt)t∈T such that Xt = (Xα

t )α∈[n] ∈ Rn. Every edge is between a pair of nodes. Edges can be of
different types. In this paper, we will consider directed edges, →, bidirected edges, ↔, and blunt edges,
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"". Let α, β ∈V . Note that α→ β and β→ α are different edges. We do not distinguish between α↔ β
and β↔ α, nor between α""β and β""α. We allow directed and bidirected loops (self-edges), α→ α
and α↔ α, but not blunt loops, α""α. If the edge α→ β is in a graph, then we say that α is a parent of
β and write α ∈ pa(β). If α and β are joined by a blunt edge, α""β, then we say that they are spouses.
We use α ∼ β to symbolize a generic edge between α ∈V and β ∈V of any of these three types. We say
that α and β are adjacent in the graph D if α ∼ β in D. We use the notation α ∼D β to highlight that the
edge is in D and we use subscript ∼j to identify edges, j ∈N. We use α ∗→ β to symbolize that either
α→ β or α↔ β.

Definition 11. Let D = (V,E) be a graph. We say that D is a directed graph (DG) if every edge is
directed. We say that D is a directed correlation graph (cDG) if every edge is directed or blunt. We say
that D is a directed mixed graph (DMG) if every edge is directed or bidirected.

One should note that a bidirected edge α↔ β is not the same as the combination of the directed
edges α → β and α ← β. Therefore, between a pair of nodes, α and β, in a DMG there may be any
subset of edges {α→ β,α← β,α↔ β}. See Figure 3 for an example cDG and an example DMG.

The class of DMGs is studied by Mogensen and Hansen [37],Mogensen et al. [39]. Eichler [17, 19]
studies classes of graphs similar to cDGs as well as a class of graphs which contains both the DMGs and
the cDGs as subclasses. Varando and Hansen [59] use cDGs as representations of sparse parametriza-
tions of equilibrium covariance matrices of stochastic processes in the context of structure learning.
This paper is mostly concerned with the class of cDGs, however, we mention the DMGs for two rea-
sons: 1) to compare with the cDGs and demonstrate their differences, and 2) to show that the concept
of μ-separation can be applied to both classes of graphs, and therefore also to a superclass of graphs
containing both the DMGs and the cDGs. In a cDG, a directed edge corresponds to a direct depen-
dence in the drift of the process while a blunt edge represents a correlation in the driving Brownian
motions (Definition 4). In a DMG, a directed edge has the same interpretation as in a cDG, however,
a bidirected edge corresponds to a dependence arising from partial observation, i.e., marginalization.
Correlated driving Brownian motions and marginalization create different local independence struc-
tures, hence the distinction between DMGs and cDGs.

α β γ

δ

α β γ

δ

Figure 3. Example cDG (left) and example DMG (right). The blunt edges in a cDG correspond to correlated
driving processes which is different from the bidirected edges of a DMG as those correspond to marginalization,
i.e., unobserved processes. The notion of μ-separation can be applied to both classes of graphs. Left: cDG on
nodes V = {α, β,γ,δ}. γ is μ-separated (Definition 13) from δ by α as β ∉ an(α) is a collider on any walk from δ
to γ. On the other hand, α is not μ-separated from β given ∅ as, e.g., β��α→ α is μ-connecting given ∅. The
same walk is not μ-connecting from β to α given α, however, β← δ→ α is μ-connecting from β to α given α. We
see that α is μ-separated from β given {α,δ}. Right: bidirected edges have heads at both ends and this means that
β↔ α is μ-connecting from β to α given any subset of V ∖ {β}. In particular, α is not μ-separated from β given
{α,δ}. This is not true in the cDG (left).



3034 S.W. Mogensen and N.R. Hansen

A walk, ω, is an ordered, alternating sequence of nodes (γi) and edges (∼j) such that each edge, ∼i ,
is between γi and γi+1,

γ1 ∼1 γ2 ∼2 . . . ∼k γk+1.

For each directed edge, its orientation is also known as otherwise α→ α and α← α would be indistin-
guishable. We say that γ1 and γk+1 are endpoint nodes, and we say that the walk is from γ1 to γk+1. For
later purposes, orientation of the walk is essential. We let ω−1 denote the walk obtained by traversing
the nodes and edges of ω in reverse order. At times, we will also say that a walk, ω, is between γ1 and
γk+1, but only when its orientation does not matter in which case we essentially identify ω with ω−1.
We say that a walk is trivial if it has no edges and therefore only a single node, and otherwise we say
that it is nontrivial. Consider a walk as above. We say that a non-endpoint node, γi , i ∉ {1,k + 1}, is a
collider if the subwalk

γi−1 ∼i−1 γi ∼i γi+1

is of one of the following types

γi−1 ∗→γi ←∗ γi+1,

γi−1 ∗→γi ""γi+1,

γi−1 ""γi ←∗ γi+1,

γi−1 ""γi ""γi+1,

and otherwise we say that it is a noncollider. This means that the property of being a collider or a
noncollider is relative to a walk and, seeing that nodes may be repeated on a walk, it is actually a
property of an instance of a node on a specific walk. Note that endpoint nodes are neither colliders nor
noncolliders. We say that α and β are collider connected if there exists a (nontrivial) walk from α to β
such that every non-endpoint node is a collider.

We say that α ∗→ β has a head at β, and that α→ β has a tail at α. We say that α""β has a stump
at α. We say that edges α""β and α ∗→ β have a neck at β. It follows that γi above is a collider if and
only if both adjacent edges have a neck at γi . A path is a walk such that every node occurs at most once.
We say that a path from α to β is directed if every edge on the path is directed and pointing towards β.
If there is a directed path from α to β, then we say that α is an ancestor of β and that β is a descendant
of α. We let an(β) denote the set of ancestors of β, and for C ⊆V , we define an(C) = ∪γ∈Can(γ). We
let an(γ1, . . . ,γk) denote an({γ1, . . . ,γk}). Note that C ⊆ an(C). A cycle is a path α ∼ . . . ∼ β composed
with an edge β ∼ α. If the path from α to β is directed and the edge is β→ α, then we say that the cycle
is directed. A DG without any directed cycles is said to be a directed acyclic graph (DAG).

When D = (V,E) is a graph and V̄ ⊆ V , we let DV̄ denote the induced graph on nodes V̄ , i.e.,
DV̄ = (V̄, Ē),

Ē = {e ∈ E ∶ e is between α, β ∈ V̄}.

We will use μ-connecting walks and μ-separation to encode independence structures using cDGs.
These concepts were introduced in [37,39] and they generalize the notion of δ-separation [13,15]. μ-
separation was originally used in DMGs, though the adaptation to cDGs is straightforward.
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Definition 12 (μ-connecting walk [37]). Consider a nontrivial walk, ω,

α ∼1 γ2 ∼2 . . . ∼k−1 γk ∼k β
and a set C ⊆V . We say that ω is μ-connecting from α to β given C if α ∉C, every collider on ω is in
an(C), no noncollider is in C, and ∼k has a head at β.

It is essential that the above definition uses walks, and not only paths. As an example consider
α""β← γ. In this graph, there is no μ-connecting path from α to β given β, but there is a μ-connecting
walk.

Definition 13 (μ-separation [37]). Let D = (V,E) be a cDG or a DMG and let A,B,C ⊆V . We say that
B is μ-separated from A given (or by) C in D if there is no μ-connecting walk from any α ∈ A to any
β ∈ B given C and we denote this by A⊥μ B ∣C [D], or just A⊥μ B ∣C.

When sets A, B, or C above are singletons, e.g., A = {α}, we write α instead of {α} in the context
of μ-separation. We say that the set C in the definition of μ-separation is a conditioning set. Mogensen
and Hansen [37] introduced μ-separation as a generalization of δ-separation [13,15], however, only
in DMGs, and not in cDGs. As in other classes of graphs, one can decide μ-separation in cDGs by
using an auxiliary undirected graph, known as a moral or augmented graph. This is described in the
supplementary material [38]. We will mostly use the above walk-based definition, though at times we
use or mention the definition using augmented graphs when this definition is particularly useful.

The following definitions are often applied in the literature to different classes of graphs and sepa-
ration criteria. When D = (V,E) is a cDG or DMG, we define its independence model (or separation
model), I(D), as the collection of μ-separations that hold, i.e.,

I(D) = {(A,B,C) ∶ A,B,C ⊆V, A⊥μ B ∣C [D]}.

Definition 14 (Markov equivalence). Let D1 = (V,E1) be a cDG or a DMG and let D2 = (V,E2) be a
cDG or a DMG. We say that D1 and D2 are Markov equivalent if I(D1) = I(D2).

For any finite set V , Markov equivalence is an equivalence relation on a set of graphs with node set
V . When D is a cDG or a DMG, we let [D] denote the Markov equivalence class of D restricted to its
own class of graphs. That is, if D is a cDG, then [D] denotes the set of Markov equivalent cDGs. If
D is a DMG, then [D] denotes the set of Markov equivalent DMGs. For a cDG or DMG, D = (V,E),
and a directed, blunt, or bidirected edge, e, between α ∈V and β ∈V , we use D + e to denote the graph
(V,E ∪ {e}).

For graphs D1 = (V,E1) and D2 = (V,E2), we write D1 ⊆D2 if E1 ⊆ E2. Graphical separation criteria
(including μ-separation) are most often monotone in the sense that if D1 ⊆ D2, then I(D2) ⊆ I(D1).
In this case, we define the notion of a maximal graph.

