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Symmetric independence relations are often studied using graphical rep-
resentations. Ancestral graphs or acyclic directed mixed graphs with m-
separation provide classes of symmetric graphical independence models that
are closed under marginalization. Asymmetric independence relations appear
naturally for multivariate stochastic processes, for instance, in terms of lo-
cal independence. However, no class of graphs representing such asymmetric
independence relations, which is also closed under marginalization, has been
developed. We develop the theory of directed mixed graphs with µ-separation
and show that this provides a graphical independence model class which is
closed under marginalization and which generalizes previously considered
graphical representations of local independence.

Several graphs may encode the same set of independence relations and
this means that in many cases only an equivalence class of graphs can be
identified from observational data. For statistical applications, it is therefore
pivotal to characterize graphs that induce the same independence relations.
Our main result is that for directed mixed graphs with µ-separation each
equivalence class contains a maximal element which can be constructed from
the independence relations alone. Moreover, we introduce the directed mixed
equivalence graph as the maximal graph with dashed and solid edges. This
graph encodes all information about the edges that is identifiable from the
independence relations, and furthermore it can be computed efficiently from
the maximal graph.

1. Introduction. Graphs have long been used as a formal tool for reasoning with in-
dependence models. Most work has been concerned with symmetric independence models
arising from standard probabilistic independence for discrete or real-valued random vari-
ables. However, when working with dynamical processes it is useful to have a notion of
independence that can distinguish explicitly between the present and the past, and this is a
key motivation for considering local independence.

The notion of local independence was introduced for composable Markov processes by
Schweder [37] who also gave examples of graphs describing local independence structures.
Aalen [1] discussed how one could extend the definition of local independence in the broad
class of semimartingales using the Doob–Meyer decomposition. Several authors have since
then used graphs to represent local independence structures of multivariate stochastic process
models, in particular for point process models; see, for example, [4, 11–13, 35]. Local inde-
pendence takes a dynamical point of view in the sense that it evaluates the dependence of the
present on the past. This provides a natural link to statistical causality as cause must necessar-
ily precede effect [1, 2, 28, 37]. Furthermore, recent work argues that for some applications it
can be important to consider continuous-time models, rather than only cross-sectional mod-
els, when trying to infer causal effects [3].

Received February 2018; revised January 2019.
MSC2010 subject classifications. Primary 62M99; secondary 62A99.
Key words and phrases. Directed mixed graphs, independence model, local independence, local independence

graph, Markov equivalence, µ-separation.

539

http://www.imstat.org/aos/
https://doi.org/10.1214/19-AOS1821
http://www.imstat.org
mailto:swengel@math.ku.dk
mailto:niels.r.hansen@math.ku.dk
http://www.ams.org/mathscinet/msc/msc2010.html


540 S. W. MOGENSEN AND N. R. HANSEN

Local independence for point processes has been applied for data analysis (see, e.g., [2, 23,
44]), but in applications a direct causal interpretation may be invalid if only certain dynami-
cal processes are observed while other processes of the system under study are unobserved.
Allowing for such latent processes is important for valid causal inference, and this motivates
our study of representations of marginalized local independence graphs.

Graphical representations of independence models have also been studied for time series
[14–17]. In the time series context—using the notion of Granger causality—Eichler [15]
gave an algorithm for learning a graphical representation of local independence. However,
the equivalence class of graphs that yield the same local independences was not identified,
and thus the learned graph does not have any clear causal interpretation. Related research has
been concerned with inferring the graph structure from subsampled time series, but under the
assumption of no latent processes; see, for example, [9, 22].

In this paper, we give a formal, graphical framework for handling the presence of unob-
served processes and extend the work on graphical representations of local independence
models by formalizing marginalization and giving results on the equivalence classes of such
graphical representations. The graphical framework that we propose is a generalization of that
of Didelez [11–13]. This development is analogous to work on marginalizations of graphical
models using directed acyclic graphs, DAGs. Starting from a DAG, one can find graphs (e.g.,
maximal ancestral graphs or acyclic directed mixed graphs) that encode marginal indepen-
dence models [8, 18, 19, 25, 33, 34, 36, 39]. One can then characterize the equivalence class
of graphs that yield the same independence model [5, 45]—the so-called Markov equivalent
graphs—and construct learning algorithms to find such an equivalence class from data. The
purpose of this paper is to develop the necessary theoretical foundation for learning local in-
dependence graphs by developing a precise characterization of the learnable object: the class
of Markov equivalent graphs.

The paper is structured as follows: in Section 2, we discuss abstract independence models,
relevant graph-theoretical concepts and the notion of local independence and local indepen-
dence graphs. In Section 3, we introduce µ-separation for directed mixed graphs, which will
be used to represent marginalized local independence graphs, and we describe an algorithm
to marginalize a given local independence graph. In Sections 4 and 5, we develop the the-
ory of µ-separation for directed mixed graphs further, and we discuss, in particular, Markov
equivalence of such graphs. All proofs of the main paper are given in the Supplementary
Material [29]. Sections A to F are in the Supplementary Material.

2. Independence models and graph theory. Graphical separation criteria as well as
probabilistic models give rise to abstract conditional independence statements. Graphical
modeling is essentially about relating graphical separation to probabilistic independence. We
will consider both as instances of abstract independence models.

Consider some set S . An independence model, I , on S is a set of triples (A,B,C) where
A,B,C ∈ S , that is, I ⊆ S × S × S . Mathematically, an independence model is a ternary
relation. In this paper, we will consider independence models over a finite set V which means
that S = P(V ), the power set of V . In this case, an independence model I is a subset of
P(V ) × P(V ) × P(V ). We will call an element s ∈ P(V ) × P(V ) × P(V ) an independence
statement and write s as ⟨A,B |C⟩ for A,B,C ⊆ V . This notation emphasizes that s is
thought of as a statement about A and B conditionally on C.

Graphical and probabilistic independence models have been studied in very general set-
tings, though mostly under the assumption of symmetry of the independence model, that is,

⟨A,B | C⟩ ∈ I ⇒ ⟨B,A | C⟩ ∈ I;
see, for example, [7, 10, 26] and references therein. These works take an abstract axiomatic
approach by describing and working with a number of properties that hold in, for example,
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models of conditional independence. In this paper, we consider independence models that do
not satisfy the symmetry property as will become evident when we introduce the notion of
local independence.

2.1. Local independence. We consider a real-valued, multivariate stochastic process

Xt = (
X1

t ,X
2
t , . . . ,X

n
t

)
, t ∈ [0, T ]

defined on a probability space (!,F,P ). In this section, the process is a continuous-time
process indexed by a compact time interval. The case of a discrete time index, corresponding
to X = (Xt) being a time series, is treated in Section C in the Supplementary Material. We
will later identify the coordinate processes of X with the nodes of a graph; hence, both are
indexed by V = {1,2, . . . , n}. As illustrated in Example 2.3 below, the index set may be
chosen in a more meaningful way for a specific application. In that example, XI

t ≥ 0 is a
price process, XL

t ∈ N0 is a counting process of events, and the remaining four processes
take values in {0,1} indicating if an individual at a given time is a regular user of a given
substance. Figure 1 shows examples of sample paths for three individuals.

To avoid technical difficulties, irrelevant for the present paper, we restrict attention to right-
continuous processes with coordinates of finite and integrable variation on the interval [0, T ].
This includes most nonexplosive multivariate counting processes as an important special case,
but also other interesting processes such as piecewise-deterministic Markov processes.

To define local independence below, we need a mathematical description of how the
stochastic evolution of one coordinate process depends infinitesimally on its own past and
the past of the other processes. To this end, let FC,0

t denote the σ -algebra generated by
{Xα

s : s ≤ t,α ∈ C} for C ⊆ V . For technical reasons, we need to enlarge this σ -algebra, and
we define FC

t to be the completion of
⋂

s>t FC,0
s w.r.t. P . Thus (FC

t ) is a right-continuous
and complete filtration which represents the history of the processes indexed by C ⊆ V until
time t . Figure 2 illustrates, in the context of Example 2.3, the filtrations FV

t , F {L,M,H }
t and

F {T ,A,M,H }
t .
For β ∈ V and C ⊆ V , let %C,β denote an FC

t -predictable process of finite and integrable
variation such that

E
(
X

β
t | FC

t

) − %
C,β
t

FIG. 1. Sample paths for three individuals of the processes considered in Example 2.3. The price process (I) is
a piecewise constant jump process and the life event process (L) is illustrated by the event times. The remaining
four processes are illustrated by the segments of time where the individual is a regular user of the substance.
The absence of a process, for example, the hard drug process (H) in the left and middle samples, means that the
individual never used that substance.
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FIG. 2. Illustration of the past at time t as captured by different filtrations for a single sample path of processes
from Example 2.3. The filtration FV

t (left) captures the past of all processes, while F {L,M,H }
t (middle) captures

the past of L, M and H only, and F {T ,A,M,H }
t (right) captures the past of T , A, M and H .

is an FC
t martingale. Such a process exists (see Section E for the technical details), and is

usually called the compensator or the dual predictable projection of E(X
β
t | FC

t ). It is in
general unique up to evanescence.

DEFINITION 2.1 (Local independence). Let A,B,C ⊆ V . We say that XB is locally
independent of XA given XC if there exists an FC

t -predictable version of %A∪C,β for all
β ∈ B . We use A! B | C to denote that XB is locally independent of XA given XC .

In words, the process XB is locally independent of XA given XC if, for each time point,
the past up until time t of XC gives us the same predictable information about E(X

β
t | FA∪C

t )

as the past of XA∪C until time t . Note that when β ∈ C, E(X
β
t | FC

t ) = X
β
t .

Local independence was introduced by Schweder [37] for composable Markov processes
and extended by Aalen [1]. Local independence and graphical representations thereof were
later considered by Didelez [11–13] and by Aalen et al. [4]. Didelez [12] also discussed local
independence models of composable finite Markov processes under some specific types of
marginalization. Commenges and Gégout-Petit [6, 21] discussed definitions of local indepen-
dence in classes of semimartingales. Note that Definition 2.1 allows a process to be separated
from itself by some conditioning set C, generalizing the definition used, for example, by
Didelez [13].

Local independence defines the independence model

I = {⟨A,B | C⟩ | XB is locally independent of XA given XC}

such that the local independence statement A ! B | C is equivalent to ⟨A,B | C⟩ ∈ I in
the abstract notation. We note that the local independence model is generally not symmetric.
Using Definition 2.1, we introduce below an associated directed graph in which there is no
directed edge from a node α to a node β if and only β is locally independent of α given
V \ {α}.

DEFINITION 2.2 (Local independence graph). For the local independence model deter-
mined by X, we define the local independence graph to be the directed graph, D, with nodes
V such that for α,β ∈ V ,

α !D β ⇔ α ! β | V \ {α}
where α !D β denotes that there is no directed edge from α to β in the graph D.
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Didelez [11] gives almost the same definition of a local independence graph, however, in
essence always assumes that there is a dependence of each process on its own past. See also
Sections A and B.

The local independence graph induces an independence model by µ-separation as defined
below. The main goal of the present paper is to provide a graphical representation of the
induced independence model for a subset of coordinate processes corresponding to the case
where some processes are unobserved. This is achieved by establishing a correspondence,
which is preserved under marginalization, between directed mixed graphs and independence
models induced via µ-separation. We emphasize that the correspondence only relates local
independence to graphs when the local independence model satisfies the global Markov prop-
erty with respect to a graph.

The local independence model satisfies the global Markov property with respect to the
local independence graph if every µ-separation in the graph implies a local independence.
This has been shown for point processes under some mild regularity conditions [13] using
the slightly different notion of δ-separation. Section A discusses how δ-separation is related
to µ-separation, and Section B shows how to translate the global Markov property of [13]
into our framework. Moreover, general sufficient conditions for the global Markov property
were given in [30] covering point processes as well as certain diffusion processes. Section C
provides, in addition, a discussion of Markov properties in the context of time series.

To help develop a better understanding of local independence and its relevance for appli-
cations, we discuss an example of drug abuse progression.

EXAMPLE 2.3 (Gateway drugs). The theory of gateway drugs has been discussed for
many years in the literature on substance abuse [24, 40]. In short, the theory posits that
the use of “soft” and often licit drugs precedes (and possibly leads to) later use of “hard”
drugs. Alcohol, tobacco and marijuana have all been discussed as candidate gateway drugs
to “harder” drugs such as heroin.

