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Causal structure learning for partially observed multivariate event
processes

Niels Richard Hansen

(joint work with Søren Wengel Mogensen, Daniel Malinsky)

Structural causal models of event processes imply certain local independencies
among the coordinates of the processes. The local independencies form an inde-
pendence model that can be encoded as a graphical separation model in a directed
graph via δ- or µ-separation. If only some of the process coordinates are observed,
we ask what can be learned about the causal structure in terms of the local inde-
pendence model?

Some notation is required to formulate our main results. We consider event
processes indexed by V = {1, . . . , d}. The time dynamics of the k-th event process
is given in terms of its intensity,

P (one k-event ∈ (t, t+ δ] | Ft) " λkt δ, k ∈ V, and small δ > 0,

where Ft denotes the history of all events up to time t, and λkt depends on Ft.
For C ⊆ V we define FC

t as the history of events in C up to time t, and

λk,Ct = E(λkt | FC
t )

is the optional projection of the intensity of the k-th process onto the history of
processes indexed by C.

For A,B,C ⊆ V , B is conditionally locally independent of A given C, denoted

A $→ B | C,

if λk,A∪C
t = λk,Ct for k ∈ B. This defines an abstract independence model as a

ternary relation on subsets of V ,

〈A,B | C〉 ∈ ICLI(V ) ⇔ A $→ B | C

We would like to encode this independence model as a graphical independence
model, that is, find a graph and a separation criterion on the graph such that
separation in the graph implies conditional local independence.
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Definition (Local Independence Graph). A graph G = (V,E) is a local indepen-
dence graph if

(j, k) $∈ E =⇒ j $→ k | V \{j}.

The local independence graph is a directed graph, that may have cycles, and
we define a separation criterion in terms of the following definition.

Definition (µ-connecting walk). A nontrivial walk from j to k in G is said to be
µ-connecting given C if j /∈ C, every collider is an ancestor of C, no noncollider is
in C, and there is an arrow head at k.

A set B is then said to be µ-separated from A given C if there is no µ-connecting
walk from any j ∈ A to any k ∈ B given C in the graph. The corresponding
graphical independence model is denoted IG(V ). Note that requiring an arrow
head at k in the above definition makes the independence model different from
d-separation and asymmetric.

Theorem (Global Markov Property, [1]). Let G denote the local independence
graph. Under some regularity conditions it holds that if C µ-separates A from B
in a local independence graph then A $→ B | C. That is, IG(V ) ⊆ ICLI(V ).

The global Markov property (using δ-separation) was proved for event processes
first in [2], but we give more general results in [1] based on abstract semigraphoid
properties.

To represent the independence model among observed processes when there are
also latent processes, we need a notion of projection. This is achieved by extending
µ-separation to directed mixed graphs (DMGs). The main results from [3] are

• A latent projection maps a DMG with vertices V to a DMG with ver-
tices O ⊆ V . The µ-separation properties are preserved among observed
variables.

• All Markov equivalent DMGs on O have a common Markov equivalent
supergraph.

• The maximal DMG representing a Markov equivalence class can be con-
structed from the independence model.

• Edge status in the equivalence class is characterized via the directed mixed
equivalence graph (DMEG).

The proof in [3] that the maximal DMG exists is constructive, and provides, in
principle, a learning algorithm. In [1] we propose a more efficient learning algo-
rithm of the DMEG that is shown to be sound and complete under a faithfulness
assumption, that is, assuming that IG(V ) = ICLI(V ).

Two open problems, that we are currently pursuing, are

• a characterization of faithfulness for some model classes
• and practical statistical tests of conditional local independence.
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Questions about ML and AI

Léon Bottou

The purpose of this talk is to explain the relevance of causation to research in
artificial intelligence. Despite the promises of pundits, there is indeed a large gap
between the technological capabilities of machine learning (ML) and the vague and
elusive goals of artificial intelligence (AI). The first part of the talk reviews some
of the common issues with ML methods and shows how they display many of the
characteristic issues one encounters in causal inference research. The second part
of the talk is an attempt to name many of the nuances of causation in the hope
to provide a roadmap to approach artificial intelligence.

Success and shortcomings of ML — The current interest for artificial intelligence
results from a couple success stories in machine learning. Thanks to the avail-
ability of large datasets and powerful computing infrastructure, supervised ma-
chine learning and reinforcement learning were able to deliver striking advances
in several domains, such as computer vision [6], speech recognition [3], Go playing
software [10], machine translation [1]. These striking successes however come with
shortcomings that cleary impede our progress towards AI:

• Training state-of-the-art ML models often demands inhuman amounts of
data. Humans learn much more quickly and are more adaptable. They
do not only use training data but also are able to reason how their past
experiences can be transferred to new problems.

• ML systems replace imprecisely specified problems (which images repre-
sent a bird?) by well defined statistical proxies (minimizing a training
cost). However, because large training dataset are poorly curated, ML
systems often capture spurious correlations and learn nonsense.

• Humans know the importance of the logical and compositional structure
of a visual scene or a natural language sentence. In contrast, ML systems
seem unable to positively leverage such knowledge. A possible way to un-
derstand this paradox is to remember that, for instance, the compositional
structure of language is more useful for composing new sentences or inter-
pretint rare ones than it is useful for modeling the skewed distribution of
observed sentences. This is not about what has been told (the observed)
but about could have been told (the counterfactual.)