Definition 15 (Maximality). LetD = (V,E) be a cDG (DMG). We say thatD is maximal if no directed
or blunt (directed or bidirected) edge can be added Markov equivalently, i.e., if for every directed
or blunt (directed or bidirected) edge, e, such that e ∉ E , it holds that D and D + e are not Markov
equivalent.

Remark 16. Eichler [17],Eichler and Didelez [22], and Eichler [18] describe graphs that represent local
independence (or Granger non-causality) in time series in the presence of correlated noise processes.
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In those papers, undirected (dashed or solid) edges, −, are used to represent the correlations among the
noise variables, while we use blunt edges, "". Using an undirected edge could suggest that the edge
acts like an edge with tails in both ends which is not the case. A blunt edge does also not act like a
bidirected edge in a DMG, and this warrants the usage of an edge with a third kind of mark.

Notational clarity and simplicity become even more important when considering graphical marginal-
izations of cDGs. When marginalizing a cDG one needs to consider edges that, when composed with
other edges, act like a blunt edge in one end and like a directed edge in the other (see also [19]). This
can naturally be visualized by the edge ↦. For example, the graph α→ β""γ → δ leads to the graph
α→ β↦ δ when γ is marginalized away. We will not in this paper pursue this larger class of graphs,
but our choice of the blunt edge, "", to represent correlations among the noise variables was made so
that it extends naturally to marginalized cDGs.

4. Markov equivalence of directed correlation graphs

Different cDGs can encode the same separation model and in this section we will describe the Markov
equivalence classes of cDGs. This is essential as it allows us to understand which graphical structures
represent the same local independencies. This understanding is needed if we want to learn graphical
representations from tests of local independence in observed data. We begin the section by noting a
strong link between the independence model of a cDG and its directed edges.

Proposition 17. Let D = (V,E) be a cDG. Then α→D β if and only if α ⊥μ β ∣V ∖ {α} does not hold.

The proposition can be found in [37] in the case of DGs. It implies that if D1 and D2 are Markov
equivalent cDGs, then they have the same directed edges, and therefore anD1(C) = anD2(C) for all
node sets C. We will often omit the subscript when it is clear from the context from which graph(s) the
ancestry should be read.

Proof. If the edge is in the graph, it is μ-connecting given any subset of V that does not contain α, in
particular given V ∖{α}. On the other hand, assume α→ β is not in the graph. Any μ-connecting walk
from α to β must have a head at β,

α ∼ . . . ∼ γ→ β.
We must have that γ ≠ α, and it follows that γ is in the conditioning set, i.e., the walk is closed.

In graphs that represent conditional independence in multivariate distributions, such as ancestral
graphs and acyclic directed mixed graphs, one can use inducing paths to characterize which nodes
cannot be separated by any conditioning set [45,60]. In DMGs, inducing paths can be defined similarly
[37]. In cDGs, we define both inducing paths and weak inducing paths. We say that a path is a collider
path if every non-endpoint node on the path is a collider. If α ≠ β, then α → β and α ""β are both
collider paths.

Definition 18 (Inducing path (strong)). A (nontrivial) collider path from α to β is a (strong) inducing
path if the final edge has a head at β and every non-endpoint node is an ancestor of α or of β.

Mogensen and Hansen [37] also allow cycles in the definition of inducing paths. In the following,
we assume that α → α for all α ∈ V and therefore this would be an unnecessary complication. We



Graphical modeling of stochastic processes driven by correlated noise 3037

see immediately that in a cDG, the only inducing path is a directed edge. However, we include this
definition to conform with the terminology in DMGs where more elaborate inducing paths exist. In
this paper, we drop one of the conditions from Definition 18 to obtain a graphical structure which is
more interesting in cDGs, a weak inducing path.

Definition 19 (Weak inducing path). A (nontrivial) collider path between α and β is a weak inducing
path if every non-endpoint node is an ancestor of α or of β.

We note that a strong inducing path is also a weak inducing path. Furthermore, if there is a weak
inducing path from α to β, there is also one from β to α, and this justifies saying that a weak inducing
path is between α and β in Definition 19. Also note that a weak inducing path is most often called an
inducing path in the literature on acyclic graphs. When we just say inducing path, we mean a strong
inducing path.

If D is a cDG such that α→D α for all α ∈V , then we say that D contains every loop. From this point
on, we will assume that the cDGs we consider all contain every loop.

Proposition 20. Let D = (V,E) be a cDG such that α→ α for all α ∈V. There is a weak inducing path
between α and β if and only if there is no C ⊆V ∖ {α, β} such that α ⊥μ β ∣C.

Mogensen and Hansen [37] show a similar result in the case of strong inducing paths in DMGs. We
say that β is inseparable from α if there is no C ⊆V ∖ {α} such that β is μ-separated from α by C.

Example 21. Mogensen and Hansen [37] use μ-separation in directed mixed graphs (DMGs) to rep-
resent local independence models. It is natural to ask if the independence models of cDGs can be
represented by DMGs. The answer is no and to show this we consider the cDG in Figure 4A. We ask

α β γ

A

α β γ

δB

α β γ

C

Figure 4. A: A cDG, D, on nodes V = {α, β,γ} such that the separation model I(D) cannot be represented by a
DMG on nodes V (see Example 21). B: A directed graph (DG). C: When the δ-node (δ-process) is unobserved in
B, the DG marginalizes to the directed mixed graph (DMG) in C in the sense that the local independencies over
the observed set of coordinate processes, {α, β,γ}, implied by μ-separation are the same in graphs B and C [37].
Bidirected loops are omitted from the visualization of the DMG.
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then if there exists a DMG on the same node set which has the same set of μ-separations as this cDG. In
the cDG, we see that the node γ is separable from α and vice versa, i.e., there can be no edge between
the two in the DMG. The node γ is not separated from α given {β}, and therefore β must be a collider
on a path between the two. However, then there is a head at β on an edge from γ and therefore β is
inseparable from γ which is a contradiction. This shows that the independence model of the cDG in
Figure 4A cannot be represented by any DMG on the same node set. It follows that the set of separation
models of cDGs on some node set is not in general a subset of the separation models of DMGs on the
same node set. Similarly, one can find DMGs that are not Markov equivalent with any cDG.

The DMGs represent local independence in partially observed stochastic processes (some coordinate
processes may be unobserved) through a global Markov property using μ-separation. The bidirected
edges represent unobserved ‘confounder’ processes in the DMGs, i.e., confounder processes that have
been marginalized away (see Figure 4, graphs B and C, for an example). Both DMGs and cDGs repre-
sent local independence through their respective global Markov properties and μ-separation. We note
that the local independence models corresponding to marginalization and correlated noise are different
when represented by DMGs and cDGs, respectively, as there exist DMGs that are not Markov equiva-
lent with any cDG and vice versa.

DGs constitute a subclass of cDGs and within the class of DGs every Markov equivalence class is a
singleton, i.e., two DGs are Markov equivalent if and only if they are equal.

Proposition 22 (Markov equivalence of DGs [37]). Let D1 = (V,E1) and D2 = (V,E2) be DGs. Then
D1 ∈ [D2] if and only if D1 =D2.

Proposition 22 does not hold in general when D1 and D2 are cDGs. As an example, consider a graph
on nodes {α, β} such that α→ β and β→ α. This graph is Markov equivalent with the graph where
α""β is added. The next result is an immediate consequence of Proposition 17 and shows that Markov
equivalent cDGs always have the same directed edges.

Corollary 23. Let D1 = (V,E1) and D2 = (V,E2) be cDGs. If they are Markov equivalent, then for all
α, β ∈V it holds that α→D1 β if and only if α→D2 β.

We say that a graph, D, is a greatest element of its equivalence class, [D], if it is a supergraph of
all members of the class, i.e., D̃ ⊆ D for all D̃ ∈ [D]. We say that D is a least element if D ⊆ D̃ for all
D̃ ∈ [D]. Mogensen and Hansen [37] show the below result on Markov equivalence.

Theorem 24 (Greatest Markov equivalent DMG [37]). Let G be a directed mixed graph. Then [G]
has a greatest element (within the class of DMGs), i.e., there exists Ḡ ∈ [G] such that Ḡ is a supergraph
of all Markov equivalent DMGs.

The theorem provides a concise and intuitive way to understand sets of Markov equivalent DMGs.
If G is a DMG, then we can visualize [G] by drawing its greatest element and simply showing which
edges are in every DMG in [G] and which are only in some DMGs in [G]. cDGs represent local
independencies allowing for correlation in the driving noise processes and one can ask if the same
result on Markov equivalence holds in this class of graphs. The answer is in the negative as illustrated
by the following example.

Example 25. Consider the graph, D, to the left on the first row of Figure 5. The edge α""γ can be
added Markov equivalently and the edge β""γ can be added Markov equivalently (center and right
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γ

Figure 5. First row: An equivalence class illustrating that a greatest element need not exist (see Example 25).
Second row: The left and center graphs are Markov equivalent. The graph on the right is the largest graph which
is a subgraph of both of them, and this graph is not Markov equivalent, i.e., the Markov equivalence class of the
left and center graphs does not have a least element. Theorem 31 gives a characterization of Markov equivalence
of cDGs.

graphs), but adding them both results in a graph which is no longer Markov equivalent with D. This
shows that the equivalence class of D does not contain a greatest element. Figure 5 also gives an
example showing that an equivalence class of cDGs does not necessarily contain a least element.

4.1. A characterization of Markov equivalence of cDGs

When we have a global Markov property, such as the one in Theorem 10, the μ-separations of a cDG
imply local independencies in the distribution of the stochastic process. We saw in Figure 5 that differ-
ent cDGs may represent the same μ-separations and it is therefore important to understand which cDGs
are equivalent in terms of the μ-separations that they entail, that is, are Markov equivalent. The central
result of this section is a characterization of Markov equivalence of cDGs. We introduce the notion of
collider equivalence of graphs as a first step in stating this result.