We propose a hypothetical, dynamical model of transitions into abuse via a gateway drug,
and more generally, a model of substance abuse progression. Substance abuse is known to be
associated with social factors, genetics and other individual and environmental factors [43].
Substance abuse can evolve over time when an individual starts or stops using some drug.
In this example, we consider substance processes Alcohol (A), Tobacco (T ), Marijuana (M)
and Hard drugs (H ) modeled as zero-one processes, that is, stochastic processes that are
piecewise constantly equal to zero (no substance use) or one (substance use). We also include
L, a process describing life events, and a process I , which can be thought of as an exogenous
process that influences the tobacco consumption of the individual, for example, the price of
tobacco which may change due to changes in tobacco taxation. Let V = {A,T ,M,H,L, I }.

We will visualize each process as a node in a graph and draw an arrow from one process to
another if the first has a direct influence on the second. We will not go into a full discussion
of how to formalize “influence” in terms of a continuous-time causal dynamical model as this
would lead us astray; see instead [13, 27, 38]. The upshot is that for a (faithful) causal model,
there is no direct influence if and only if α ! β | V \ {α}, which identifies the “influence”
graph with the local independence graph.

Several formalizations of the gateway drug question are possible. We will focus on the
questions “is the use of hard drugs locally independent of use of alcohol for some condition-
ing set?” and “is the use of hard drugs locally independent of the use of tobacco for some
conditioning set?” Using the dynamical nature of local independence, we are asking if, for
example, the past alcohol usage changes the hard drug usage propensity when accounting
for the past of all other processes in the model. This is one possible formalization of the
gateway drug question as a negative answer would mean that there exist some gateway pro-
cesses through which any influence of alcohol usage on hard drug usage is mediated. If the
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FIG. 3. The directed graph of Example 2.3 illustrating a model where marijuana (M) potentially acts as a
gateway drug, while alcohol (A) as well as tobacco ( T ) do not directly affect hard drug use.

visualization in Figure 3 is indeed a local independence graph in the above sense we see that
conditioning on all other processes, H is indeed locally independent of A and locally inde-
pendent of T . In this hypothetical scenario, we could interpret this as marijuana in fact acting
as a gateway drug to hard drugs. If the global Markov property holds, we can furthermore use
µ-separation to obtain further local independences from the graph. We return to this example
in Section 5.5 to illustrate how the main results of the paper can be applied. In particular, we
are interested in what conclusions we can make when we do not observe all the processes but
only a subset.

2.2. Marginalization and separability.

DEFINITION 2.4 (Marginalization). Given an independence model I over V , the
marginal independence model over O ⊆ V is defined as

IO = {⟨A,B | C⟩ | ⟨A,B | C⟩ ∈ I;A,B,C ⊆ O
}
.

Marginalization is defined abstractly above, though we are primarily interested in the
marginalization of the independence model encoded by a local independence graph via µ-
separation. The main objective is to obtain a graphical representation of such a marginalized
independence model involving only the nodes O . To this end, we consider the notion of
separability in an independence model.

DEFINITION 2.5 (Separability). Let I be an independence model over V . Let α,β ∈ V .
We say that β is separable from α if there exists C ⊆ V \ {α} such that ⟨α,β | C⟩ ∈ I , and
otherwise we say that β is inseparable from α. We define

s(β,I) = {γ ∈ V | β is separable from γ }.
We also define u(β,I) = V \ s(β,I).

We show in Proposition 3.6 that if I is the independence model induced by a directed
graph via µ-separation, then α ∈ u(β,I) if and only if there is a directed edge from α to
β . In this case, the graph is thus directly identifiable from separability properties of I . That
is, however, not true in general for a marginalization of I , and this is the motivation for
developing a theory of directed mixed graphs with µ-separation.

2.3. Graph theory. A graph, G = (V ,E), is an ordered pair where V is a finite set of
vertices (also called nodes) and E is a finite set of edges. Furthermore, there is a map that to
each edge assigns a pair of nodes (not necessarily distinct). We say that the edge is between
these two nodes. We consider graphs with two types of edges: directed (→) and bidirected
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(↔). We can think of the edge set as a disjoint union, E = Ed ∪̇ Eb, where Ed is a set of
ordered pairs of nodes (α,β) corresponding to directed edges, and Eb is a set of unordered
pairs of nodes {α,β} corresponding to bidirected edges. This implies that the edge α ↔ β is
identical to the edge β ↔ α, but the edge α → β is different from the edge β → α. It also
implies that the graphs we consider can have multiple edges between a pair of nodes α and
β , but they will always be a subset of the edges {α → β,α ← β,α ↔ β}.

DEFINITION 2.6 (DMG). A directed mixed graph (DMG), G = (V ,E), is a graph with
node set V and edge set E consisting of directed and bidirected edges as described above.

Throughout the paper, G will denote a DMG with node set V and edge set E. Occasionally,
we will also use D and M to denote DMGs. We use D only when the DMG is also a directed
graph, that is, has no bidirected edges. We use M to stress that some DMG is obtained as a
marginalization of a DMG on a larger node set. We will use notation such as ↔G or →D to
denote the specific graph that an edge belongs to.

If α → β , we say that the edge has a tail at α and a head at β . Jointly tails and heads are
called (edge) marks. An edge e ∈ E between nodes α and β is a loop if α = β . We also say
that the edge is incident with the node α and with the node β and that α and β are adjacent.

For α,β ∈ V , we use the notation α ∼β to denote a generic edge of any type between α
and β . We use the notation α ∗→ β to indicate an edge that has a head at β and may or may
not have a head at α. Note that the presence of one edge, α → β , say, does not in general
preclude the presence of other edges between these two nodes. Finally, α ∗!G β means that
there is no edge in G between α and β that has a head at β and α !G β means that there
is no directed edge from α to β . Note that α !G β is a statement about the absence of an
edge in the graph G and to avoid confusion with local independence, α ! β | C, we always
include the conditioning set when writing local independence statements, even if C =∅ (see
also Definition 2.2).

We say that α is a parent of β in the graph G if α → β is present in G and that β is a child
of α. We say that α is a sibling of β (and that β is a sibling of α) if α ↔ β is present in the
graph. The motivation of the term sibling will be explained in Section 3. We use pa(α) to
denote the set of parents of α.

A walk is an ordered, alternating sequence of vertices, γi , and edges, ej , denoted ω =
⟨γ1, e1, . . . , en,γn+1⟩, such that each ei is between γi and γi+1, along with an orientation of
each directed loop along the walk (if ei is a loop then we also know if ei points in the direction
of γ1 or in the direction of γn+1). Without the orientation, for instance, the walks α → β →
β → γ and α → β ← β → γ would be indistinguishable. See Figure 4 for examples. We
will often present the walk ω using the notation

γ1
e1∼γ2

e2∼. . .
en∼γn+1,

where the loop orientation is explicit. We will omit the edge superscripts when they are not
needed.

FIG. 4. A directed mixed graph with node set {α,β,γ , δ}. Consider first the walk α → β . This is different from
the walk β ← α as walks are ordered. Consider instead the two walks β ↔ γ ← γ ← δ and β ↔ γ → γ ← δ.
These two walks have the same (ordered) sets of nodes and edges but are not equal as the loop at γ has different
orientations between the two walks. Furthermore, one can note that for the first of the two walks, γ is a collider in
the first instance, but not in the second. The walks α → β → α and α → β ← α are both cycles, and the second
is an example of the fact that the same edge can occur twice in a cycle.
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We say that the walk ω contains nodes γi and edges ej . The length of the walk is n, the
number of edges that it contains. We define a trivial walk to be a walk with no edges and,
therefore, only a single node. Equivalently, a trivial walk can be defined as a walk of length
zero. A subwalk of ω is either itself a walk of the form ⟨γk, ek, . . . , em−1,γm⟩ where 1 ≤ k <
m ≤ n + 1 or a trivial walk ⟨γk⟩, 1 ≤ k ≤ n + 1. A (nontrivial) walk is uniquely identified by
its edges, and the ordering and orientation of these edges, hence the vertices can be omitted
when describing the walk. At times, we will omit the edges to simplify notation, however, we
will always have a specific, uniquely identified walk in mind even when the edges and/or their
orientation is omitted. The first and last nodes of a walk are called endpoint nodes (these could
be equal) or just endpoints, and we say that a walk is between its endpoints, or alternatively
from its first node to its last node. We call the walk ω−1 = ⟨γn+1, en, . . . , e1,γ1⟩ the inverse
walk of ω. Note that the orientation of directed loops is also reversed in the inverse walk such
that they point toward γ1 in the inverse if and only if they point toward γ1 in the original
walk. A path is a walk on which no node is repeated.

Consider a walk ω and a subwalk thereof, ⟨α, e1,γ , e2,β⟩, where α,β,γ ∈ V and e1, e2 ∈
E. If e1 and e2 both have heads at γ , then γ is a collider on ω. If this is not the case, then γ
is a noncollider. Note that an endpoint of a walk is neither a collider, nor a noncollider. We
stress that the property of being a collider/noncollider is relative to a walk (see also Figure 4).

Let ω1 = ⟨α, e1
1,γ

1
1 , . . . ,γ 1

n−1, e
1
n,β⟩ and ω2 = ⟨α, e2

1,γ
2
1 , . . . ,γ 2

m−1, e
2
m,β⟩ be two (non-

trivial) walks. We say that they are endpoint-identical if e1
1 and e2

1 have the same mark at α

and e1
n and e2

m have the same mark at β . Note that this may depend on the orientation of di-
rected edges in the two walks. Assume that some edge e is between α and β . We say that the
(nontrivial) walk ω1 is endpoint-identical to e if it is endpoint-identical to the walk ⟨α, e,β⟩.
If α = β and e is directed, this should hold for just one of the possible orientations of e.

Let ω1 be a walk between α and γ , and ω2 a walk between γ and β . The composition of
ω1 with ω2 is the walk that starts at α, traverses every node and edge of ω1, and afterwards
every node and edge of ω2, ending in β . We say that we compose ω1 with ω2.

A directed path from α to β is a path between α and β consisting of edges of type →
only (possibly of length zero) such that they all point in the direction of β . A cycle is either a
loop, or a (nontrivial) path from α to β composed with β ∼α. This means that in a cycle of
length 2, an edge can be repeated. A directed cycle is either a loop, α → α, or a (nontrivial)
directed path from α to β composed with β → α. For α ∈ V , we let An(α) denote the set of
ancestors, that is,

An(α) = {γ ∈ V | there is a directed path from γ to α}.
This is generalized to nonsingleton sets C ⊆ V ,

An(C) =
⋃

α∈C

An(α).

We stress that C ⊆ An(C) as we allow for trivial directed paths in the definition of an ancestor.
We use the notation AnG(C) if we wish to emphasize in which graph the ancestry is read, but
omit the subscript when no ambiguity arises.

Let G = (V ,E) be a graph, and let O ⊆ V . Define the subgraph induced by O to be the
graph GO = (O,EO) where EO ⊆ E is the set of edges that are between nodes in O . If
G1 = (V ,E1) and G2 = (V ,E2), we will write G1 ⊆ G2 to denote E1 ⊆ E2 and say that G2 is
a supergraph of G1.

A directed graph (DG), D = (V ,E), is a graph with only directed edges. Note that this
also allows directed loops. Within a class of graphs, we define the complete graph to be the
graph which is the supergraph of all graphs in the class when such a graph exists. For the class
of DGs on node set V , the complete graph is the graph with edge set E = {(α,β) | α,β ∈ V }.

A directed acyclic graph (DAG) is a DG with no loops and no directed cycles. An acyclic
directed mixed graph (ADMG) is a DMG with no loops and no directed cycles.
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3. Directed mixed graphs and separation. In this section, we introduce µ-separation
for DMGs which are then shown to be closed under marginalization. In particular, we obtain
a DMG representing the independence model arising from a local independence graph via
marginalization.

The class of DMGs contains as a subclass the ADMGs that have no directed cycles [19,
32]. ADMGs have been used to represent marginalized DAG models, analogously to how
we will use DMGs to represent marginalized DGs. ADMGs come with the m-separation
criterion which can be extended to DMGs, but this criterion differs in important ways from
the µ-separation criterion introduced below. These differences also mean that our main result
on Markov equivalence does not apply to, for example, DMGs with m-separation, and thus
our theory of Markov equivalence hinges on the fact that we are considering DMGs using the
asymmetric notion of µ-separation.

