

Faculty of Science

Causal structure learning for partially observed multivariate event processes

Niels Richard Hansen, Søren Wengel Mogensen, Daniel Malinsky Department of Mathematical Sciences

July 14, 2020 Slide 1/19

The gateway drug theory

The gateway drug theory

Intensities

T d

The *k*-th event process is modeled in terms of an intensity:

$$P(\text{one } k\text{-event} \in (t, t + \delta] \mid \mathcal{F}_t) \simeq \lambda_t^k \delta, \quad k \in V$$

The \mathcal{F}_t denotes the history of all events up to time t, and λ_t^k
epends on \mathcal{F}_t .

For $C \subseteq V$ define \mathcal{F}_t^C as history of events in C. And $\lambda_t^{k,C} = E(\lambda_t^k \mid \mathcal{F}_t^C).$

The gateway drug event history: \mathcal{F}_t

The gateway drug event history: $\mathcal{F}_t^{\{L,M,H\}}$

Local Independence

For $A, B, C \subseteq V$, B is locally independent of A given C,

$$A \not\rightarrow B \mid C$$
 (1)

if

$$\lambda_t^{k,A\cup C} = \lambda_t^{k,C}$$

for $k \in B$.

Definition (Local Independence Graph)

A graph $\mathcal{G} = (V, E)$ is a local independence graph if

 $(j, k) \notin E \Longrightarrow j \not\rightarrow k \mid V \setminus \{j\}.$

Obs: $j \not\rightarrow k \mid V \setminus \{j\}$ if and only if λ_t^k does not depend on *j*-events.

The gateway drug theory: marginalization

A = Alcohol, T = Tobacco, M = Marijuana, H = Hard drugs L = Life events, I = Cigarette price.

Abstract independence models

An independence model $\mathcal{I}(V)$ is a ternary relation on subsets of V.

Examples: $A, B, C \subseteq V$

 $\langle A, B \mid C \rangle \in \mathcal{I}_{\mathrm{CI}}(V) \quad \Leftrightarrow \quad X_A \perp \!\!\!\perp X_B \mid X_C$

 $\langle A, B \mid C \rangle \in \mathcal{I}_{\mathrm{CLI}}(V) \iff \underbrace{A \not\rightarrow B \mid C}_{\mathrm{Cond, \ Local \ Ind.}}$

$$\langle A, B \mid C \rangle \in \mathcal{I}_{\mathcal{G}}(V) \quad \Leftrightarrow \quad B \text{ is graphically separated} \\ \text{from } A \text{ given } C \text{ in } \mathcal{G} = (V, E)$$

Objective: Encode any independence model $\mathcal{I}(V)$ as a graphical independence model $\mathcal{I}_{\mathcal{G}}(V)$ for a suitable graph \mathcal{G} and graphical separation criterion.

Graphical models diagram

Graphs: UG, DG, CG, DAG, AG, MAG, PAG, CMG, DMG, ADMG **Sep. criteria:** *c*-sep, *d*-sep, *m*-sep, *p*-sep, *z*-sep, δ -sep, μ -sep

Directed mixed graphs

Graphs: DG, DMG

Sep. criteria: δ -sep, μ -sep

Directed mixed graphs

A directed mixed graph (DMG) $\mathcal{G} = (V, E)$ has directed \rightarrow and bidirected \leftrightarrow edges. Graphical independence is defined via μ -closed walks.

Major results for DMGs

For DMGs^1 :

- A latent projection maps a DMG with vertices V to a DMG with vertices O ⊆ V. The μ-separation properties are preserved among observed variables.
- All Markov equivalent DMGs on *O* have a common Markov equivalent supergraph.
- The maximal DMG representing a Markov equivalence class can be constructed from the independence model.
- Edge status in the equivalence class is characterized via the directed mixed equivalence graph (DMEG).

¹S. W. Mogensen and NRH. Markov equivalence of marginalized local independence graphs, *Annals of Statistics*, to appear.

Example

DMEG

DMGs and Markov properties

$$\mathcal{I}_{\mathcal{G}'}(V') \subseteq \mathcal{I}_{\mathrm{CLI}}(V')$$
 is the global Markov property.
 $\mathcal{I}_{\mathcal{G}'}(V') \supseteq \mathcal{I}_{\mathrm{CLI}}(V')$ is faithfulness.

The global Markov property Recall that B is locally independent of A given C,

$$A \not\to B \mid C \tag{2}$$

if

$$\lambda_t^{k,A\cup C} = E(\lambda_t^k \mid \mathcal{F}_t^{A\cup C}) = E(\lambda_t^k \mid \mathcal{F}_t^C) = \lambda_t^{k,C}$$
for $k \in B$.

Theorem (V. Didelez¹; S.W. Mogensen, D. Malinsky & NRH²)

Under regularity conditions. If C μ -separates A from B in a local independence graph then (2) holds.

¹Graphical models for marked point processes based on local independence. JRSS-B 70(1), 2008. ²Causal Learning for Partially Observed Stochastic Dynamical Systems. UAI 2018

Slide 16/19 — Niels Richard Hansen — Causal structure learning for partially observed multivariate event processes — July 14, 2020

Learning DMEGs

Learning DMEGs

- Learn $\mathcal{I}_{\rm CLI}$ and construct the maximal DMG^1 assumming faithfulness.
- Run a sound and complete FCI-type algorithm to construct the maximal DMG² assuming faithfulness.
- Test each edge for removal¹ to contruct the DMEG.

For the algorithm to work in practice with data, we need statistical tests of local independence. Ongoing work ...

Søren recently showed that testing only

- $\langle \alpha, \beta \mid \beta \rangle$
- $\langle \alpha, \beta \mid \operatorname{pa}(\beta) \setminus \{\alpha\} \rangle$

works surprisingly well in practice for reconstructing the oriented part of the maximal DMG under a condition of ancestral faithfulness.

¹S. W. Mogensen and NRH. Markov equivalence of marginalized local independence graphs, *Annals of Statistics*, to appear. ²Causal Learning for Partially Observed Stochastic Dynamical Systems. UAI 2018

Slide 18/19 — Niels Richard Hansen — Causal structure learning for partially observed multivariate event processes — July 14, 2020

The gateway drug theory DMEGs

 $\label{eq:alpha} \begin{array}{l} \mathsf{A} = \mathsf{Alcohol}, \ \mathsf{T} = \mathsf{Tobacco}, \ \mathsf{M} = \mathsf{Marijuana}, \ \mathsf{H} = \mathsf{Hard} \ \mathsf{drugs} \\ \mathsf{L} = \mathsf{Life} \ \mathsf{events}, \ \mathsf{I} = \mathsf{Cigarette} \ \mathsf{price}. \end{array}$

— Thanks for your attention —

Slide 19/19 — Niels Richard Hansen — Causal structure learning for partially observed multivariate event processes — July 14, 2020