Definition 26. Let D1 = (V,E1), D2 = (V,E2) be cDGs with the same directed edges, and let ω be a
(nontrivial) collider path in D1,

α ∼ γ1 ∼ . . . ∼ γk1 ∼ β.
We say that ω is covered in D2 if there exists a (nontrivial) collider path in D2

α ∼ γ̄1 ∼ . . . ∼ γ̄k2 ∼ β
such that for each γ̄j we have γ̄j ∈ an(α, β) or γ̄j ∈ ∪ian(γi).

In the above definition {γj} or {γ̄j} may be the empty set, corresponding to α and β being adjacent,
α ∼ β. One should also note that a single edge, α ∼ β, constitutes a collider path between α and β (when
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α ≠ β) and that a single edge covers any collider path between α and β as it has no non-endpoint nodes.
When D1 and D2 have the same directed edges it holds that anD1(C) = anD2(C) for all C ⊆ V and
therefore one can read the ancestry of α, β, and {γi} in either of the graphs in the above definition.

Definition 27 (Collider equivalence). Let D1 and D2 be cDGs on the same node set and with the
same directed edges. We say that D1 and D2 are collider equivalent if every (nontrivial) collider path
in D1 is covered in D2 and every (nontrivial) collider path in D2 is covered in D1.

In the context of collider equivalence, the convention that every node is an ancestor of itself, i.e.,
γ ∈ an(γ) for all γ ∈ V , is important. From this convention, it follows immediately that every cDG is
collider equivalent with itself. However, this would not necessarily be the case without this convention.

We do not need to consider walks in the above definitions (only paths) as we assume that all directed
loops are included and therefore all nodes are collider connected to themselves by assumption. If there
is a collider walk between α and β (α ≠ β), then there is also a collider path. Furthermore, if a collider
walk between α and β (α ≠ β) in D1 is covered by a collider walk in D2, then it is also covered by a
collider path, and we see that one would obtain an equivalent definition by using collider walks instead
of collider paths in Definitions 26 and 27.

Remark 28. Collider equivalence implies that two graphs have the same weak inducing paths in the
following sense. Assume ω is a weak inducing path between α and β in D1, and that D1 and D2 are
collider equivalent and have the same directed edges. In D2, there exists a collider path, ω̄, such that
every non-endpoint node is an ancestor of a node on ω, i.e., an ancestor of {α, β} using the fact that ω
is a weak inducing path. This means that ω̄ is a weak inducing path in D2.

Lemma 29. Let D1 = (V,E1), D2 = (V,E2) be cDGs that contain every loop. If D1 and D2 are not
collider equivalent, then they are not Markov equivalent.

Proposition 30. Assume α, β ∉C. If ω is a collider path between α and β such that every collider is
in an({α, β} ∪C), then there is a walk between α and β such that no noncollider is in C and every
collider is in an(C).

A more general version of Proposition 30 was shown by Richardson [44] using a similar proof and
m-separation (a definition of m-separation is given in the supplementary material [38]).

Theorem 31 (Markov equivalence of cDGs). LetD1 = (V,E1) andD2 = (V,E2) be cDGs that contain
every loop. The graphs D1 and D2 are Markov equivalent if and only if they have the same directed
edges and are collider equivalent.

We give a direct proof of this theorem. One can also use the augmentation criterion in the supple-
mentary material [38] to show this result.

Proof. Assume first that D1 and D2 have the same directed edges and are collider equivalent. Then
anD1(C) = anD2(C) for all C ⊆V so we will omit the subscript and write simply an(C). Let ω denote
a μ-connecting walk from α to β given C in D1. We will argue that we can also find a μ-connecting
walk in D2. We say that a nontrivial subwalk of ω is a maximal collider segment if all its non-endpoint
nodes are colliders on ω, its endpoint nodes are not colliders, and it contains at least one blunt edge
(note that on a general walk this should be read as instances of these nodes and edges as nodes and
edges may be repeated on a walk). We can partition ω into a sequence of subwalks such that every
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α β

γ δ

α β

γ δ

Figure 6. The two cDGs constitute a Markov equivalence class, and they are both seen to be maximal. However,
they do not have the same adjacencies. A similar phenomenon can occur in DGs (without loops) under d-separation
[46,48].

subwalk is either a maximal collider segment, or a subwalk consisting of directed edges only. We note
that maximal collider segments may be adjacent, i.e., share an endpoint. Every segment of ω that
consists of directed edges only is also present in D2. Consider a maximal collider segment between δ
and ε. This is necessarily a collider walk in D1. If δ ≠ ε, there exists a collider path between δ and ε
in D1, and therefore a covering collider path, ρ, in D2 using collider equivalence. The final edge of ω
must be directed and point towards the final instance of β and therefore β is not in a maximal collider
segment, and δ and ε are not the final node on ω. If δ = ε, then we can remove this segment from ω
and obtain a connecting walk as the final β is not an endpoint of a maximal collider segment. Assume
δ ≠ ε. δ and ε are noncolliders on ω, or endpoint nodes on ω. If δ = α or ε = α, then they are not in C.
In either case, we see that δ,ε ∉C. We will now find an open (given C) walk between δ and ε using ρ.
We know that ρ is a collider path and that every non-endpoint node on ρ is an ancestor of {δ,ε} or of
a collider in the original maximal collider segment, and therefore of C. It follows from Proposition 30
that we can find a walk between δ and ε such that no noncollider is in C and every collider is in an(C).
We create a walk from α to β in D2 by simply substituting each maximal collider segment with the
corresponding open walk. This walk is open in any node which is not an endpoint of a maximal collider
segment. If an endpoint of a maximal collider segment changes collider status on this new walk, then it
must be a noncollider on ω and a parent of a node in an(C), i.e., also in an(C) itself. Finally, we note
that the last segment (into β) is not a maximal collider segment and therefore still has a head into β.

On the other hand, if they do not have the same directed edges, it follows from Proposition 17 that
they are not Markov equivalent. If they are not collider equivalent, it follows from Lemma 29 that they
are not Markov equivalent.

In the case of directed acyclic graphs it holds that Markov equivalent graphs have the same adjacen-
cies, however, this is not true in the case of cDGs, and in fact, it is also not true among maximal cDGs
(Definition 15) as seen in Figure 6.

Proposition 32. Let D = (V,E) be a cDG, and let α, β ∈V. Let e denote a blunt edge between α and β.
If α and β are connected by a weak inducing path consisting of blunt edges only, then D+ e ∈ [D].

4.2. Markov equivalent permutation of nodes

The example in Figure 6 shows a characteristic of some Markov equivalent cDGs. In the example, one
can obtain one graph from the other by a permutation of the endpoints of blunt edges within the set
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{γ,δ}. In this section, we formulate sufficient conditions for a cDG to be Markov equivalent with a
permutation graph. While the formal definition of a permutation graph is new to our knowledge, the
basic idea is also found in earlier work on Markov equivalence of DGs under d-separation [46,48].

Definition 33 (Cyclic set). We say that S ⊆ V is a cyclic set if for every (α, β) ∈ S × S, it holds that
α ∈ an(β).

The following is a formal definition of a permutation graph as illustrated in the example of Figure 6.

Definition 34 (Permutation graph). Let D = (V,E) be a cDG and let ρ be a permutation of the node
set, V . We define Pρ(D) as the cDG on nodes V such that

α→Pρ(D) β if and only if α→D β,

ρ(α)""Pρ(D) ρ(β) if and only if α""D β.

Proposition 35. Let D = (V,E) be a cDG which contains every loop and let S ⊆V. Let ρ be a permu-
tation of V such that ρ(α) = α for all α ∉ S. If pa(β) = pa(γ) for all β,γ ∈ S, then Pρ(D) ∈ [D].

Note that pa(β) = pa(γ) implies that β →D γ as β ∈ pa(β) for all β. Furthermore, the fact that
β→D γ for all β,γ ∈ S implies that S is a cyclic set.

Figure 6 shows two graphs that are Markov equivalent by Proposition 35. In some graphs one can find
permutations, not fulfilling the assumptions of Proposition 35, that generate Markov equivalent graphs,
and this proposition is therefore not a necessary condition for Markov equivalence under permutation
of blunt edges. One example is in the first row of Figure 7. The center and right graphs are Markov
equivalent and one is generated from the other by permuting the blunt edges of β and γ, however, the
conditions of Proposition 35 are not fulfilled.

5. Deciding Markov equivalence

In this section, we will consider the problem of deciding Markov equivalence algorithmically. That is,
given two cDGs on the same node set, how can we decide if they are Markov equivalent or not? A
possible starting point is Theorem 31. While it is computationally easy to check whether the directed
edges of two cDGs are the same (quadratic in the number of nodes in their mutual node set), collider
equivalence could be hard as there may be exponentially many collider paths in a cDG. In this section,
we give a different characterization of Markov equivalence (Theorem 36) which proves the correctness
of a simple algorithm (Algorithm 1) for deciding Markov equivalence of two cDGs. This algorithm
avoids checking each collider path explicitly. However, in the worst case it also has a superpolynomial
runtime which is to be expected due to the complexity result in Theorem 42.