3.1. µ-separation. We define µ-separation as a generalization of δ-separation introduced
by Didelez [11], analogously to how m-separation is a generalization of d-separation; see,
for example, [33]. In Section A, we make the connection to Didelez’s δ-separation exact and
elaborate further on this in Section B.

DEFINITION 3.1 (µ-connecting walk). A nontrivial walk

⟨α, e1,γ1, . . . ,γn−1, en,β⟩
in G is said to be µ-connecting (or simply open) from α to β given C if α /∈ C, every collider
is in An(C), no noncollider is in C, and en has a head at β .

When a walk is not µ-connecting given C, we say that it is closed or blocked by C. One
should note that if ω is a µ-connecting walk from α to β given C, the inverse walk, ω−1,
is not in general µ-connecting from β to α given C. The requirement that a µ-connecting
walk be nontrivial, that is, of strictly positive length, leads to the possibility of a node being
separated from itself by some set C when applying the following graph separation criterion
to the class of DMGs.

DEFINITION 3.2 (µ-separation). Let A,B,C ⊆ V . We say that B is µ-separated from
A given C if there is no µ-connecting walk from any α ∈ A to any β ∈ B given C and
write A ⊥µ B | C, or write A ⊥µ B | C [G] if we want to stress to what graph the separation
statement applies.

The above notion of separation is given in terms of walks of which there are infinitely
many in any DMG with a nonempty edge set. However, we will see that it is sufficient to
consider a finite subset of walks from A to B (Proposition 3.5).

Given a DMG, G = (V ,E), we define an independence model over V using µ-separation,

I(G) = {⟨A,B | C⟩ | (A ⊥µ B | C)
}
.

Definition 3.1 implies A ⊥µ B | C whenever A ⊆ C and, therefore, I(G) ≠∅.
Below we state two propositions that essentially both give equivalent ways of defining

µ-separation. The propositions are useful when proving results on µ-separation models.

PROPOSITION 3.3. Let α,β ∈ V , C ⊆ V . If there is a µ-connecting walk from α to β

given C, then there is a µ-connecting walk from α to β that furthermore satisfies that every
collider is in C.
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DEFINITION 3.4. A route from α to β is a walk from α to β such that no node different
from β occurs more than once, and β occurs at most twice.

A route is always a path, a cycle or a composition of a path and a cycle that share no edge
and only share the vertex β .

PROPOSITION 3.5. Let α,β ∈ V , C ⊆ V . If ω is a µ-connecting walk from α to β given
C, then there is a µ-connecting route from α to β given C consisting of edges in ω.

If there is a µ-connecting walk from A to B given C, it does not in general follow that
we can also find a µ-connecting path or cycle from A to B given C. As an example of
this, consider the following DMG on nodes {α,β,γ }: α ← β ← γ . There is a µ-connecting
walk from α to β given ∅, and a µ-connecting route, but no µ-connecting path from α to β
given ∅.

3.2. Marginalization of DMGs. Given a DG or a DMG, G, we are interested in finding
a graph that represents the marginal independence model over a node set O ⊆ V , that is,
finding a graph M such that

(3.1) I(M) = (
I(G)

)O
.

It is well known that the class of DAGs with d-separation is not closed under marginaliza-
tion, that is, for a DAG, D = (V ,E), and O # V , it is not in general possible to find a DAG
with node set O that encodes the same independence model among the variables in O as did
the original graph. Richardson and Spirtes [33] gave a concrete counterexample and in Exam-
ple 3.7 we give a similar example to make the analogous point: DGs read with µ-separation
are not closed under marginalization. In this example, we use the following proposition which
gives a simple characterization of separability in DGs.

PROPOSITION 3.6. Consider a DG, D = (V ,E), and let α,β ∈ V . Then β is µ-
separable (see Definition 2.5) from α in D if and only if α !D β .

EXAMPLE 3.7. Consider the directed graph, G, in Figure 5. We wish to show that it is
not possible to encode the µ-separations among nodes in O = {α,β,γ , δ} using a DG on
these nodes only. To obtain a contradiction, assume D = (O,E) is a DG such that

A ⊥µ B | C [D] ⇔ A ⊥µ B | C [G](3.2)

for A,B,C ⊆ O . There is no C ⊆ O \ {α} such that α ⊥µ β | C [G] and no C ⊆ O \ {β}
such that β ⊥µ γ | C [G]. If D has the property (3.2), then it follows from Proposition 3.6
that α →D β and β →D γ . However, then γ is not µ-separated from α given ∅ in D. This
shows that there exists no DG, D, that satisfies (3.2).

We note that marginalization of a probability model does not only impose conditional
independence constraints on the observed variables but also so-called equality and inequal-
ity constraints; see, for example, [18] and references therein. In this paper, we will only be

FIG. 5. The directed graph of Example 3.7 which exemplifies that DGs are not closed under marginalization.
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concerned with the graphical representation of local independence constraints, and not with
representing analogous equality or inequality constraints.

In the remainder of this section, we first introduce the latent projection of a graph (see also
[41] and [34]), and then show that it provides a marginalized DMG in the sense of (3.1). At
the end of the section, we give an algorithm for computing the latent projection of a DMG.
This algorithm is an adapted version of one described by Sadeghi [36] for a different class of
graphs. Koster [25] described a similar algorithm for ADMGs.

DEFINITION 3.8 (Latent projection). Let G = (V ,E) be a DMG, V = M ∪̇O . We define
the latent projection of G on O to be the DMG (O,D) such that α ∼β ∈ D if and only if there
exists an endpoint-identical (and nontrivial) walk between α and β in G with no colliders and
such that every nonendpoint node is in M . Let m(G,O) denote the latent projection of G
on O .

The definition of latent projection motivates the graphical term sibling for DMGs, as one
way to obtain an edge α ↔ β is through a latent projection of a larger graph in which α and
β share a parent.

To characterize the class of graphs obtainable from a DG via a latent projection, we
introduce the canonical DG of the DMG G, C(G), as follows: for each (unordered) pair
of nodes {α,β} ⊆ V such that α ↔G β , add a distinct auxiliary node, m{α,β}, add edges
m{α,β} → α, m{α,β} → β to E and then remove all bidirected edges from E. If D is a DG,
then M = m(D,O) will satisfy

α ↔M β ⇒ α ↔M α for all α,β ∈ O(3.3)

for all subsets of vertices O . Conversely, if G = (V ,E) is a DMG that satisfies (3.3), then G
is the latent projection of its canonical DG; m(C(G),V ) = G. The class of DMGs that sat-
isfy (3.3) is closed under marginalization (Proposition 3.9) and has certain regularity proper-
ties (see, e.g., Proposition 3.10). These result provide the means for graphically representing
marginals of local independence graphs. However, the theory that leads to our main results
on Markov equivalence does not require the property (3.3) and, therefore, we develop it for
general DMGs.

PROPOSITION 3.9. Let O ⊆ V . The graph M = m(G,O) is a DMG. If G satisfies (3.3),
then M does as well.

PROPOSITION 3.10. Assume that G satisfies (3.3) and let α ∈ V . Then α has no loops if
and only if α ⊥µ α | V \ {α}.

We also observe directly from the definition that the latent projection operation preserves
ancestry and nonancestry in the following sense.

PROPOSITION 3.11. Let O ⊆ V , M = m(G,O) and α,β ∈ O . Then α ∈ AnG(β) if and
only if α ∈ AnM(β).

The main result of this section is the following theorem, which states that the marginal-
ization defined by the latent projection operation preserves the marginal independence model
encoded by a DMG.

THEOREM 3.12. Let O ⊆ V , M = m(G,O). Assume A,B,C ⊆ O . Then

A ⊥µ B | C [G] ⇔ A ⊥µ B | C [M].
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input : a DMG, G = (V ,E) a subset M ⊆ V over which to marginalize
output : a graph M = (O, Ē), O = V \ M
Initialize E0 = E, M0 = (V ,E0), k = 0;
while !M(Mk) ≠∅ do

Choose θ = θ (α,m,β) ∈ !M(Mk);
Set ek+1 to be the edge α ∼β which is endpoint-identical to θ ;
Set Ek+1 = Ek ∪ {ek+1};
Set Mk+1 = (V ,Ek+1);
Update k = k + 1

end
return (Mk)O

Algorithm 1: Computing the latent projection of a DMG

3.3. A marginalization algorithm. We describe an algorithm to compute the latent pro-
jection of a graph on some subset of nodes. For this purpose, we define a triroute, θ , to be
a walk of length 2, ⟨α, e1,γ , e2,β⟩, such that γ ≠ α,β . We suppress e1 and e2 from the no-
tation and use θ (α,γ ,β) to denote the triroute. We say that a triroute is colliding if γ is a
collider on θ , and otherwise we say that it is noncolliding. This is analogous to the concept
of a tripath (see, e.g., [26]), but allows for α = β .

Define !M(G) to be the set of noncolliding triroutes θ (α,m,β) such that m ∈ M and such
that an endpoint-identical edge α ∼β is not present in G.

PROPOSITION 3.13. Algorithm 1 outputs the latent projection of a DMG.

4. Properties of DMGs.

DEFINITION 4.1 (Markov equivalence). Let G1 = (V ,E1) and G2 = (V ,E2) be DMGs.
We say that G1 and G2 are Markov equivalent if I(G1) = I(G2). This defines an equivalence
relation and we let [G1] denote the (Markov) equivalence class of G1.

EXAMPLE 4.2 (Markov equivalence in DGs). Let D = (V ,E) be a DG. There is a di-
rected edge from α to β if and only if β cannot be separated from α by any set C ⊆ V \ {α}
(Proposition 3.6). This implies that two DGs are Markov equivalent if and only if they are
equal. Thus, in the restricted class of DGs, every Markov equivalence class is a singleton and
in this sense identifiable from its induced independence model. However, when considering
Markov equivalence in the more general class of DMGs not every equivalence class of a DG
is a singleton as the DG might be Markov equivalent to a DMG. As an example of this, con-
sider the complete DG on a node set V which is Markov equivalent to the complete DMG
on V .

DEFINITION 4.3 (Maximality of a DMG). We say that G is maximal if it is complete, or
if any added edge changes the induced independence model I(G).

4.1. Inducing paths. Separability of nodes can be studied using the concept of an induc-
ing path which has also been used in other classes of graphs [33, 41]. In the context of DMGs
and µ-separation, it is natural to define several types of inducing paths due to the asymmetry
of µ-separation and the possibility of directed cycles in DMGs.



MARGINALIZED LOCAL INDEPENDENCE GRAPHS 551

FIG. 6. Examples of inducing paths in a DMG: the path β → α is a unidirected inducing path from β to α,
and also a directed inducing path. The path β ↔ γ is a bidirected inducing path. The path β ↔ γ ↔ δ is a
bidirected inducing path from β to δ (and by definition its inverse is a bidirected inducing path from δ to β). The
path δ → γ ↔ β is both a unidirected and a directed inducing path from δ to β , whereas the path α → β ↔ γ is
a unidirected inducing path from α to γ , but not a directed inducing path.

DEFINITION 4.4 (Inducing path). An inducing path from α to β is a nontrivial path or
cycle, π = ⟨α, . . . ,β⟩, which has a head at β and such that there are no noncolliders on π
and every node is an ancestor of α or β . The inducing path π is bidirected if every edge on
π is bidirected. If π is not bidirected, it has one of the forms α → β or

α → γ1 ↔ · · · ↔ γn ↔ β.

and we say that it is unidirected. If, furthermore, γi ∈ An(β) for all i = 1, . . . , n (or it is on
the form α → β) then we say that it is directed.

Note that an inducing path is by definition either a path or a cycle. An inducing path
is either bidirected or unidirected. Some unidirected inducing paths are also directed; see
Figure 6 for examples. Propositions 4.7 and 4.8 show how bidirected and directed inducing
paths in a certain sense correspond to bidirected and directed edges, respectively.

PROPOSITION 4.5. Let ν be an inducing path from α to β . The following holds for any
C ⊆ V \ {α}. If α ≠ β , then there exists a µ-connecting path from α to β given C. If α = β ,
then there exists a µ-connecting cycle from α to β given C. We call such a path or cycle a
ν-induced open path or cycle, respectively, or simply a ν-induced open walk to cover both
the case α = β and the case α ≠ β . If the inducing path is bidirected or directed, then the
ν-induced open walk is endpoint-identical to the inducing path.

The following corollary is a direct consequence of Proposition 4.5, showing that β is in-
separable from α if there is an inducing path from α to β irrespectively of whether the nodes
are adjacent.

COROLLARY 4.6. Let α,β ∈ V . If there exists an inducing path from α to β in G, then
β is not µ-separated from α given C for any C ⊆ V \ {α}, that is, α ∈ u(β,I(G)).

The following two propositions show that for two of the three types of inducing paths
there is a Markov equivalent supergraph in which the nodes are adjacent. This illustrates
how one can easily find Markov equivalent DMGs that do not have the same adjacencies.
Example 4.12 shows that for a unidirected inducing path it may not be possible to add an
edge without changing the independence model.

PROPOSITION 4.7. If there exists a bidirected inducing path from α to β in G, then
adding α ↔ β in G does not change the independence model.

PROPOSITION 4.8. If there exists a directed inducing path from α to β in G, then adding
α → β in G does not change the independence model.

We say that nodes α and β are collider-connected if there exists a nontrivial walk between
α and β such that every nonendpoint node is a collider on the walk. We say that α is directedly
collider-connected to β if α and β are collider-connected by a walk with a head at β .
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FIG. 7. A maximal DMG in which δ is inseparable from β , though no edge is between the two. See Example
4.12. We will in general omit the bidirected loops from the visual presentations of DMGs; see also the discussion
in Section 5.4.

DEFINITION 4.9. Let α,β ∈ V . We define the set

D(α,β) = {
γ ∈ An(α,β) | γ is directedly collider-connected to β

} \ {α}.

Note that if α !G β , then pa(β) ⊆ D(α,β), and if the graph is furthermore a directed
graph then pa(β) = D(α,β).

PROPOSITION 4.10. If there is no inducing path from α to β in G, then β is separated
from α by D(α,β).

EXAMPLE 4.11 (Inducing paths). Consider the DMG on nodes {α,γ } and with a single
edge γ → α. In this case, there is no inducing path from α to α and α is µ-separated from
α by D(α,α) = {γ }. Now add the edge α ↔ γ . In this new DMG, there is an inducing path
from α to α and therefore α is inseparable from itself.

EXAMPLE 4.12 (Nonadjacency of inseparable nodes in a maximal DMG). Consider the
DMG in Figure 7. One can show that this DMG is maximal (Definition 4.3). There is an
inducing path from β to δ making δ inseparable from β , yet no arrow can be added between
β and δ without changing the independence model. This example illustrates that maximal
DMGs do not have the property that inseparable nodes are adjacent. This is contrary to MAGs
which form a subclass of ancestral graphs and have this exact property [33].

5. Markov equivalence of DMGs. The main result of this section is that each Markov
equivalence class of DMGs has a greatest element, that is, an element which is a supergraph
of all other elements. This fact is helpful for understanding and graphically representing such
equivalence classes, and potentially also for constructing learning algorithms. We will prove
this result by arguing that the independence model of a DMG, G = (V ,E), defines for each
node α ∈ V a set of potential parents and a set of potential siblings. We then construct the
greatest element of [G] by simply using these sets, and argue that this is in fact a Markov
equivalent supergraph. As we only use the independence model to define the sets of potential
parents and siblings, the supergraph is identical for all members of [G], and thus a greatest
element. Within the equivalence class, the greatest element is also the only maximal element,
and we will refer to it as the maximal element of the equivalence class.

5.1. Potential siblings.

DEFINITION 5.1. Let I be an independence model over V and let α,β ∈ V . We say that
α and β are potential siblings in I if (s1)–(s3) hold:

(s1) β ∈ u(α,I) and α ∈ u(β,I),
(s2) for all γ ∈ V , C ⊆ V such that β ∈ C,

⟨γ ,α | C⟩ ∈ I ⇒ ⟨γ ,β | C⟩ ∈ I,
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(s3) for all γ ∈ V , C ⊆ V such that α ∈ C,

⟨γ ,β | C⟩ ∈ I ⇒ ⟨γ ,α | C⟩ ∈ I.

Potential siblings are defined abstractly above in terms of the independence model only.
The following proposition gives a useful characterization for graphical independence models
by simply contraposing (s2) and (s3).

PROPOSITION 5.2. Let I(G) be the independence model induced by G. Then α,β ∈ V
are potential siblings if and only if (gs1)–(gs3) hold:

(gs1) β ∈ u(α,I(G)) and α ∈ u(β,I(G)),
(gs2) for all γ ∈ V , C ⊆ V such that β ∈ C: if there exists a µ-connecting walk from γ to

β given C, then there exists a µ-connecting walk from γ to α given C,
(gs3) for all γ ∈ V , C ⊆ V such that α ∈ C: if there exists a µ-connecting walk from γ to

α given C, then there exists a µ-connecting walk from γ to β given C.

PROPOSITION 5.3. Assume that α ↔ β is in G. Then α and β are potential siblings in
I(G).

LEMMA 5.4. Assume that α and β are potential siblings in I(G). Let G+ denote the
DMG obtained from G by adding α ↔ β . Then I(G) = I(G+).

The above shows that if α and β are potential siblings in I(G) then there exists a super-
graph, G+, which is Markov equivalent with G, such that α and β are siblings in G+. This
motivates the term potential siblings.

5.2. Potential parents. In this section, we will argue that also a set of potential parents
are determined by the independence model. This case is slightly more involved for two rea-
sons. First, the relation is asymmetric, as for each potential parent edge there is a parent node
and a child node. Second, adding directed edges potentially changes the ancestry of the graph.

DEFINITION 5.5. Let I be an independence model over V and let α,β ∈ V . We say that
α is a potential parent of β in I if (p1)–(p4) hold:

(p1) α ∈ u(β,I),
(p2) for all γ ∈ V , C ⊆ V such that α /∈ C,

⟨γ ,β | C⟩ ∈ I ⇒ ⟨γ ,α | C⟩ ∈ I,

(p3) for all γ , δ ∈ V , C ⊆ V such that α /∈ C,β ∈ C,

⟨γ , δ | C⟩ ∈ I ⇒ ⟨γ ,β | C⟩ ∈ I ∨ ⟨α, δ | C⟩ ∈ I,

(p4) for all γ ∈ V , C ⊆ V , such that α /∈ C,

⟨β,γ | C⟩ ∈ I ⇒ 〈
β,γ | C ∪ {α}〉∈ I.

PROPOSITION 5.6. Let I(G) be the independence model induced by G. Then α ∈ V is a
potential parent of β ∈ V if and only if (gp1)–(gp4) hold:

(gp1) α ∈ u(β,I(G)),
(gp2) for all γ ∈ V , C ⊆ V such that α /∈ C: if there exists a µ-connecting walk from γ to

α given C, then there exists a µ-connecting walk from γ to β given C,
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(gp3) for all γ , δ ∈ V , C ⊆ V such that α /∈ C,β ∈ C: if there exists a µ-connecting walk
from γ to β given C and a µ-connecting walk from α to δ given C, then there exists a µ-
connecting walk from γ to δ given C,

(gp4) for all γ ∈ V , C ⊆ V , such that α /∈ C: if there exists a µ-connecting walk from β
to γ given C ∪ {α}, then there exists a µ-connecting walk from β to γ given C.

PROPOSITION 5.7. Assume that α → β is in G. Then α is a potential parent of β in
I(G).

LEMMA 5.8. Assume that α is a potential parent of β in I(G). Let G+ denote the DMG
obtained from G by adding α → β . Then I(G) = I(G+).

5.3. A Markov equivalent supergraph. Let G = (V ,E) be a DMG. Define N (I(G)) =
(V ,Em) to be the DMG with edge set Em = Ed ∪ Eb where Ed is a set of directed edges
and Eb a set of bidirected edges such that the directed edge from α to β is in Ed if and only
if α is a potential parent of β in I(G) and the bidirected edge between α and β is in Eb if
and only if α and β are potential siblings in I(G).

THEOREM 5.9. Let N = N (I(G)). Then N ∈ [G] and N is a supergraph of all elements
of [G]. Furthermore, if we have a finite sequence of DMGs G0,G1, . . . ,Gm, Gi = (V ,Ei), such
that G0 = G, Gm = N , and Ei ⊆ Ei+1 for all i = 0, . . . ,m − 1, then Gi is Markov equivalent
with N for all i = 0, . . . ,m − 1.

The graph N in the above theorem is a supergraph of every Markov equivalent DMG
and, therefore, maximal. On the other hand, every maximal DMG is a representative of its
equivalence class, and also a supergraph of all Markov equivalent DMGs. This means that
we can use the class of maximal DMGs to obtain a unique representative for each DMG
equivalence class.

Lemmas 5.4 and 5.8 show that conditions (gs1)–(gs3) and (gp1)–(gp4) are sufficient to
Markov equivalently add a bidirected or a directed edge, respectively. The conditions are
also necessary in the sense that for each condition one can find example graphs where only a
single condition is violated and where the larger graph is not Markov equivalent to the smaller
graph.

We can note that α is a potential parent and a potential sibling of α if and only if α ∈
u(α,I(G)). This means that in N (I(G)) for each node either both a directed and a bidirected
loop is present or no loop at all.

5.4. Directed mixed equivalence graphs. Theorem 5.9 suggests that one can represent
an equivalence class of DMGs by displaying the maximal element and then simply indicate
which edges are not present for all members of the equivalence class.

DEFINITION 5.10 (DMEG). Let N = (V ,F ) be a maximal DMG. Define F̄ ⊆ F such
that for e ∈ F we let e ∈ F̄ if and only if there exists a DMG G = (V , F̃ ) such that G ∈ [N ]
and e /∈ F̃ . We call N ′ = (V ,F, F̄ ) a directed mixed equivalence graph (DMEG). When
visualizing N ′, we draw N , but use dashed edges for the set F̄ ; see Figure 8.

Let N ′ = (V ,F, F̄ ) be a DMEG. The DMG (V ,F ) is in the equivalence class represented
by N ′. However, one cannot necessarily remove any subset of F̄ and obtain a member of the
Markov equivalence class (see Figure 8). Moreover, an equivalence class does not in general
contain a least element, that is, an element which is a subgraph of all Markov equivalent
graphs.
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We will throughout this section let N = (V ,F ) be a maximal DMG. For e ∈ F , we will use
N − e to denote the graph (V ,F \ {e}). Assume that we have a maximal DMG from which
we wish to derive the DMEG. Consider some edge e ∈ F . If N − e ∈ [N ], then e ∈ F̄ as
there exists a Markov equivalent subgraph of N in which e is not present. On the other hand,
if N − e /∈ [N ] then we note that N − e is the largest subgraph of N that does not contain e.
Let K be a subgraph of N that does not contain e. Then I(N ) # I(N − e) ⊆ I(K). Using
Theorem 5.9, we know that all N -Markov equivalent DMGs are in fact subgraphs of N , and
using that K is not Markov equivalent to N we see that all graphs in [N ] must contain e.
This means that when N − e /∈ [N ] then e /∈ F̄ as e must be present in all Markov equivalent
DMGs.

Any loop should in principle be dashed when drawing a DMEG as for each node in a
maximal DMG either both the directed and the bidirected loop are present or neither of them.
However, we choose to not present them as dashed as if they are present in the maximal
DMG, then at least one of them will be present in any Markov equivalent DMG satisfying
(3.3), that is, for any DMG which is a marginalization of a DG. In addition, we only draw the
directed loop to not overload the visualizations.

5.5. Constructing a directed mixed equivalence graph. When constructing a DMEG
from N , it suffices to consider the graphs N − e for each e ∈ E and determine if they are
Markov equivalent to N or not. A brute-force approach to doing so is to simply check all
separation statements in both graphs. However, one can make a considerably more efficient
algorithm.

PROPOSITION 5.11. Assume α
e→N β . It holds that N − e ∈ [N ] if and only if α ∈

u(β,I(N − e)).

PROPOSITION 5.12. Assume α
e↔N β . Then N − e ∈ [N ] if and only if α ∈ u(β,I(N −

e)) and β ∈ u(α,I(N − e)).