The directed part of a cDG, D(D) = (V,F), is the DG on nodes V such that α →D(D) β if and
only if α→D β. The blunt part of a cDG, U(D), is the cDG obtained by removing all directed edges.
Let G = (V,E) be a graph with only blunt edges. The connected components of G are the disjoint sets,
V1, . . . ,Vl , such that ∪iVi =V and such that α, β ∈Vi if and only if there is a path in G connecting α and β.
The connected components can be found in time which is proportional to max(∣V ∣, ∣E ∣) [26]. The blunt
components of D are the connected components of U(D). We say that D1 = (V,E1) and D2 = (V,E2)
have the same collider connections if it holds for all α ∈V and β ∈V that α and β are collider connected
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Figure 7. Markov equivalence in cDGs. Graphs from different Markov equivalence classes are separated by line
segments. First row: These are three members of a Markov equivalence class of size 21. The only restriction on 25

combinations of blunt edges (all but β��γ can be present) is the fact that we cannot have both α��β and α��γ
present and that either (α,δ), (β,δ), or (γ,δ) are spouses as otherwise there would not be a weak inducing path
between α and δ. Second row: These graphs are Markov equivalent. The collider path α��β��δ in the first graph
is covered in the two others by the walk α��γ��δ as γ ∈ an(β). The edge β��δ is covered by the weak inducing
path δ��γ ← β in the center and right graphs of the row. The equivalence class of these graphs has cardinality
16 which is every combination of blunt edges (excluding α��δ which cannot be in a Markov equivalent graph)
that makes the graph connected via blunt edges as well as two more (one of which is the rightmost graph of this
row). Third row: The first graph is not collider equivalent with the following two: the collider path α��β��δ is
not covered by any collider path in the second graph; the collider path α��γ is not covered by any collider path in
the third.

in D1 if and only if they are collider connected in D2. We say that a subset of nodes, A, is ancestral if
A = an(A). We will only consider cDGs that contain every loop.

We start from the following result which is seen to be a reformulation of the augmentation criterion
in the supplementary material [38].
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Algorithm 1 Markov equivalence
Require: cDGs, D1 = (V,E1),D2 = (V,E2)

if D(D1) ≠D(D2) then
return FALSE

end if
for A ∈A(C(D1)) do

Define A =⋃C∈A C
if (D1)A and (D2)A do not have the same collider connections then

return FALSE
end if

end for
return TRUE

Theorem 36. Let D1 = (V,E1) and D2 = (V,E2) be cDGs (both containing every loop) such that
D(D1) = D(D2). D1 and D2 are Markov equivalent if and only if for every ancestral set it holds
that (D1)A and (D2)A have the same collider connections.

The above theorem can easily be turned into an algorithm for deciding if two cDGs are Markov
equivalent (Algorithm 1). However, there may be exponentially many ancestral sets in a cDG. For
instance, in the case where the only directed edges are loops all subsets of V are ancestral and therefore
the algorithm would need to compare collider connections in 2n pairs of graphs where n is the number
of nodes in the graphs (of course, one could omit the empty set and singletons).

5.1. An algorithm for deciding equivalence

In the algorithm based on Theorem 36 we will use the condensation of a cDG. This is not needed, but
does provide a convenient representation of the ancestor relations between nodes in a cyclic graph. Let
D = (V,E) be a cDG. We say that α, β ∈V are strongly connected if there exists a directed path from α to
β and a directed path from β to α, allowing trivial paths. Equivalently, α and β are strongly connected
if and only if α ∈ an(β) and β ∈ an(α). This is an equivalence relation on the node set of a cDG and
we say that the equivalence classes are the strongly connected components of the graph. The definition
of strong connectivity is often used in DGs [10]. We simply use a straightforward generalization to
the class of cDGs such that the directed part of the cDG determines strong connectivity. The strongly
connected components are also the maximal cyclic sets (Definition 33).

The condensation of D (also known as the acyclic component graph of D) is the directed acyclic
graph obtained by contracting each strongly connected component to a single vertex. That is, if
C1, . . . ,Cm are the strongly connected components of D (Ci ⊆ V for all i), then the condensation of
D has node set C = {C1, . . . ,Cm} and Ci →Cj if i ≠ j and there exists α ∈Ci, β ∈Cj such that α→D β
[10]. We denote the condensation of D by C(D). We also define the completed condensation of D,
C̄(D), which is the graph on nodes C∪{∅} such that C̄(D)C = C(D) and such that ∅ is a parent of ev-
ery other node and a child of none. The condensation and the completed condensation are both DAGs.
When D has d directed edges that are not loops, then strongly connected components can be found in
linear time, that is, O(n+ d) where n = ∣V ∣ [10].

In the following, we will be considering sets of nodes in D, i.e., subsets of V , as well as sets of nodes
in C(D), that is, subsets of C. We write the former as capital letters, A,B,C. We write the latter as
capital letters in bold font, A,B,C, to emphasize that they are subsets of C, not of V .
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Proposition 37. The ancestral sets in D are exactly the sets of the form ⋃C∈A C for an ancestral set,
A, in C(D).

The above proposition shows that we can consider the condensation when finding ancestral sets in a
cDG. We let A(D) denote the set of ancestral sets in D. The correctness of Algorithm 1 follows from
Theorem 36 and Proposition 37. The algorithm considers ancestral sets in the condensation, however,
a version using ancestral sets directly in D1 is of course also possible and this essentially gives an
equivalent algorithm. In the algorithm, one can decide collider connectivity by noting that α and β are
collider connected in a cDG, D, if and only if there exists a blunt component, U, such that α ∈ paD(U)
and β ∈ paD(U), using that the graphs contain every loop.

5.2. Virtual collider tripaths

This section describes a graphical structure that we will call a virtual collider tripath. We will use these
to give a necessary condition for Markov equivalence which is computationally easy to check. How-
ever, this is only a necessary condition and not sufficient for Markov equivalence. The results in this
subsection therefore lead to an algorithm for checking Markov equivalence which is computationally
feasible, but is only an approximation in the sense that it will not always correctly distinguish between
graphs that are not Markov equivalent. In the next section we see that the problem of deciding Markov
equivalence of cDGs is coNP-complete and therefore we should not expect to find an algorithm which
is always correct and also computationally efficient.

Definition 38 (Virtual collider tripath). Let α, β ∈V and let C be a node in C̄(D), i.e., C is a strongly
connected component or the empty set. We say that (α, β,C) is a virtual collider tripath if there exists
a (nontrivial) collider path α ∼ γ1 ∼ . . . γm ∼ β such that γi ∈ an({α, β} ∪C) for all i = 1, . . . ,m.

Note that if α = β, then there is no path fulfilling the requirements of Definition 38, hence (α,α,C) is
not a virtual collider tripath for any C. Richardson [47] describes virtual adjacencies in DGs equipped
with d-separation. Those are structures that in terms of separation act as adjacencies. The idea behind
virtual collider tripaths is similar; for a fixed pair of nodes, α and β, a virtual collider tripath, (α, β,C),
acts as if there exists γ ∈C such that α ∼ γ ∼ β is a collider walk. Note also that if α and β are adjacent,
then (α, β,C) is a virtual collider tripath for any strongly connected component C. Finally, note that
there are no restrictions on whether or not α, β, or both are elements in the set C ⊆V .

Definition 39 (Maximal virtual collider tripath). We say that a virtual collider tripath, (α, β,C), is
maximal if there is no C̃ ≠C such that (α, β,C̃) is a virtual collider tripath and C̃ is an ancestor of C in
C̄(D).

We say that two cDGs, D1 and D2, have the same (maximal) virtual collider tripaths if it holds that
(α, β,C) is a (maximal) virtual collider tripath in D1 if and only if (α, β,C) is a (maximal) virtual
collider tripath in D2.

Proposition 40. Let C be a strongly connected component or the empty set. If (α, β,C) is not a virtual
collider tripath and α ≠ β, then β and α are m-separated by an({α, β} ∪C) ∖ {α, β}.

A definition of m-separation can be found in the supplementary material [38]. The next theorem
gives a necessary condition for Markov equivalence of cDGs.
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α β γ

δ ε

ζ

α β γ

δ ε

ζ

Figure 8. These cDGs on nodes {α, β,γ,δ,ε, ζ} have the same maximal virtual collider tripaths, however, they
disagree on whether ζ is μ-separated from α by {β,γ,δ,ε}.

Theorem 41. Let D1 = (V,E1) and D2 = (V,E2) be cDGs containing every loop. If they are Markov
equivalent, then they have the same directed edges and the same maximal virtual collider tripaths.

The example in Figure 8 shows that having the same directed edges and the same maximal virtual
collider tripaths is not a sufficient condition for Markov equivalence.

5.3. Complexity of deciding Markov equivalence

We have given two characterizations of Markov equivalence of cDGs and argued that they both use
exponentially many conditions in the worst case. In this section, we prove that this, most likely, cannot
be circumvented.

coNP is the class of decision problems for which a no-instance can be verified using a polynomial-
length counterexample in polynomial time and a problem is in coNP if and only if its complement is
in NP. If a problem is as hard as any problem in coNP, then we say that the problem is coNP-hard. If
a problem is coNP-hard and also in coNP, we say that it is coNP-complete [23,54]. Various inference
problems in graphical models are known to be computationally hard [7,8,29,35]. On the other hand,
there exist polynomial-time algorithms for deciding Markov equivalence in several classes of graphs,
e.g., maximal ancestral graphs [4] and DGs under d-separation [48]. This is different in cDGs under
μ-separation.

Theorem 42. Deciding Markov equivalence of cDGs is coNP-complete.

The complexity result implies that, unless P = coNP (which is commonly believed to not be the
case), one cannot find a characterization of Markov equivalence of cDGs which allows us to decide
equivalence of two cDGs in polynomial time as a function of the size of the graphs.