FIG. 8. The DMG 1 is maximal (the bidirected loops at α, β and δ have been omitted from the visual presenta-
tion). The DMGs 1 – 6 are the six elements of its Markov equivalence class (when ignoring Markov equivalent
removal of loops). The graph 7 is the corresponding DMEG. In a DMEG, every solid edge is in every graph in
the equivalence class, every absent edge is not in any graph, and every dashed edge is in some, but not in others.
Note that every DMG in the above equivalence class contains the edge γ → β or the edge δ → β even though
both are dashed in the DMEG. This example shows that not every equivalence class contains a least element.
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FIG. 9. Left: Local independence graph of Example 2.3. Middle: DMEG for the marginalization over L and I .
Right: DMEG for the marginalization over L. We have omitted the bidirected loops from the DMEGs and presented
the directed loops as solid.

We can now outline a two-step algorithm for constructing the DMEG from an arbitrary
DMG, G. We first construct the maximal Markov equivalent graph, N . We know from The-
orem 5.9 that one can simply check if each pair of nodes are potential siblings/parents in
the independence model induced by G and construct the maximal Markov equivalent graph
directly. This may, however, not be computationally efficient.

The above propositions show that given the maximal DMG, one can efficiently construct
the DMEG by evaluating separability once for each directed edge and twice for each bidi-
rected edge. Using Proposition 4.10, one can determine separability by testing a single sep-
aration statement, and this means that starting from N , one can construct the corresponding
DMEG in a way such that the number of separation statements to test scales linearly in the
number of edges in N .

EXAMPLE 5.13 (Gateway drugs, continued). We return to the model in Example 2.3 to
consider what happens when it is only partially observed and to give an interpretation of the
corresponding local independence model. The local independence graph is assumed to be as
depicted on Figure 9, left.

Consider first the situation where L and I are unobserved. In this case, under the faith-
fulness assumption of the full model (Definition C.5) we can construct the DMEG, which is
shown in the center panel of Figure 9, from the local independence model. The DMEG repre-
sents the Markov equivalence class which we can infer from the marginal local independence
model (L and I are unobserved). Theoretically, the inference requires an oracle to provide
us with local independence statements, which will in practice have to be approximated by
statistical tests. What is noteworthy is that the DMEG can be inferred from the distribution of
the observed variables only, and we do not need to know the local independences of the full
model.

If we ignore which edges are dashed and which are not, the graph simply represents the lo-
cal independence model of the marginal system as the maximal element in the Markov equiv-
alence class. The dashed edges give us additional—and in some sense local—information. As
an example, the directed edge from A to H is dashed and we cannot know if there exists a
conditioning set that would render H locally independent of A in the full system. On the
other hand, the directed edge from T to H is absent, and we can conclude that tobacco use is
not directly affecting hard drug use.

Consider instead the situation where I is also observed. I serves as an analogue to an
instrumental variable (see, e.g., [31] for an introduction to instrumental variables). The in-
clusion of this variable identifies some of the structure by removing some dashed edges and
making others nondashed.

6. Discussion and conclusion. In this paper, we introduced a class of graphs to rep-
resent local independence structures of partially observed multivariate stochastic processes.
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Previous work based on directed graphs, that allows for cycles and use the asymmetric δ-
separation criterion, was extended to mixed directed graphs to account for latent processes
and we introduced µ-separation in mixed directed graphs.

An important task is the characterization of equivalence classes of graphs and this has
been studied, for example, in MAGs [5, 45]. In the case of MAGs, a key result is that every
element in a Markov equivalence class has the same skeleton, that is, the same adjacencies
[5]. As shown by Propositions 4.7 and 4.8, this is not the case for DMGs, and Example 4.12
shows that one cannot necessarily within a Markov equivalence class find an element such
that two nodes are inseparable if and only if they are adjacent.

We proved instead a central maximality property which allowed us to propose the use of
DMEGs to represent a Markov equivalence class of DMGs in a concise way. Given a max-
imal DMG, we furthermore argued that one can efficiently find the DMEG. Similar results
are known for chain graphs, as one can also in a certain sense find a unique, largest graph
representing a Markov equivalence class [20], though this graph is not a supergraph of all
Markov equivalent graphs as in the case of DMGs. Volf and Studený [42] suggested to use
this largest graph as a unique representative of the Markov equivalence class, and they pro-
vided an algorithm to construct it.

We emphasize that the characterization given of the maximal element of a Markov equiva-
lence class of DMGs is constructive in the sense that it straightforwardly defines an algorithm
for learning a maximal DMG from a local independence oracle. This learning algorithm may
not be computationally efficient or even feasible for large graphs, and it is ongoing research
to develop efficient learning algorithms and to develop the practical implementations of the
tools needed for replacing the oracle by statistical tests.
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SUPPLEMENTARY MATERIAL

Additional results and proofs (DOI: 10.1214/19-AOS1821SUPP; .pdf). The supplemen-
tary material consists of Sections A to F. In Sections A and B, we relate µ-separation to
Didelez’s δ-separation, and also relate our slightly different definitions of local independence.
Section C describes how one can unroll a local independence graph and obtain a DAG. We
use this to discuss Markov properties and faithfulness in the time series case. In Section D,
we provide an augmentation criterion to determine µ-separation using an auxiliary undirected
graph. In Section E, we discuss conditions for existence of compensators and elaborate on
the definition of local independence. Section F contains the proofs of the main paper.
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In this supplementary material we discuss relations between µ-separation
and other asymmetric notions of graphical separation. We also compare our
proposed definition of local independence to previous definitions to argue
that ours is in fact a generalization. We furthermore relate µ-separation to
m-separation. We provide, in particular, a detailed discussion of the local
independence model for discrete-time stochastic processes (time series), and
we show how to verify µ-separation via separation in an auxiliary undirected
graph. We also discuss the existence of the compensators that are used in
the definition of local independence for continuous-time stochastic process
models. This supplementary material also contains proofs of the results of
the main paper. A list of references can be found on the last page.

A. Relation to other asymmetric notions of graphical separa-
tion. In this section we relate µ-separation to �-separation as introduced
previously in the literature for directed graphs.

Definition A.1 (Bereaved graph). Let G = (V,Ed) be a DG, and let
B ✓ V . The B-bereaved graph, GB, is constructed from G by removing
every directed edge with a tail at a node in B except loops. More precisely,

GB = (V, ĒB

d
), where Ē

B

d
= Ed \

⇣S
�2B{(�, �) | � 6= �}

⌘
.

Didelez [2] considered a DG, and for disjoint sets A,B,C ✓ V said that
B is separated from A by C if there is no µ-connecting walk in GB, or
equivalently, no µ-connecting path. This is called �-separation. Note that
the condition in Definitions 3.1 and 3.2 that a connecting walk be nontrivial
makes no di↵erence now due to A and B being disjoint. The condition that
a µ-connecting walk ends with a head at � 2 B is also obsolete as we are
evaluating separation in the bereaved graph GB. Didelez [2] always assumed
that a process depended on its own past, and thus did not visualize loops in
the DGs as a loop would always be present at every node.

Meek [9] generalized �-separation to �
⇤-separation in a DG (allowing for

loops) by considering only nontrivial µ-connecting walks in GB for sets
1
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A,B,C ✓ V such that A \ C = ; with the motivation that a node can
be separated from itself using this notion of separation. However, if we con-
sider the graph ↵ ! �, and sets A = {↵}, B = {↵,�}, C = ;, then using
�
⇤-separation, B is separated from A given C, which runs counter to an in-
tuitive understanding of separation. More importantly, �⇤-separation in the
local independence graph will not generally imply local independence.

To establish an exact relationship between �- and µ-separations and argue
that we are indeed proposing a generalization of the former, assume that G
is a DG and that A,B,C ✓ V are disjoint. We will argue that

(A.1) A ?µ B | C [B [G], A ?� B | C [G].

To see that this is the case, consider first a �-connecting walk from ↵ 2 A to
� 2 B given C in GB, !. The subwalk from ↵ to the first node on ! which is
in B is also present and µ-connecting given C [B in G. On the other hand,
assume that there exists a µ-connecting sequence, !, in G. We know that
A\B = ;, and because B is a subset of the conditioning set on the left hand
side in (A.1), we must have that the first time the path enters B, it has a
head at the node in B, and this implies that a subwalk of ! is �-connecting,
that is, present and connecting in GB. In Section B we will discuss why B

is included in the conditioning set on the left side of (A.1).

B. Markov properties. The equivalence of pairwise and global Markov
properties is pivotal in much of graphical modeling. In this section, we will
show how our proposed graphical framework fits with known results on
Markov properties in the case of point processes and argue that our graphical
framework is a generalization of that of Didelez [3] to allow for non-disjoint
sets and unobserved processes.

Definition B.1 (The pairwise Markov property). Let I be an indepen-
dence model over V . We say that I satisfies the pairwise Markov property
with respect to the DG D if for all ↵,� 2 V ,

↵ 6!D � ) h↵,� | V \ {↵}i 2 I.

Definition B.2 (The global Markov property). Let A,B,C ✓ V . Let I
be an independence model over V . We say that I satisfies the global Markov
property with respect to the DMG G if I(G) ✓ I, i.e., if
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A ?µ B | C [G]) hA,B | Ci 2 I.

Didelez [3] only considered disjoint sets and gave a slighty di↵erent defi-
nition of local independence. For disjoint sets, Didelez [3] defined that B is
locally independent of A given C if

A 6! B | C [B,

and we will make the relation between the two definitions precise in this
section. Consider sets S,Sd ✓ P(V )⇥ P(V )⇥ P(V ),

Sd = {(A,B,C) | A,B,C disjoint, A,B non-empty}
S = {(A,B,C) | B ✓ C, A,C disjoint, A,B non-empty}

and the bijection s : Sd ! S, s((A,B,C)) = (A,B,C [ B). We will in this
section let I denote a subset of S and let Id denote a subset of Sd. In Section
A we argued that for any directed graph G and (A,B,C) 2 Sd,

A ?� B | C [G], A ?µ B | C [B [G]

and therefore

{(A,B,C) 2 Sd : A ?� B | C [G]} = s
�1

⇣
{(A,B,C) 2 S : A ?µ B | C [G]}

⌘
.

For any local independence model defined by Didelez’s definition, Id, and
any local independence model defined by Definition 2.1, I, it holds that

hA,B | Ci 2 Id , A 6! B | C [B

, hA,B | C [Bi 2 I

so Id = s
�1(I). Hence, there is a bijection between the two sets, and graphi-

cal and probabilistic independence models are preserved under the bijection.
This means that we have equivalence of Markov properties between the two
formulations. Thus, restricting our framework to S, we get the equivalence
of pairwise and global Markov property directly from the proof by Didelez
in the case of point process models, and we see that our seemingly different
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definitions of local independence and graphical separation indeed give an
extension of earlier work.

One can show that for two DMGs G1, G2, that both have all directed and
bidirected loops it holds that

I(G1) \ S = I(G2) \ S , I(G1) = I(G2).

Let G denote the class of DMGs such that all directed and bidirected loops
are present. Consider now some G 2 G. By the above result we can identify
the Markov equivalence class from the independence model restricted to S.
This equivalence class has a maximal element which is also in G and thus
one can also in this case represent the Markov equivalence class using a
DMEG.

C. Time series and unrolled graphs. In this section we first relate
the cyclic DGs and DMGs to acyclic graphs and then use this to discuss
Markov properties (see Definition B.2) and faithfulness of local independence
models in the time series case.

Definition C.1 (m-separation [10]). Let G = (V,E) be a DMG and
let ↵,� 2 V . A path between ↵ and � is said to be m-connecting if no
noncollider on the path is in C and every collider on the path is in An(C).
For disjoint sets A,B,C ✓ V , we say that A and B are m-separated by C

if there is no m-connecting path between ↵ 2 A and � 2 B. In this case, we
write A ?m B | C.

The abovem-separation is a generalization of the well-known d-separation
in DAGs. In this section we will only consider m-separation for DAGs, and
will thus use the d-separation terminology. In Section D we provide a more
general relation between µ-separation and m-separation.