6. Conclusion

We have studied graphs that represent independence structures in stochastic processes that are driven
by correlated noise processes. We have characterized their equivalence classes in two ways and proven
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that deciding equivalence is coNP-complete. The characterizations of Markov equivalence do, however,
suggest subclasses of cDGs in which deciding Markov equivalence is feasible, e.g., in cDGs with
blunt components of bounded size, or in cDGs with other restrictions on blunt paths (Mogensen [36,
Chapter 4] provides an example).

We have also shown a global Markov property in the case of Ornstein-Uhlenbeck processes driven
by correlated Brownian motions. It is an open question if and how this can be extended to other or
larger classes of continuous-time stochastic processes.

The definition of a canonical local independence graph which was used to prove the global Markov
property resembles that of a causal graph. In time series models (discrete time) a causal semantics can
be defined rigorously [21] and by extending the material in the present paper one may possibly provide
a causal semantics in the continuous-time framework.
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This document contains proofs of results in the paper “Graphical modeling
of stochastic processes driven by correlated noise” as well as an augmentation
criterion for deciding µ-separation in cDGs. The concept of m-separation is
found in Definition S2.

All cross-references to objects in this document are prepended with an ‘S’
and all other cross-references are to objects in the main text.

S1 Augmentation criterion for µ-separation in
cDGs

In this section, we argue that we can decide µ-separation in a cDG by considering
an augmented graph, a generalization of a so-called moral graph [S4]. Richard-
son and Spirtes [S18], Richardson [S17] use a similar approach to decide m-
separation in ancestral graphs and acyclic directed mixed graphs (m-separation
is defined in the supplementary material [S13]). Didelez [S5] uses moral graphs
to decide δ-separation in DGs. The augmentation criterion has also been estab-
lished in DMGs equipped with µ-separation [S14] and the analogous result in
cDGs follows from almost identical arguments.

An undirected graph is a graph such that every edge is undirected, α − β.
The augmented graph of a cDG on nodes V is the undirected graph on nodes
V , U = (V,EU), such that α and β are adjacent in U if and only if α and β are
collider connected in the cDG (omitting loops). Given an undirected graph and
three disjoint subsets of nodes A, B, and C, we say that A and B are separated
by C if every path between α ∈ A and β ∈ B intersects C.

Proposition S1 (Augmentation criterion for µ-separation). Let D = (V,E) be a
cDG. Let A,B,C ⊆ V , and assume that B = {β1, . . . , βj}. Let Bp = {βp1 , . . . , β

p
j }

and define the graph D(B) with node set V ∪̇Bp such that D(B)V = D and

1



α →D(B) βpi if α →D βi and α ∈ V,βi ∈ B.
We have that A ⊥µ B ∣ C [D] if and only if A∖C and Bp are separated by C in
the augmented graph of D(B)an(A∪Bp∪C).

Proof. The proofs of Propositions D.2 and D.4 by Mogensen and Hansen [S14]
give the result. One can show that for A,B,C ⊆ V , A ⊥µ B ∣ C [D] holds if and
only if A∖C ⊥m Bp ∣ C [D(B)] holds (m-separation is found in Definition S2 and
makes no distinction between blunt and bidirected edges). The second statement
is then shown to be equivalent to separation in the relevant augmented graph
using Theorem 1 in [S17]. Richardson [S17] studies acyclic graphs, however, the
proof also applies to cyclic graphs as noted in the paper.

S2 Proof of Theorem 10

We assume X is a regular Ornstein-Uhlenbeck process (see Example 9) with
drift

λ(x) =M(x − µ)
and diffusion matrix σ and let Σ = σσT . We let a = −Mµ and V = U ∪̇W . We
will use the following notation which is similar to that of Liptser and Shiryayev
[S12],

s ○ s = σUUσTUU + σUWσTUW (S1)

s ○ S = σUUσTWU + σUWσTWW (S2)

S ○ S = σWUσ
T
WU + σWWσ

T
WW , (S3)

where ATUW denotes (AUW )T for a matrix A and row and column indices U and
W . Note that the above matrices are simply the block components of Σ = σσT ,

Σ = [
σUU σUW

σWU σWW

] [
σTUU σTWU

σTUW σTWW

] = [
s ○ s s ○ S

(s ○ S)T S ○ S
] . (S4)

Let
mt = E (XU

t ∣ FWt ) .
The following integral equation holds [S12, Theorem 10.3],

mt =m0 + ∫
t

0
aU +MUUmr +MUWX

W
r dr (S5)

+ ∫
t

0
(s ○ S + γrMT

WU)(S ○ S)−1( dXW
r − (aW +MWUmr +MWWX

W
r ) dr)

(S6)
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where m0 = E[XU
0 ∣ FW0 ] and γt is the solution of a differential equation given

below. We can write this as

mt =m0 + ∫
t

0
aU + (MUU − (s ○ S + γrMT

WU)(S ○ S)−1MWU)mr +MUWX
W
r dr

+∫
t

0
(s ○ S + γrMT

WU)(S ○ S)−1( dXW
r − (aW +MWWX

W
r ) dr).

The process γt is given by the following equation [S12, Theorem 10.3],

γ̇(t) =MUUγt + γtMT
UU + s ○ s (S7)

− (s ○ S + γtMT
WU) [S ○ S]−1 (s ○ S + γtMT

WU)T (S8)

= (MUU − (s ○ S)[S ○ S]−1MWU)γt + γt(MT
UU −MT

WU [S ○ S]−1(s ○ S)T )
(S9)

+ s ○ s − (s ○ S)[S ○ S]−1(s ○ S)T − γtMT
WU [S ○ S]−1MWUγt, (S10)

with initial condition γ0 = E[(XU
0 −m0)(XU

0 −m0)T ]. This is known as a differen-
tial Riccati equation. The solution of these equations is unique when we restrict
our attention to solutions such that γt is symmetric and positive semidefinite
[S12, Theorem 10.3]. Essentially, we will show the global Markov property by
arguing about the measurability of mt, using the sparsity of the matrices that go
into the integral equation. We will achieve this by first describing the sparsity
in the solution of an associated algebraic Riccati equation and this will allow us
to describe the sparsity in the solution of the differential Riccati equation.

For ease of notation, we define matrices

D =MT
UU −MT

WU [S ○ S]−1(s ○ S)T , (S11)

E =MT
WU [S ○ S]−1MWU , (S12)

F = s ○ s − (s ○ S)[S ○ S]−1(s ○ S)T , (S13)

and this allows us to write the equation as

γ̇(t) = γtD +DT γt − γtEγt + F.
Note that F is the Schur complement of S ○ S in Σ. The matrix Σ is positive
definite by assumption, and therefore so are F [S7, p. 472] and S ○ S.

Proof of Theorem 10. Let β ∈ B and let t ∈ I. We need to show that

E (λβt ∣ FA∪Ct )

is almost surely equal to an FCt -measurable random variable. We can without
loss of generality assume that A and C are disjoint. The fact that B is µ-
separated from A given C implies that MβA = 0,
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E (λβt ∣ FA∪Ct ) = −MβV µ + ∑
γ∈A∪C

MβγX
γ
t + ∑

δ∉A∪C

MβδE (Xδ
t ∣ FA∪Ct )

= −MβV µ + ∑
γ∈C

MβγX
γ
t + ∑

δ∈pa
D
(β)∖(A∪C)

MβδE (Xδ
t ∣ FA∪Ct )

where D is the canonical local independence graph. Let U = V ∖A∪C. Consider
now the partition of V given in Proposition S3. We see that pa

D
(β)∖ (A∪C) ⊆

V1. The matrix MUU − (s ○S + γtMT
WU)(S ○S)−1MWU in the integral equation

for the conditional expectation process has the sparsity of DT (i.e., if (DT )ij = 0
then the ij-entry of that matrix is also zero, see Proposition S3, Corollary S4,
and Lemma S15) and it follows that one can solve for mV1

t independently of
mU∖V1
t as the solution of the smaller system is unique and continuous [S12, S1].

We see that processes XA
t do not enter into these equations. This follows from

the sparsity of s ○ S, S ○ S, and of γtM
T
WU , and the fact that MV4A = 0 and

MV1A = 0, noting that A ∩ V4 = ∅.

S2.1 Sparsity of the solution of the algebraic Riccati equa-
tion

In order to solve the differential Riccati equation, we will first solve an algebraic
Riccati equation (Equation (S14)) — or rather argue that its solution has a
certain sparsity structure.

0 = ΓD +DTΓ − ΓEΓ + F (S14)

The concept of µ-separation is similar to that of m-separation [S20, S9, S17]
which has been used in acyclic graphs.

Definition S2 (m-separation). In a graph and for disjoint node sets A, B, and
C, we say that A and B are m-separated given C (and write A ⊥m B ∣ C) if
there is no path between any α ∈ A and any β ∈ B such that every collider is in
an(C) and no noncollider is in C.

A path is said to be m-connecting given C if every collider is in an(C) and no
noncollider is in C. m-connecting walks are defined analogously. m-separation
is, in contrast to µ-separation, a symmetric notion of separation in the sense
that if B is m-separated from A given C, then A is also m-separated from B
given C. We will use m-separation as a technical tool in our study of cDGs as
some statements are more easily expressed using this symmetric notion.

In the following proposition and its proof, we write A⇁ B ∣ C if there exists
α ∈ A and β ∈ B such that there is walk between α and β with every collider
in an(C) and no noncollider in C and furthermore there is a neck on the final
edge at β.
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Proposition S3. Consider a regular Ornstein-Uhlenbeck process. Assume V =
U ∪̇W and W = A ∪̇C and define

V1 = {u ∈ U ∶ u ⊥m A ∣ C},
V2 = {u ∈ U ∶ u ⊥m V1 ∣ A ∪C, u /⊥m A ∣ C},
V3 = {u ∈ U ∶ u /⊥m V1 ∣ A ∪C, u /⊥m A ∣ C},
V4 = {w ∈W ∶ V1 ⇁ w ∣W},
V5 = {w ∈W ∶ V2 ⇁ w ∣W},
V6 =W ∖ (V4 ∪ V5).

If B is µ-separated from A given C in the canonical local independence graph,
D, then U = V1 ∪̇V2 ∪̇V3,W = V4 ∪̇V5 ∪̇V6, pa

D
(B)∖(A∪C) ⊆ V1, and furthermore

after a reordering of the rows and columns such that the order is consistent with
V1, . . . , V6, we have the following sparsity of the matrices M and Σ,

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 0 0 M14 M15 M16

0 M22 0 M24 M25 M26

M31 M32 M33 M34 M35 M36

M41 0 0 M44 M45 M46

0 M52 0 M54 M55 M56

0 0 0 M64 M65 M66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Σ = σσT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ11 0 Σ13 Σ14 0 0
0 Σ22 Σ23 0 Σ25 0

Σ31 Σ32 Σ33 Σ34 Σ35 Σ36

Σ41 0 Σ43 Σ44 0 0
0 Σ52 Σ53 0 Σ55 0
0 0 Σ63 0 0 Σ66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For both matrices, the subscript ij corresponds to rows Vi and columns Vj .

Proof. We have that U = V1 ∪̇ V2 ∪̇ V3. If w ∈ V4 ∩ V5 ≠ ∅, then there is an m-
connecting walk between V1 and V2 given A∪C which would be a contradiction,
and thus, W = V4 ∪̇ V5 ∪̇ V6. Note that Σ is symmetric so we only need to argue
that the lower triangular part has the postulated sparsity pattern. Whenever we
mention an m-connecting walk in this proof without specifying a conditioning
set we tacitly mean ‘given W ’.

Any edge V1 ∼ V2 would create an m-connecting walk and therefore M21 =
0,M12 = 0,Σ21 = 0. An edge V1 → w ∈ V5 would also create an m-connecting
walk between V1 and V2 as V5 ⊆ W , and therefore M51 = 0. Similarly, we see
that M42 = 0, Σ51 = 0, and Σ42 = 0. If V1 → w ∈ V6, then w would have to be in
V4, and thus, M61 = 0. Similarly, M62 = 0, Σ61 = 0, Σ62 = 0. Let u ∈ V3. Then
there exists an m-connecting walk between u and A given C, and composing this
walk with an edge u → V1 would give an m-connecting walk between A and V1
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given C as u ∉ C. This is a contradiction and M13 = 0. Similarly, M23 = 0, using
the m-connecting walk between u and V1. Consider again u ∈ V3. There exists
m-connecting walks between u and V1 (given A ∪ C) and u and A (given C).
None of them can have a tail at u as otherwise we could find an m-connecting
walk between A and V1 given C. Therefore, u is a collider on their composition,
and from this it follows that M43 = 0,M53 = 0,M63 = 0. If V4 xxV5, it would
follow that there is an m-connecting walk between V1 and V2, a contradiction.
It follows that Σ54 = 0. If V4 xxw ∈W , then w ∈ V4, and it follows that Σ64 = 0.
Similarly, Σ65 = 0.

The matrices D,E, and F all have their rows and columns indexed by U =
V1 ∪̇ V2 ∪̇ V3. The above proposition and the definitions of the matrices D,E,
and F give the following.

Corollary S4. Under the conditions of Theorem 10, the matrix D has the
sparsity structure

⎡⎢⎢⎢⎢⎢⎣

∗ 0 ∗
0 ∗ ∗
0 0 ∗

⎤⎥⎥⎥⎥⎥⎦
,

i.e., DV2V1 = 0,DV3V1 = 0,DV1V2 = 0, and DV3V2 = 0. The matrix F is such that
FV1V2 = 0 and FV2V1 = 0. The matrix E is block diagonal and EV3V3 = 0.

Lemma S5. If N is an invertible matrix with the sparsity of D, then so is N−1.

Proof. The matrices on the (block) diagonal of N must also be invertible, and
the result follows from the Schur complement representation of N−1, using the
first two blocks as one component, and the third as the second component.

Lemma S6. Consider the Lyapunov equation for square matrices L,Z, and Q
such that Q is symmetric,

LZ +ZLT +Q = 0,

and let Z0 denote its solution. If L is stable and has the sparsity pattern of DT

and Q is such that QV1V2 = 0, QV2V1 = 0, then (Z0)V1V2 = 0 and (Z0)V2V1 = 0.

Proof. The result follows from the explicit solution of a Lyapunov equation
when L is stable [S11],

Z0 = ∫
∞

0
eLsQeL

T s ds.

Definition S7 (Stabilizable pair of matrices). Let G and H be matrices, n×n
and n ×m, respectively. We say that the pair (G,H) is stabilizable if there
exists an m × n matrix, K, such that G +HK is stable.
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In the literature, stabilizability is used in the context of both continuous-time
and discrete-time systems. The above definition is that of a continuous-time
system [S11, p. 90]. The following is proven in [S8].

Lemma S8. The pair (A,B) is stabilizable if and only if for every eigenvector,
v, of the matrix AT with eigenvalue λ such that Re(λ) ≥ 0 it holds that vTB ≠ 0.

We let k and l denote the cardinalities of U and W , respectively.

Lemma S9. The pair (D,E) is stabilizable.

Proof. We will prove this using Lemma S8. To obtain a contradiction, assume
that there exists an eigenvector v of DT with corresponding eigenvalue λ such
that Re(λ) ≥ 0, and assume furthermore that vTE = 0. The matrix (S ○S)−1 is
positive definite (since Σ is positive definite), and vTMT

WU(S ○ S)−1MWUv = 0.
It follows that MWUv = 0. Let o be the column vector of zeros of length l. Note
that λv =DT v =MUUv. Then,

M (v
o
) = (MUU MUW

MWU MWW
)(v
o
) = λ(v

o
) .

It follows that λ is an eigenvalue of M which is a contradiction as M is stable
by assumption.

Corollary S10. There exists a symmetric k×k matrix Z0 such that (Z0)V1V2 =
0, (Z0)V2V1 = 0 and such that D −EZ0 is stable.

Proof. From the above lemma it follows that there exists a k × k matrix Z̄
such that D + EZ̄ is stable. From the sparsity of D and E it follows that
for any k × k matrix, Z, D + EZ is stable if and only if D{V 1,V 2}{V 1,V 2} +
E{V 1,V 2}{V 1,V 2}Z{V 1,V 2}{V 1,V 2} andDV3V3 are stable. The matricesD{V 1,V 2}{V 1,V 2}

and E{V 1,V 2}{V 1,V 2} are both block diagonal and thus both pairs of blocks are
stabilizable using the existence of Z̄ and Lemma S8. It follows that Z0 can
be chosen as block diagonal. We need to argue that Z0 can be chosen to be
symmetric. The blocks in the diagonal of E are positive semidefinite and stabi-
lizable (when paired with their corresponding D blocks). Therefore Z0 can be
chosen to also be positive semidefinite (and therefore symmetric) and such that
D +EZ0 is stable [S11, Lemma 4.5.4], see also [S6].

Matrices E and F are both positive semidefinite and there exist unique
positive semidefinite matrices Ē and F̄ such that E = ĒĒ and F = F̄ F̄ [S7,
Theorem 7.2.6].

Corollary S11. The pair (D, Ē) is stabilizable.

Proof. This follows from the fact that (D,E) is stabilizable (Lemma S9).

Definition S12 (Detectable pair of matrices). Let G and H be matrices, m×n
and n×n respectively. We say that the pair (G,H) is detectable if there exists
an n ×m matrix, Z, such that ZG +H is stable.
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Proposition S13. The pair (F̄ ,D) is detectable. The pair (F,D) is also de-
tectable.

Proof. Observe that F̄ is invertible. This means that we can choose Z = (−I −
D)F̄ −1. With this choice of Z, the matrix ZF̄ +D is stable. The same argument
works for the pair (F,D).

We argue now that there is a unique positive semidefinite solution of the
algebraic Riccati equation (S14) by showing that the conditions of Theorem 2
in [S10] are fulfilled. The pair (D, Ē) is stabilizable (Corollary S11) and the
pair (F̄ ,D) is detectable (Proposition S13) and we just need to show that

M̃ = ( D −E
−F −DT)

is such that Re(λ) ≠ 0 for all eigenvalues, λ, of M̃ . Assume to obtain a contra-
diction that λ is a eigenvalue of M̃ such that Re(λ) = 0,

λv = M̃v, v = (v1
v2

) .

Similarly to what is done in [S15], we left-multiply by (v∗2 v∗1) where ∗ denotes
conjugate transpose to obtain

(v∗2 v∗1)(
D −E
−F −DT)(v1

v2
) = λ(v∗2v1 + v∗1v2).

By taking real parts on both sides of the above equation, we obtain Re(−v∗2Ev2−
v∗1Fv1) = 0. Matrices E and F are both positive semidefinite so v∗2Ev2 = 0 and
v∗1Fv1 = 0. The matrix F is positive definite so v1 = 0. Lemma S8 gives a
contradiction to the fact that (D,E) is stabilizable. In conclusion, it follows
from Theorem 2 in [S10] that there exists a unique positive semidefinite solution
of the algebraic Riccati equation.