We first describe how to obtain a DAG from a DG such that the DAG,
if read the right way, will give the same separation model as the DG.
This can be useful in time series examples as well as when working with
continuous-time models. Sokol and Hansen [13] studied solutions to stocha-
stic di↵erential equations and used a DAG in discrete time to approximate
the continuous-time dynamics. Danks and Plis [1] and Hyttinen et al. [5]
used similar translations between an unrolled graph in which time is dis-
crete and explicit and a rolled graph in which time is implicit. Some authors
use the term unfolded instead of unrolled. In a rolled graph each node repre-
sents a stochastic process whereas in an unrolled graph each node represents
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Fig 1. A directed graph (left) and the corresponding unrolled version with four time points,
D3(G), (right). x�

t denotes the �-coordinate process at time t for � 2 {↵,�, �}.

a single random variable. Definition C.2 shows how to unroll a local inde-
pendence graph and Lemma C.3 establishes a precise relationship between
independence models in the rolled and unrolled graphs.

Definition C.2. Let G = (V,E) be a DG and let T 2 N. The unrolled
version of G, DT (G) = (V̄ , Ē), is the DAG on nodes

V̄ = {x↵t | (t,↵) 2 {0, 1, . . . , T}⇥ V }

and with edges

Ē = {x↵s ! x
�

t
| ↵!G � and s < t}.

Let D ✓ V and let T 2 N. We define D0:T = {x↵t 2 V̄ | ↵ 2 D, t  T} and
DT = {x↵t 2 V̄ | ↵ 2 D, t = T}.

Lemma C.3. Let G = (V,E) be a DG. If A ?µ B | C [G] then (A \
C)0:(T�1) ?d BT | C0:(T�1) [DT (G)]. For large enough values of T , the oppo-
site implication holds as well.

Proof. Assume first that hx↵0
s0
, e1, x

↵1
s1
, . . . , el, x

↵l
sl
i is a d-connecting path

in DT (G). This path has a head at x
↵l
sl
2 BT . Construct a walk in G by

for each node, x↵k
sk
, taking the corresponding node, ↵k, and for each edge
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x
↵k
sk
⇠ x

↵k+1
sk+1 taking the corresponding, endpoint-identical edge ↵k ⇠ ↵k+1

in G. On this walk, no noncollider is in C, and every collider is an ancestor
of a node in C.

Assume instead that ! is a µ-connecting walk in G from A to B given C,

↵1 ⇠ . . . ⇠ ↵l�1 ! ↵l

and let T � 3(|E|+1)+1. Using Proposition 3.5, we can assume that ! has
length smaller than or equal to |E|+1. We construct a d-connecting walk in
DT (G) in the following way. Starting from x

↵l
T
, we choose the edge between

x
↵l�1

|E|+1 and x
↵l
T
. For the remaining edges, ↵k ⇠ ↵k+1, we choose the edge

x
↵k
sk�1 ! x

↵k+1
sk if ↵k ! ↵k+1 in !, and x

↵k+1
sk ! x

↵k
sk+1 if ↵k  ↵k+1 in !

where sk is determined by the endpoints of the previous edge. No noncollider
on this walk will be in C0:(T�1). Every collider will be in AnDT (G)(C0:(T�1))
as the collider will be in the time slices 0 to 2(|E| + 1). This d-connecting
walk can be trimmed down to a d-connecting path.

We defined local independence for a class of continuous-time processes in
Definition 2.1. In this section we define a similar notion for time series, as
also introduced in [4]. Let V = {1, . . . , n}. We consider a multivariate time
series (Xt)t2N[{0}, Xt = (X1

t , . . . , X
n
t ), of the form

X
↵

t = f↵t(Xs<t, "
↵

t ),

where Xs<t = {X↵
u | ↵ 2 V, u < t}. The random variables {"↵t } are indepen-

dent. For S ✓ N [ {0} and D ✓ V we let X
D

S
= {X↵

s | ↵ 2 D, s 2 S} and
X

D = {X↵ | ↵ 2 D}. In the case of time series, a notable feature of local
independence and local independence graphs is that they provide a simple
representation in comparison with graphs in which each vertex represents a
single time-point variable.

Definition C.4 (Local independence, time series). Let X be a multi-
variate time series. We say that XB is locally independent of XA given X

C

if for all t 2 N, � 2 B, XA
s<t and X

�

t
are conditionally independent given

X
C
s<t, that is,

X
A

s<t ?? X
�

t
| XC

s<t

and write A 6! B | C.

The above definition induces an independence model over V , which we
will also refer to as the local independence model and denote I in the fol-
lowing. The main question that we address is whether this independence
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model is graphical. That is, we will construct a DG, consider the Markov
and faithfulness properties of I and this DG, and relate them to Markov
and faithfulness properties of the conditional independence model of finite
distributions and unrolled versions of the DG.

Definition C.5 (Faithfulness). Let A,B,C ✓ V . Let I be an indepen-
dence model on V and let G be a DMG. We say that I and G are faithful if
I = I(G), i.e., if

hA,B | Ci 2 I , A ?µ B | C [G].

One can give analogous definitions using other notions of graphical sepa-
ration. Below we also consider faithfulness of a probability distribution and
a DAG, implicitly using d-separation instead of µ-separation in the above
definition.

Let DT for T � 1 be the DAG on nodes {x↵s | s 2 {0, . . . , T},↵ 2 V } such

that there is an edge x
↵
s ! x

�

t
if and only if f�t depends on the argument

X
↵
s . Let DS = {x↵s | ↵ 2 D, s 2 S}. Let G denote the minimal DG such that

its unrolled version, DT (G), is a supergraph of DT for all T 2 N.
For all T 2 N, the DAG DT (G) and the distribution of XsT satisfy

x
↵

s , x
�

t
not adjacent ) X

↵

s ?? X
�

t
| (An(X↵

s ) [An(X�

t
)) \ {X↵

s , X
�

t
},

which is also known as the pairwise Markov property for DAGs. Assume
equivalence of the pairwise and global Markov properties for this DAG and
the finite-dimensional distribution (see e.g. [7] for necessary and su�cient
conditions for this equivalence). Assume that B is µ-separated from A by
C in the DG G, A ?µ B | C [G]. By Lemma C.3, (A \ C)s<T ?m BT |
Cs<T [DT (G)], and by the global Markov property in this DAG, XA\C

s<T
??

X
B

T
| XC

s<T
. This holds for any T , and therefore A \ C 6! B | C. It follows

that A 6! B | C. This means that I satisfies the global Markov property
with respect to G.

Assume furthermore that the distribution of XT and the DAG DT (G) for
some T 2 N are faithful and that T � 3(|E| + 1) + 1. Meek [8] studied
faithfulness of DAGs and argued that faithful distributions exist for any

DAG. If A 6! B | C, then A \ C 6! B | C and X
A\C
s<T

?? X
B

T
| X

C

s<T
.

By faithfulness of the distribution of XT and the DAG DT (G), we have
(A \ C)s<T ?m BT | Cs<T [DT (G)] and using Lemma C.3 this implies that
A ?µ B | C [G], giving us faithfulness of I and G.
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In summary, for every DG there exists a time series such that the local
independence model induced by its distribution and the DG are faithful.

D. An augmentation criterion. In this section we present results
that allow us to determine µ-separation from graphical separation in an
undirected graph. An undirected graph is a graph, (V,E), with an edge set
that consists of unordered pairs of nodes such that every edge is of the type
�. Let A,B, and C be disjoint subsets of V . We say that A and B are
separated by C if every path between ↵ 2 A and � 2 B contains a node in
C.

When working with d-separation in DAGs, it is possible to give an equiv-
alent separation criterion using a derived undirected graph, the moral graph
[6]. Didelez [2] also gives both pathwise and so-called moral graph crite-
ria for �-separation. The augmented graph below is a generalization of the
moral graph [10, 11] which allows one to give a criterion for m-separation
based on an augmented graph. We use the similarity of µ-separation and
m-separation to give an augmentation graph criterion for µ-separation. The
first step in making a connection to m-separation is to explicate that each
node of a DMG represents an entire stochastic process, and notably, both
the past and the present of that process. We do that using graphs of the
below type.

Definition D.1. Let G = (V,E) and let B = {�1, . . . ,�k} ✓ V . The
B-history version of G, denoted by G(B), is the DMG with node set V [̇
{�p

1 , . . . ,�
p

k
} such that G(B)V = G and

• ↵$G(B) �
p

i
if ↵$G �i and ↵ 2 V,�i 2 B,

• ↵!G(B) �
p

i
if ↵!G �i and ↵ 2 V,�i 2 B.

G(B) is a graph such that every node b 2 B is simply split in two: one
that represents the present and one that represents the past. We define
B

p = {�p

1 , . . . ,�
p

k
}.

Proposition D.2. Let G = (V,E) be a DMG, and let A,B,C ✓ V .
Then

A ?µ B | C [G], A \ C ?m B
p | C [G(B)].

Proof. Assume first that there is a µ-connecting walk from ↵ 2 A to
� 2 B given C in G. By definition ↵ 2 A \ C. By Proposition 3.5 there is a
µ-connecting route,
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↵ ⇠ . . . ⇠ � ⇠ . . . � ⇤! �.

The subwalk from ↵ to � is also present in G(B) and composing it with
� ⇤!G(B) �

p gives an m-connecting path between A \ C and B
p which is

open given C.
On the other hand, if there is an m-connecting path from ↵ 2 A \ C to

�
p 2 B

p given C in G(B), then no non-endpoint node is in B
p,

↵ ⇠ . . . � ⇤! �
p

The subpath from ↵ to � is present in G and can be composed with the
edge � ⇤! � to obtain a µ-connecting walk from A to B given C in G.

Definition D.3. Let G = (V,E) be a DMG. We define the augmented
graph of G, Ga, to be the undirected graph without loops and with node set
V such that two distinct nodes are adjacent if and only if the two nodes are
collider connected in G.

Proposition D.4. Let G = (V,E) be a DMG, A,B,C ✓ V . Then
A ?µ B | C [G] if and only if A \ C and B

p are separated by C in the
augmented graph of G(B)An(A[Bp[C).

Proof. Using Proposition D.2 we have that A ?µ B | C [G], A\C ?m

B
p | C [G(B)]. Let G(B)0 be the DMG obtained from G(B) by removing all

loops. Then A \C ?m B
p | C [G(B)] if and only if A \C ?m B

p | C [G(B)0].
We can apply Theorem 1 of [10]. That theorem assumes an ADMG, however,
as noted in the paper, acyclicity is not used in the proof which therefore
also applies to G(B)0, and we conclude that A \ C ?m B

p | C [G(B)0] if
and only if A \ C and B

p are separated by C in (G(B)0
An(A[Bp[C))

a =

(G(B)An(A[Bp[C))
a.

E. Existence of compensators. Let Z = (Zt) denote a real-valued
stochastic process defined on a probability space (⌦,F , P ), and let (Gt)
denote a right-continuous and complete filtration w.r.t. P such that Gt ✓
F . Note that Z is not assumed adapted w.r.t. the filtration. When Z is a
right-continuous process of finite and integrable variation, it follows from
Theorem VI.21.4 in [12] that there exists a predictable process of integrable
variation, Zp, such that o

Z�Zp is a martingale. Here o
Z denotes the optional

projection of Z, which is a right-continuous version of the process (E(Zt |
Gt)), cf. Theorem VI.7.1 and Lemma VI.7.8 in [12]. The process ⇤ = Z

p
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is called the dual predictable projection or compensator of the optional
projection o

Z as well as of the process Z itself. It depends on the filtration
(Gt).

If Z is adapted w.r.t. a (right-continuous and complete) filtration (Ft),
it has a compensator ⇤̃ = Z

p such that Z � ⇤̃ is an Ft martingale. When
Gt ✓ Ft it may be of interest to understand the relation between ⇤, as
defined above w.r.t. (Gt), and ⇤̃. If ⇤̃ is continuous with ⇤̃0 = 0, say, we
may ask if ⇤ equals the predictable projection, E(⇤̃t | Gt�). As ⇤̃ is assumed
continuous and is of finite variation,

⇤̃t =

Z
t

0
�̃sds.

If (�̃t) itself is an integrable right-continuous process, then its optional pro-
jection, (E(�̃t | Gt)), is an integrable right-continuous process, and

E(⇤̃t | Gt�) =

Z
t

0
E(�̃s | Gs)ds

is a finite-variation, continuous version of the predictable projection of ⇤̃. It
is clear that

E(Zt | Gt)�
Z

t

0
E(�̃s | Gs)ds

is a Gt martingale, thus

⇤t =

Z
t

0
E(�̃s | Gs)ds

is a compensator of Z w.r.t. the filtration (Gt).
We formulate the consequences of the discussion as a criterion for deter-

mining local independence via the computation of conditional expectations.
The setup is as in Definition 2.1 in Section 2.1.

Proposition E.1. Assume that the process X
� for all � 2 V has a

compensator w.r.t. the filtration (FV
t ) of the form

⇤V,�

t
= ⇤V,�

0 +

Z
t

0
�
�

sds

for an integrable right-continuous process (��

t
) and a deterministic constant

⇤V,�

0 . Then X
� is locally independent of XA given X

C for A,C ✓ V if the
optional projection

E(��

t
| FA[C

t )

has an FC
t adapted version.
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Another way to phrase the conclusion of the proposition is that if the
optional projection E(��

t
| FC

t ) is indistinguishable from E(��

t
| FA[C

t ),
then A 6! � | C, and it is a way of testing local independence via the
computation of conditional expectations. It is a precise formulation of the
innovation theorem stating how to compute compensators for one filtration
via conditional expectations of compensators for a superfiltration.

F. Proofs. The following are proofs of the results from the main paper.

Proof of Proposition 3.3. Let ! be a µ-connecting walk given C and
let � be a collider on the walk such that � 2 An(C) \ C. Then there exists
a subwalk !̄ = ↵1 ⇤! �  ⇤ ↵2, and an open (given C), directed path from
� to � 2 C, ⇡. By composing ↵1 ⇤! � with ⇡, ⇡�1, and �  ⇤ ↵2 we get an
open walk which is endpoint-identical to !̄ and with its only collider, �, in
C, and we can substitute !̄ with this new walk. Making such a substitution
for every collider in An(C)\C on !, we obtain a µ-connecting walk on which
every collider is in C.

Proof of Proposition 3.5. Assume that we start from ↵ and continue
along ! until some node, � 6= �, is repeated. Remove the cycle from � to
� to obtain another walk from ↵ to �, !̄. If � = ↵, then !̄ is µ-connecting.
Instead assume � 6= ↵. If this instance of � is a noncollider on !̄ then it must
have been a noncollider in an instance on ! and thus � /2 C. If on the other
hand this instance of � is a collider on !̄ then either � was a collider in an
instance on ! or the ancestor of a collider on !, and thus � 2 An(C). In
either case, we see that !̄ is a µ-connecting walk. Repeating this argument,
we can construct a µ-connecting walk where only � is potentially repeated.
If there is n > 2 instances of � then we can remove at least n � 2 of them
as above as long as we leave an edge with a head at the final �.

Proof of Proposition 3.6. Note first that a vertex can be a parent of
itself. The result then follows from the fact that ↵ ?µ � | pa(�).

Proof of Proposition 3.9. The first statement follows from the fact
that no edge without heads (i.e. �) is ever added. Assume for the second
statement that G satisfies (3.3). Let M = V \O. Assume ↵ $M �. By
definition of the latent projection, we can find an endpoint-identical walk
between ↵ and � in G with no colliders and such that all non-endpoint nodes
are in M . Either this walk has a bidirected edge at ↵ in which case ↵$G ↵

by (3.3) and therefore also ↵ $M ↵. Otherwise, there is a directed edge
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from some node � 2 M such that � !G ↵. Then the walk ↵  � ! ↵ is
present in G and therefore ↵$M ↵ because M is a latent projection.

Proof of Proposition 3.10. Assume first that ↵ has no loops. In this
case, there are no bidirected edges between ↵ and any node, and therefore the
edges that have a head at ↵ have a tail at the previous node. Any nontrivial
walk between ↵ and ↵ is therefore blocked by V \ {↵}. Conversely, if ↵ has
a loop, then ↵ ⇤! ↵ is a µ-connecting walk given V \ {↵}.

Proof of Theorem 3.12. Let M = V \O. Let first ! be a µ-connecting
walk from ↵ 2 A to � 2 B given C in G. Using Proposition 3.3, we can find a
µ-connecting walk from ↵ 2 A to � 2 B given C in G such that all colliders
are in C. Denote this walk by !̄. Every node, m, on !̄ which is in M is
on a subwalk of !̄, �1 ⇠ . . . ⇠ m ⇠ . . . ⇠ �2, such that �1, �2 2 O and all
other nodes on the subwalk are in M . There are no colliders on this subwalk
and therefore there is an endpoint-identical edge �1 ⇠ �2 in M. Substituting
all such subwalks with their corresponding endpoint-identical edges gives a
µ-connecting walk in M.

On the other hand, let ! be a µ-connecting walk from A to B given
C in M. Consider some edge in ! which is not in G. In G there is an
endpoint-identical walk with no colliders and no non-endpoint nodes in C.
Substituting each of these edges with such an endpoint-identical walk gives
a µ-connecting walk in G using Proposition 3.11.

Proof of Proposition 3.13. We first note that in Algorithm 1 adding
an edge will never remove any triroutes. Therefore, Algorithm 1 returns the
same output regardless of the order in which the algorithm adds edges.

Let M denote the output of Algorithm 1 which is clearly a DMG. The
graphs M and m(G, O) have the same node set, thus it su�ces to show that
also the edge sets are equal. Assume first ↵

e⇠m(G,O) �. Then there exist an
endpoint-identical walk in G that contains no colliders and such that all the
non-endpoint nodes are in M = V \ O, ↵ ⇠ �1 ⇠ . . . ⇠ �n ⇠ �n+1 = �. Let
el be the edge between ↵ and �l which is endpoint-identical to the subwalk
from ↵ to �l. If el is present in Mk at some point during Algorithm 1, then
edge el+1 will also be added before the algorithm terminates, l = 1, . . . , n.
We see that e1 is in G, and this means that e is also present in M.

On the other hand, assume that some edge e is in M. If e is not in G,
then we can find a noncolliding, endpoint-identical triroute in the graph Mk

(k has the value that it takes when the algorithm terminates) such that the
noncollider is in M . By repeatedly using this argument, we can from any
edge, e, in M construct an endpoint-identical walk in G that contains no
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colliders and such that every non-endpoint node is in M , and therefore e is
also present in m(G, O).

Proof of Proposition 4.5. Let

↵ ⇤! �1 $ . . .$ �n $ �

be the inducing path, ⌫. Let �n+1 denote �. If ⌫ has length one, then it is
directed or bidirected and itself a µ-connecting path/cycle regardless of C.
Assume instead that the length of ⌫ is strictly larger than one, and assume
also first that ↵ 6= �. Let k be the maximal index in {1, . . . , n} such that
there exists an open walk from ↵ to �k given C which does not contain �

and only contains ↵ once. There is a µ-connecting walk from ↵ to �1 6= �

given C and therefore k is always well-defined.
Let ! be the open walk from ↵ to �k. If �k 2 An(C), then the composition

of ! with the edge �k $ �k+1 is open from ↵ to �k+1 given C. By maximality
of k, we must have k = n, and the composition is therefore an open walk from
↵ to � on which � only occurs once. We can reduce this to a µ-connecting
path using arguments like those in the proof of Proposition 3.5. Assume
instead that �k /2 An(C). There is a directed path from �k to ↵ or to �.
Let ⇡ denote the subpath from �k to the first occurrence of either ↵ or � on
this directed path. If � occurs first, then the composition of ! with ⇡ gives
an open walk from ↵ to �. There is a head at � when moving from ↵ to �

and therefore the walk can be reduced to a µ-connecting path from ↵ to �

using the arguments in the proof of Proposition 3.5. If ↵ occurs first, then
the composition of ⇡�1 and the edge �k $ �k+1 gives a µ-connecting walk
and it follows that k = n by maximality of k. This walk is a µ-connecting
path.

To argue that the open path is endpoint-identical if ⌫ is directed or
bidirected, let instead k be the maximal index such that there exists a µ-
connecting walk from ↵ to �k with a head/tail at ↵. Using the same argument
as above, we see that the µ-connecting path will be endpoint-identical to ⌫

in this case. In the directed case, note that in the case �k /2 An(C) one
can find a directed path form �k to �, and if ↵ occurs on this path one can
simply choose the subpath from ↵ to �.

In the case ↵ = �, analogous arguments can be made by assuming that k
is the maximal index such that there exists a µ-inducing path from ↵ to �k

given C such that � = ↵ only occurs once.

Proof of Propositions 4.7 and 4.8. For both propositions it su�ces
to argue that if there is a µ-connecting walk in the larger graph, then we
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can also find a µ-connecting walk in the smaller graph. Using Proposition
4.5 we can find endpoint-identical walks that are open given C \ {↵} and
replacing ↵ ⇤! � with such a walk will give a walk which is open given
C. For Proposition 4.8 one should note that adding the edge respects the
ancestry of the nodes due to transitivity.

Proof of Proposition 4.10. Assume there is no inducing path from
↵ to � and let ! be some walk from ↵ to � with a head at �. Note that !
must have length at least 2.

↵ = �0
e0⇠ �1

e1⇠ . . .
em�1⇠ �m

em⇤! �.

There must exist an i 2 {0, 1, . . . ,m} such that �i is not directedly
collider-connected to � along ! or such that �i /2 An(↵,�). Let j be the
largest such index. Note first that �m is always directedly collider-connected
to � along ! and �0 is always in An(↵,�). If j 6= m and �j is not directedly
collider-connected to � along !, then �j+1 is a noncollider and ! is closed
in �j+1 2 D(↵,�) (note that ↵ = �j+1 is impossible as there would then be
an inducing path from ↵ to �). If j 6= 0 and �j /2 An(↵,�) then there is
some k 2 {1, . . . , j} such that �k is a collider and �k /2 An(↵,�) and ! is
therefore closed in this collider.

Proof of Proposition 5.3. We verify that (gs1)–(gs3) hold.
(gs1) The edge ↵$ � constitutes an inducing path in both directions.
(gs2-3) Let � 2 V,C ✓ V such that � 2 C, and assume that there is a
µ-connecting walk from � to � given C in G. This walk has a head at � and
composing the walk with ↵ $ � creates an µ-connecting walk from � to ↵

given C.

Proof of Lemma 5.4. Any µ-connecting walk in G is also present and
µ-connecting in G+, hence I(G+) ✓ I(G).

Assume �, � 2 V,C ✓ V and assume that ⇢ is a µ-connecting route from
� to � given C in G+. Let e denote the edge ↵$ �. Using (gs1), there exist
an inducing path from ↵ to � in G and one from � to ↵. Denote these by ⌫1

and ⌫2. If e is not in ⇢, then ⇢ is also in G and µ-connecting as the addition
of the bidirected edge does not change the ancestry of G.

If e occurs twice in ⇢ then it contains a subroute ↵
e$ �

e$ ↵ and ↵ = �

(or with the roles interchanged). Either one can find a µ-connecting subroute
of ⇢ with no occurrences of e or ↵ /2 C. If � 2 C, then compose the subroute
of ⇢ from � to the first occurrence of ↵ (which is either trivial or can be
assumed to have a tail at ↵) with the ⌫1-induced open walk from ↵ to �
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using Proposition 4.5. This is a µ-connecting walk in G from � to � and using
(gs2) the result follows. If � /2 C, then the result follows from composing
the subroute from � to ↵ with the ⌫1-induced open walk from ↵ to � and
the ⌫2-inducing open walk from � to ↵.

If e only occurs once on ⇢, consider first a ⇢ of the form

� ⇠ . . . ⇠ ↵| {z }
⇢1

e$ � ⇠ . . . ⇤! �| {z }
⇢2

.

Assume first that ↵ /2 C. Let ⇡ denote the ⌫1-induced open walk from ↵ to
� and note that ⇡ has a head at �. If � = ↵ then ⇡ composed with ⇢2 is a
µ-connecting walk from � to � in G. If � 6= ↵ we can just replace e with ⇡,
and the resulting composition of the walks ⇢1, ⇡ and ⇢2 is a µ-connecting
walk from � to � in G. If instead ↵ 2 C, then � 6= ↵ and ↵ is a collider on
⇢, and ⇢1 thus has a head at ↵ and is µ-connecting from � to ↵ given C in
G. Using (gs3) we can find a µ-connecting walk from � to � given C in G.
Composing this with ⇢2 gives a µ-connecting walk from � to � given C in G.

If ⇢ instead has the form

� ⇠ . . . ⇠ �
e$ ↵ ⇠ . . . ⇤! �,

a similar argument using (gs2) applies. In conclusion, I(G) ✓ I(G+).