Lemma S14 (Sparsity in solution of algebraic Riccati equation). Under the
conditions of Theorem 10, it holds that Γ̄V1V2 = 0 when Γ̄ is the unique, positive
semidefinite solution of Equation (S14).

Proof. Theorem 1.1 of Guo and Lancaster [S6] applies as E is positive semidef-
inite. We know from above that there is a unique positive semidefinite solution
and this must necessarily be the same as the maximal symmetric solution of
Theorem 1.1 in [S6].

Using Corollary S10, there exists a symmetric k × k matrix, Z0, such that
(Z0)V1V2 = 0, (Z0)V2V1 = 0, and such that D −EZ0 is stable. From this matrix,
we will define a sequence of matrices that converge to the maximal symmet-
ric solution, Z+. With this purpose in mind, we define a Newton step as the
operation that takes a matrix Zi to the solution of (this is an equation in Z)

(D −EZi)TZ +Z(D −EZi) +ZiEZi + F = 0.
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Assume now that Zi is such that (Zi)V1V2 = 0 and (Zi)V2V1 = 0. Note first
that by Corollary S4, Q̄ = ZiEZi +F is also such that Q̄V1V2 = 0 and Q̄V2V1 = 0.
The matrix EZi has the sparsity pattern of D, and the matrix D does too. By
induction and using Lemma S6, it follows that Zi is such that (Zi)V1V2 = 0 and
(Zi)V2V1 = 0 for all i ≥ 0. Note that for all i it holds that D −EZi is stable and
that Zi is symmetric [S6]. Theorem 1.2 of Guo and Lancaster [S6] now gives
that Z+ = limZi is the solution of the algebraic Riccati equation, and it follows
from the above that (Z+)V1V2 = 0 and (Z+)V2V1 = 0.

S2.2 Sparsity in the solution of the differential Riccati
equation

We will use the above results on the algebraic Riccati equation to describe zero
entries in the solution to the differential Riccati equation. We have that (D, Ē)
is stabilizable (Corollary S11) and (F̄ ,D) is detectable (Proposition S13). We
note that γ0 is the covariance in the conditional distribution of XU

0 given XW
0

and therefore positive definite. From [S19, S3], it follows that

γt = Γ̄ + etK
T

(γ0 − Γ̄) (I + ∫
t

0
esKEesK

T

ds(γ0 − Γ̄))
−1

etK (S15)

where K = D − EΓ̄ and Γ̄ is the unique positive semidefinite solution of the
algebraic Riccati equation (Equation (S14)). Existence of the inverse matrix in
Equation (S15) follows from Lemma 2.1 in Chapter 2 of Reid [S16].

Lemma S15. Let γt denote the solution of the differential Riccati equation
(Equation (S15)) with initial condition γ0. Under the conditions of Theorem
10, it holds that (γt)V1V2 = 0 for all t ≥ 0.

Proof. This follows directly from the expression in Equation (S15) and the spar-
sity of the matrices that go into that expression: etK has the sparsity of D and

etK
T

has that of DT . From Lemma S14 we know that Γ̄V1V2 = 0. We see from
the definition of sets V1 and V2 that they are m-separated by W = A ∪C. The
sets V1, V2, and W are disjoint and it follows that XV1

0 and XV2

0 are condition-
ally independent given XW

0 using the compatibility of the distribution of X0

with D. Therefore, (γ0)V1V2 = 0. The matrix

I + ∫
t

0
esKEesK

T

ds(γ0 − Γ̄)

has the sparsity of D and so does its inverse (Lemma S5). This result follows
immediately by matrix multiplication.

S3 Other proofs

Proof of Proposition 20. Assume first that there is no weak inducing path be-
tween α and β in D, and define
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D(α,β) = {γ ∈ an(α,β) ∣ γ and β are collider connected } ∖ {α,β}.

We will show that β is µ-separated from α by D(α,β). We can assume that
α ≠ β as we have assumed that all nodes have directed loops. If there is a
µ-connecting walk from α to β given C ⊆ V ∖ {α,β}, then there is also a µ-
connecting walk which is a path composed with a directed edge, γ → β. We
must have that γ ≠ α, and if γ ≠ β then the walk is closed by D(α,β). Assume
instead that γ = β. Let π denote some path between α and β. Blunt and
directed edges are weak inducing paths (in either direction) so π must be of
length 2 or more,

α = γ0 e0∼ γ1 e1∼ . . .
ej−1∼ γj

ej∼ β.
There must exist i ∈ {0,1, . . . , j}, j ≥ 1, such that either γi is not collider
connected to β along π or γi ∉ an(α,β). Let i+ denote the largest such number
in {0,1, . . . , j}. Assume first that γi+ is not collider connected to β along π. In
this case, i+ ≠ j. Then γi++1 is a noncollider on π and it is in D(α,β), and it
follows that π is not µ-connecting. Note that necessarily γi++1 ≠ α,β. On the
other hand, assume γi+ ∉ an(α,β). Then i+ ≠ 0, and there is some collider, γk,
on π, k ∈ {1, ..., i+}. We have that γk ∉ an(α,β) and π is closed in this collider.

On the other hand, assume that there is a weak inducing path between α
and β and let C ⊆ V ∖ {α,β}. Note that α ≠ β. If α and β are adjacent, then
α ∼ β → β is µ-connecting given C ⊆ V ∖ {α,β}. Consider the weak inducing
path,

α ∼ γ1 ∼ . . . γj ∼ β = γj+1.
Let k be the maximal number in the set {1, . . . , j} such that there is a walk
between α and γk with all colliders in an(C), no noncolliders in C, and which
has a neck at γk. We see that γ1 ≠ β fits this description, i.e., k is well-defined.
Let ω be the walk from α to γk. If γk ∈ an(C), then the composition of ω with
γk ∼ γk+1 gives either a new such walk (if the edge is blunt) and by maximality
of k we have that γk+1 = β, or if the edge is directed then also γk+1 = β (the weak
inducing path is a collider path), and composing either walk with β → β gives a
connecting walk given C. Assume instead that γk ∉ an(C), and consider again
ω. There is a directed path from γk to α or to β. Let π̄ denote the subpath
from γk to the first instance of either α or β. If α occurs first, we compose π̄−1

with γk ∼ γk+1 and argue as in the case of γj ∈ an(C) above. In β occurs first,
ω composed with π̄ is connecting.

Proof of Lemma 29. Assume that D1 and D2 are not collider equivalent. If
D1 and D2 do not have the same directed edges, then they are not Markov
equivalent (Corollary 23), and we can therefore assume that the directed edges
are the same. Assume that there exist α,β ∈ V such that there is a collider path
between α and β in D2,
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α ∼ γ̄1 ∼ . . . ∼ γ̄k ∼ β,
which is not covered in D1 (both graphs contain every loop, so α ≠ β). This
means that on every collider path between α and β in D1, there exists a collider
γ such that γ ∉ an(α,β) and γ ∉ ∪jan(γ̄j). Now consider the set D = an(α,β)∪
[∪jan(γ̄j)] ∖ {α,β}. Note that β is not µ-separated from α given D in D2 as
β →D2 β, and we will argue that β is µ-separated from α given D in D1 showing
that these graphs are not Markov equivalent. Consider a walk between α and
β in D1. It suffices to consider a path, π, between α and β composed with the
edge β → β (as β ∉ D). Assume first that π is a collider path. If it is open,
then every non-endpoint node is an ancestor of α, β, or γ̄j for some j, which is
a contradiction. Assume instead that there exists a noncollider (different from
α and β) on the path. There must also exist a collider (otherwise π is closed),
and the collider is a descendant of the noncollider. The collider is either closed,
or it is an ancestor of either {α,β} or of ∪iγ̄i. In the latter case, the path is
closed in the noncollider.

Proof of Proposition 30. In the original graph, D, we add directed edges such
that every node in C is a parent of α. Now the path is a weak inducing path,
in this larger graph, D+. Using Proposition 20, we can find a µ-connecting walk
from α to β given C in D+, and therefore a walk between α and β such that
every noncollider is not in C and every collider is in an(C). This walk is also
in D as it cannot contain an edge with a tail at γ ∈ C. In D, we see that every
collider is still in an(C) and the result follows.

Proof of Proposition 32. Let ω be a µ-connecting walk from δ to ε given C in
D + e. If e is not on ω, then ω is also in D and connecting as the ancestral
relations are the same in D and D + e. If e is on ω, then consider the weak
inducing path between α and β in D that consists of blunt edges only. Using a
proof similar to the second part of the proof of Proposition 20 (let k in the proof
of that proposition fulfil the additional assumptions that the corresponding walk
in that proof has necks at both endpoints, only contains one instance of α, and
does not contain any instances of β), one can show that there exists an open
walk between α and β given C ∖ {α,β} in D which has necks at both ends and
which only contains one instance of both α and β. This means that replacing
α xxβ with this walk gives a µ-connecting walk given C in D.

Proof of Proposition 35. The graphs D and Pρ(D) have the same directed edges
so it suffices to show that they are collider equivalent (Theorem 31). Any
permutation can be written as a composition of transpositions (such that α ∉ S
is a fixed point) so it suffices to prove the result for a permutation, ρ, such that
ρ(α) = β, ρ(β) = α, and ρ(γ) = γ for all γ ≠ α,β. Let π be a collider path in D,

γ ∼ δ1 ∼ . . . ∼ δk ∼ ε.
If γ, ε ∉ {α,β}, then the path
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γ ∼ ρ(δ1) ∼ . . . ∼ ρ(δk) ∼ ε
is in the permutation graph and is covering, using that α and β have the same
parent set. If, e.g., γ = α xxδ1 on the original path, then we can substitute this
for α → β xxδ1 to obtain a covering walk in the permutation graph. Similar
arguments in each case show that any collider path in D is covered in the per-
mutation graph. Repeating the above argument starting from the permutation
graph and using the transposition ρ = ρ−1 shows that the two graphs are Markov
equivalent.

Proof of Theorem 36. Assume that there exists an ancestral set A ⊆ V such
that α and β are collider connected in (D1)A, but not in (D2)A. There exists a
collider path in D1 between α and β. Any covering path in D2 must by definition
consist of nodes in an(A) = A and it follows that no such path can exists. By
Lemma 29, it follows that D1 and D2 are not Markov equivalent.

On the other hand, assume that for every ancestral set A ⊆ V and every
α,β ∈ A, it holds that α and β are collider connected in (D1)A if and only
if α and β are collider connected in (D2)A. Using Theorem 31, it suffices to
show that D1 and D2 are collider equivalent. Consider a collider path between
α and β in D1, and let C denote the set of nodes on this path. This path is
also a collider path in (D1)an(C) and by assumption we can find a collider path
between α and β in (D2)an(C) as well. This collider path is in D2 as well and is
covering the path in D1.

Proof of Proposition 37. Consider an ancestral set A ⊆ V . We can write this as
a union of strongly connected components, A = ⋃Ci. These strongly connected
components must necessarily constitute an ancestral set in C(D).

On the other hand, consider an ancestral set in C(D), A, and consider
α ∈ A = ⋃C∈AC. Assume that α ∈ C ∈ A. If β is an ancestor of α in D, then
β ∈ C̃ such that C̃ is an ancestor of C in C(D). By assumption, A is ancestral,
so C̃ ∈ A and we see that A is ancestral.

Proof of Proposition 40. The contraposition follows from the definition of a vir-
tual collider tripath. Assume that ω is an m-connecting path between α and β
given an({α,β} ∪ C) ∖ {α,β}. If it is a single edge, then (α,β,C) is a virtual
collider tripath for any C. Assume that it has length at least two. If there is
a noncollider, δ, on ω, then δ must be an ancestor of {α,β} or of a collider. In
the former case, ω is closed as δ is in the conditioning set. In the latter case,
either ω is closed in the collider or in δ. Assume therefore that ω is a collider
path. We see from the definition that (α,β,C) is a virtual collider tripath.

Proof of Theorem 41. We show this by contraposition. If α is a parent of β in
D1, but not in D2, then it follows from Corollary 23 that they are not Markov
equivalent. Assume instead that D1 and D2 have the same directed edges, and
that (α,β,C) is a maximal virtual collider tripath in D1, but not in D2. Then
it follows from the definition of virtual collider tripaths that α ≠ β. There are
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two cases; either (α,β,C) is not a virtual collider tripath in D2, or it is not
maximal. In the first case, β is µ-separated from α by an({α,β} ∪C) ∖ {α,β}
(Proposition 40) which is seen to not be the case in D1. In the second case, in D2

there is a virtual collider tripath (α,β, C̃) such that C̃ → C in C̄(D1) (note that
C̄(D1) = C̄(D2)) and (α,β, C̃) is not a virtual collider tripath in D1. Repeating
the above argument, we see that D1 and D2 are not Markov equivalent in this
case either.

Proof of Theorem 42. We first argue that deciding Markov equivalence is in
coNP. This is clear as given two graphs that are not Markov equivalent and a
certificate indicating sets A,B, and C such that we have separation in one but
not in the other, we can use the augmentation criterion for µ-separation in the
supplementary material [S13] to verify this no-instance in polynomial time.

In order to show that deciding Markov equivalence is coNP-hard, we use a
reduction similar to one by Böhler et al. [S2] who study complexity of deciding
equivalence of Boolean circuits, see in particular the proof of their Lemma 4.3.
Consider Boolean variables x1, . . . , xn. We say that xl and ¬xl are literals. A
Boolean formula is in disjunctive normal form (DNF) if it is a disjunction of
conjuctions of literals. It is a 3DNF, if each conjunction has at most three
literals. 3DNF tautology is the problem of deciding if a 3DNF is satisfied for
all inputs and this problem is known to be coNP-hard [S2]. We reduce 3DNF
tautology to the problem of deciding Markov equivalence. Let H be a 3DNF
formula on variables x1, . . . , xn consisting of literals

H = (z11 ∧ z12 ∧ z13) ∨ . . . ∨ (zN1 ∧ zN2 ∧ zN3 )
such that zji equals xl or ¬xl for some l = 1, . . . , n. In the former case, we say

that zji is a positive literal, and in the latter that zji is a negative literal. We

say that a conjunction, e.g., zj1 ∧ z
j
2 ∧ z

j
3, is a term. In the following, we will

define graphs in which the nodes correspond to literals, variables, and negated
variables in this problem. We will use Greek alphabet letters for the nodes.
Now define

V − = {ζji }j=1,...,N,i=1,2,3 ∪ {χl, υl}l=1,...,n,

such that ζji corresponds to zji , χl to xl, and υl to the negation of xl. We also
define

V = {α,β} ∪ V − ∪ {γδ ∶ δ ∈ V −}.
We use ρ1 ⇆ ρ2 to denote that ρ1 → ρ2 and ρ1 ← ρ2. We use ρ1, . . . , ρk xx
ρk+1, . . . , ρk+m to denote that there is a blunt edge between any pair (δ1, δ2) such
that δ1 ∈ {ρ1, . . . , ρk} and δ2 ∈ {ρk+1, . . . , ρk+m}. We construct a cDG on nodes
V with the following edge set. Every node has a directed loop. Furthermore,
for δ ∈ V −,

α → γδ ⇆ δ.
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For every term (analogously if the term has fewer than three literals),

α → ζj1 xxζ
j
2 xxζ

j
3 xxχ1

and also ζj3 xxυ1. Furthermore, χl, υl xxχl+1, υl+1, l = 1, . . . , n − 1, and χn, υn xx
β. We also include χ1 xxυ1. Finally, χl ⇆ ζji if and only if zji is a positive literal

of the variable xl and υl ⇆ ζji if and only if zji is a negative literal of the variable
xl. We let D denote the cDG on nodes V and with edges as described above.
We also define D+ by adding edges α xxχ1, υ1 to D.

We now argue that H is a tautology (that is, true for all inputs) if and only if
D and D+ are Markov equivalent. Assume that H is a tautology. To argue that
D and D+ are Markov equivalent it suffices to show that every collider path of
D+ is covered in D (Theorem 31). Every collider path in D+ which is not in D
either contains the subpath χ1 xxα xxυ1 or is of the below form. If it contains
χ1 xxα xxυ1, then we can substitute this for χ1 xxυ1 and obtain a covering
path in D. Assume instead a collider path in D+ of the following form,

α xxε1 xx. . . ∼ εk+1.
If εk+1 ≠ β, then this is covered in D by α → γεk+1 ⇆ εk+1, or by α → εk+1.
Assume instead that εk+1 = β. In this case, for all i = 1 . . . , n either χi ∈
{ε1 . . . , εk} or υi ∈ {ε1 . . . , εk}. Consider now the following assignment of truth
values to the variables: xl = 1 if and only if χl ∈ {ε1 . . . , εk}. By assumption, H
is a tautology, so there is a term which equals 1 for this assignment, say the j’th
(we assume without loss of generality that the j’th term contains three literals),

zj1 ∧ z
j
2 ∧ z

j
3.

If zji is a positive literal, then it must correspond to a xl such that χl ∈
{ε1 . . . , εk}, and then in D, ζji is a parent of χl ∈ {ε1 . . . , εk}. If it is a neg-
ative literal, then it must correspond to xl such that χl ∉ {ε1 . . . , εk}. Then
υl ∈ {ε1 . . . , εk}, and therefore ζji is a parent of {ε1 . . . , εk}. This means that the
walk

α → ζj1 xxζ
j
2 xxζ

j
3 xxφ1 xx. . .xxφn xxβ,

where φl = χl if χl ∈ {ε1 . . . , εk} and φl = υl ∈ {ε1 . . . , εk} else, is a covering path
in D. This implies that D and D+ are Markov equivalent.

On the other hand, assume that H is not a tautology. In this case, there
exists some assignment of truth values such that every term of H is 0, and let
I denote this assignment. We now define the following subset of nodes,

C = {χl ∶ xl = 1 in I} ∪ {υl ∶ xl = 0 in I}.
We see that for all l = 1, . . . , n, either χl ∈ C or υl ∈ C, and this means that β is
not µ-separated from α by C in D+. If we consider a term (again, without loss
of generality assuming that the term has three literals),
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zj1 ∧ z
j
2 ∧ z

j
3.

We know that (under assignment I) one of them must equal 0, say zji . If it is a
positive literal, then the corresponding variable equals 0 in the assignment and
ζji is not an ancestor of C. If it is a negative literal, then the corresponding

variable xl equals 1 in the assignment, and therefore υl is not in C, and ζji is
not an ancestor of C. In either case, we see that every path

α → ζj1 xxζ
j
2 xxζ

j
3 xxφ1

such that φ1 ∈ {χ1, υ1} contains a non-endpoint node which is not an ancestor
of C. This implies that the collider path in D+ between α and β which traverses
exactly the nodes in C is not covered in D and therefore D and D+ are not
Markov equivalent (Theorem 31).

The reduction from 3DNF tautology to the Markov equivalence problem is
clearly done in polynomial time and is a many-one reduction.
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