Proof of Proposition 5.7. We verify that (gp1)–(gp4) hold.
(gp1) ↵! � constitutes an inducing path from ↵ to �.
(gp2) Let ! be a µ-connecting walk from � to ↵ given C, ↵ /2 C. Then !

composed with ↵! � is µ-connecting from � to � given C.
(gp3) Let !1 be a µ-connecting walk from � to � given C, ↵ /2 C,� 2 C,
and let !2 be a µ-connecting walk from ↵ to � given C. The composition of
!1, ↵! �, and !2 is µ-connecting.
(gp4) Let ! be a µ-connecting walk from � to � given C [ {↵}, ↵ /2 C. If
this walk is closed given C, then there exists a collider on !, which is an
ancestor of ↵ and not in An(C). Let � be the collider on ! with this property
which is the closest to �. Then we can find a directed and open path from
� to � and composing the inverse of this with the subwalk of ! from � to �

gives us a connecting walk.

Proof of Lemma 5.8. As AnG(C) ✓ AnG+(C) for all C ✓ V , any µ-
connecting path in G is also µ-connecting in G+, and it therefore follows
that I(G+) ✓ I(G).

We will prove the other inclusion by considering a µ-connecting walk from
� to � given C in G+ and argue that we can find another µ-connecting walk
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in G+ that fits into cases (a) or (b) below. In both cases, we will use the
potential parents properties to argue that there is also a µ-connecting walk
from � to � given C in G. Let e denote the edge ↵! �.

Let ⌫ denote the inducing path from ↵ to � in G which we know to exist
by (gp1) and Proposition 4.10. Say we have a µ-connecting walk in G+, !,
from � to � given C. There can be two reasons why ! is not µ-connecting
in G: 1) e is in !, 2) there exist colliders, c1, . . . , ck, on !, which are in
AnG+(C) but not in AnG(C). We will in this proof call such colliders newly
closed. If there exists a newly closed collider on !, ci, then there exists in
G a directed path from ci to ↵ on which no node is in C, and furthermore
↵ /2 C. Note that this path does not contain �, and the existence of a newly
closed collider implies that � 2 AnG(C).

Using Proposition 3.5, we can find a route, ⇢, in G+ from � to �, which
is µ-connecting in G+. Assume first that e occurs at most once on ⇢. If
there are newly closed colliders on ⇢, we will argue that we can find a µ-
connecting walk in G+ with no newly closed colliders and such that e occurs
at most once. Assume that c1, . . . , ck are newly closed colliders, ordered by
their occurrences on the route ⇢. We allow for k = 1, in which case c1 = ck.
We will divide the argument into three cases, and we use in all three cases
that a µ-connecting walk in G is also present in G+ and has no newly closed
colliders nor occurrences of e. We also use that ↵ /2 C when applying (gp2).

(i) e is between � and c1 on ⇢.
Consider the subwalk of ⇢ from � to the first occurrence of ↵. If this
subwalk has a tail at ↵ (or is trivial) then we can compose it with the
inverse of the path from ck to ↵ and the subwalk from ck to �. This
walk is open. If there is a head at ↵, then using (gp2) we can find a
µ-connecting walk from � to � in G, compose it with e, the inverse of
the path from ck to ↵ and the subwalk from ck to �. This is open as
� 2 AnG(C) and ↵ /2 C whenever there exist newly closed colliders.

(ii) e is between ck and � on ⇢.
Consider the subwalk of ⇢ from � to c1, and compose it with the
directed path from c1 to ↵. This is µ-connecting in G and using (gp2)
we can find a µ-connecting walk in G from � to �. Composing this
walk with the subwalk of ⇢ from � to � gives a µ-connecting walk from
� to �, noting that � 2 AnG(C).

(iii) e is between c1 and ck on ⇢ or not on ⇢ at all.
Composing the subwalk from � to c1 with the directed path from c1 to
↵ gives a µ-connecting walk from � to ↵ given C in G, and by (gp2) we
can find a µ-connecting walk from � to � in G, thus there are no newly
closed colliders on this walk and it does not contain e. Composing it
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with e, the directed path from ck to ↵ and the subwalk from ck to �

gives a µ-connecting walk in G+.

In all cases (i), (ii), and (iii) we have argued that there exists a µ-connecting
walk from � to � in G+ that contains no newly closed colliders and that
contains e at most once. Denote this walk by !̃. If !̃ does not contain e

at all, then we are done. Otherwise, two cases remain, depending on the
orientation of e in the µ-connecting walk !̃:

(a) Assume first we have a walk of the form

� ⇠ . . .
e↵⇠ ↵! � ⇠ . . . ⇤! �,

If there is a tail on e↵ at ↵, or if � = ↵, then we can substitute e

with the open path between ↵ and � induced by ⌫ and obtain an open
walk. Otherwise, assume a head on e↵ at ↵. !̃ is µ-connecting in G+

and therefore ↵ /2 C. Using (gp2), there exists a µ-connecting walk
from � to �, and composing this walk with the (potentially trivial)
subwalk from � to � gives a µ-connecting walk from � to � given C in
G.

(b) Consider instead a walk of the form

� ⇠ . . .
e�⇠ �  ↵ ⇠ . . . ⇤! �.

If there is a head on e� at �, � is a collider. If � 2 C, then (gp3)
directly gives a µ-connecting walk from � to � given C in G. If instead
� 2 AnG+(C)\C then we can find a directed path, ⇡, in G+ from � to
" 2 C. The edge e is not present on ⇡ and therefore we can compose
the subwalk from � to � with ⇡, ⇡�1, and the subwalk from � to � to
obtain an open walk from � to � without any newly closed colliders,
only one occurrence of e, and such that there is a tail at � just before
the occurence of e.
We have reduced this case to walks, !̃, of the form

� ⇠ . . . �| {z }
!̃1

 ↵ ⇠ . . . ⇤! �| {z }
!̃2

,

where !̃1 is potentially trivial. Let ⇡̄ denote the ⌫-induced open path
or cycle from ↵ to � in G. Using Proposition 3.5 there is a µ-connecting
route, ⇢̄, from ↵ to � given C in G. If there is a tail at ↵ on ⇢̄ or on
⇡̄ then the composition of !̃1, ⇡ and ⇢̄ is µ-connecting. Otherwise, if
↵ 6= �, the composition of ⇡ and ⇢̄ is a µ-connecting walk from � to
� given C [ {↵} in G as ↵ does not occur as a noncollider on this
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composition. Using (gp4) there is also one given C. As there is a tail
at � on !̃ we can compose !̃1 with this walk to obtain an open walk
from � to � given C in G. If ↵ = � the composition of !̃1 with !̃2 is
an open walk from � to � given C in G.

Assume finally that e occurs twice on ⇢. In this case ⇢ contains a subroute
�

e ↵
e! � and � = �. In this case ↵ /2 C. If there are any newly closed

colliders, consider the one closest to �, c. The subroute of ⇢ from � to c

composed with the directed path from c to ↵ gives a µ-connecting path and
(gp2) gives the result. Else if there is a head at ↵ on the ⌫-induced open walk
then (gp2) again gives the result. Otherwise, compose the subroute from �

to the first �, the inverse of the ⌫-induced open walk, and the ⌫-induced
open walk to obtain an open walk in G from � to � = �.

Proof of Theorem 5.9. Propositions 5.3 and 5.7 show that N is in
fact a supergraph of G, and as Em only depends on the independence model,
it also shows that N is a supergraph of any element in [G]. We can sequen-
tially add the edges that are in N but not in G, and Lemmas 5.4 and 5.8
show that this is done Markov equivalently, meaning that N 2 [G].

Lemma F.1. Let ↵,� 2 V . If there is a directed edge, e, from ↵ to �,
and a unidirected inducing path from ↵ to � of length at least two in N ,
then there is a directed inducing path from ↵ to � in N � e.

Proof of Lemma F.1. Let ⌫ denote the unidirected inducing path and
�1, . . . , �n the non-endpoint nodes of ⌫. Then �i 2 AnN ({↵,�}) and also
�i 2 AnN (�) due to the directed edge from ↵ to �. It follows that either
�i 2 AnN (↵) or �i 2 An(N�e)(�). If �i 2 AnN (↵), let ei denote the directed
edge from �i to �, and let N+ = (V, F [ {ei}). We will argue that N = N+

using the maximality of N . Note first that the edge does not change the
ancestry of the graph in the sense that AnN (�) = AnN+(�) for all � 2 V .
Note also that there is a bidirected inducing path between �i and � in N ,
and therefore �i $N �. Assume that ei is in a µ-connecting path in N+.
There is a directed path from �i to ↵ in N and therefore ei can either be
substituted with �i ! ↵i ! . . . ! ↵k ! ↵ ! � (if ↵1, . . . ,↵k,↵ /2 C), or
with �i $ � (otherwise), and we see that I(N ) = I(N+). By maximality of
N we have that N = N+ which implies that ei 2 F . Thus �i 2 An(N�e)(�).
This shows that ⌫ is also a directed inducing path in N � e.

Lemma F.2. Let edges ↵ ! �, � ! ↵ and ↵ $ � be denoted by
e1, e2, e3, respectively. If e1, e3 2 F , then N � e1 2 [N ]. If e1, e2, e3 2 F ,
then N � e3 2 [N ].
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Proof of Lemma F.2. Note that if edges � ⇤! ↵, ↵ $ �, and ↵ ! �

are present in a maximal DMG, then so is � ⇤! � by Propositions 4.7
and 4.8. Assume e1, e3 2 E. Using the above observation, note that every
vertex that is a parent of ↵ in N is also a parent of �, thus AnN (�) \ {↵} =
An(N�e1)(�) \ {↵} for all � 2 V . Consider a µ-connecting walk, !, in N
given C. Any collider di↵erent from ↵ on this walk is in An(N�e1)(C). If
↵ /2 An(N�e1)(C) is a collider, then we can substitute the subwalk �1 ⇤!
↵  ⇤ �2 with �1 ⇤! �  ⇤ �2. If e1 is the first edge on ! and ↵ the first
node, then just substitute e1 with e3. Else, we need to consider two cases: in
the first case there is a subwalk � ⇤! ↵! � (or �  ↵ ⇤ �) and therefore
an edge � ⇤! � in N � e1 if � 6= ↵. If � = ↵, we can simply remove the
loop, replacing e1 with e3 if � was the final node on !. In the second case,
there is a subwalk �  ↵ ! � (or �  ↵ ! �), and we can substitute e1

with e3 if � 6= �. If � = �, then we can substitute �  ↵! � with � $ �.
The proof of the other statement is similar.

Proof of Proposition 5.11. One implication is immediate by contra-
position: if ↵ /2 u(�, I(N � e)), then N � e /2 [N ].

Assume ↵ 2 u(�, I(N � e)). There exists an inducing path, ⌫, from ↵ to
� in N � e. If ⌫ is directed, then the conclusion follows from Proposition
4.8. If ⌫ is unidirected and of length one, then it is also directed. If it is
unidirected and has length at least two, it follows from Lemma F.1 that
there also exists a directed inducing path in N � e. Proposition 4.8 finishes
the argument. Assume that ⌫ is bidirected. Then ↵$N � due to maximality
and Proposition 4.7. Lemma F.2 gives the result.

Proof of Proposition 5.12. One implication follows by contraposi-
tion. Assume instead that ↵ 2 u(�, I(N � e)) and � 2 u(↵, I(N � e)). Then
there is an inducing path from ↵ to � and one from � to ↵ in N � e. Denote
these by ⌫1 and ⌫2. If one of them is bidirected, then the conclusion follows.
Assume instead that none of them are bidirected and assume first that both
are a single edge. The conclusion then follows using Lemma F.2.

Assume now that ⌫1 or ⌫2 is an inducing path of length at least 2. Say
that � ! �1 $ . . .$ �m $ ↵ is an inducing path. If ⌫1 is the inducing path
↵!N � of length one, then there is also a bidirected inducing path between
�1 and � in N , and there will also be a bidirected inducing path in N � e

between ↵ and �. If instead ⌫1 is the inducing path ↵! �1 $ . . .$ �k $ �

then �1 $N �1. In this case ↵$ �m . . . �1 $ �1 . . .�k $ � can be trimmed
down to a bidirected inducing path in N � e.
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