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a b s t r a c t

Neural field models represent neuronal communication on a population level via synap-
tic weight functions. Using voltage sensitive dye (VSD) imaging it is possible to obtain
measurements of neural fields with a relatively high spatial and temporal resolution.
The synaptic weight functions represent functional connectivity in the brain and give
rise to a spatio-temporal dependence structure. We present a stochastic functional
differential equation for modeling neural fields, which leads to a vector autoregressive
model of the data via basis expansions of the synaptic weight functions and time
and space discretization. Fitting the model to data is a practical challenge as this
represents a large scale regression problem. By using a 1-norm penalty in combination
with localized basis functions it is possible to learn a sparse network representation of
the functional connectivity of the brain, but still, the explicit construction of a design
matrix can be computationally prohibitive. We demonstrate that by using tensor product
basis expansions, the computation of the penalized estimator via a proximal gradient
algorithm becomes feasible. It is crucial for the computations that the data is organized
in an array as is the case for the three dimensional VSD imaging data. This allows for the
use of array arithmetic that is both memory and time efficient. The proposed method is
implemented and showcased in the R package dynamo available from CRAN.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Neural field models are models of aggregated membrane voltage of a large and spatially distributed population of
neurons. The neuronal network is determined by spatio-temporal synaptic weight functions in the neural field model, and
we will refer to these weight functions as the propagation network. This network determines how signals are propagated
hence it is of great interest to learn the propagation network from experimental data, which is the inverse problem for
neural field models.

The literature on neural fields is vast and we will not attempt a review, but see [2,8] and the references therein.
The typical neural field model considered is a deterministic integrodifferential equation. The inverse problem for the
deterministic Amari equation was treated in [18] and [28], and stochastic neural field models were, for instance, treated
in Chapter 9 in [8] and in [16]. One main contribution of the latter paper, [16], was to treat a stochastic version of the
Amari equation in the well developed theoretical framework of functional stochastic evolution equations.

Despite the substantial literature on neural fields, relatively few papers have dealt directly with the estimation of
neural field components from experimental data. Pinotsis et al. [27] demonstrated how a neural field model can be used
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as the generative model within the dynamical causal modeling framework, where model parameters can be estimated
from electrophysiological data. The modeling of voltage sensitive dye (VSD) imaging data in terms of neural fields was
discussed in [7], and Markounikau et al. [25] estimated parameters in a neural field model directly from VSD data.

In this paper, VSD imaging data is considered as well. This in vivo imaging technique has a sufficiently high resolution
in time and space to detect propagation of changes in membrane potential on a mesoscopic scale, see [29]. A prevalent
notion in the neuroscience literature is that the network connecting the neurons, and through which brain signals are
propagated, is sparse, and that the propagation exhibits a time delay. If a spiking neuron, for instance, only affects neurons
via synaptic connections to a very localized region the network is spatially sparse, while connections to remote regions
result in temporal sparsity and long range dependence, see, e.g., [3,4,31,32,34]. Finally the possibility of feedback waves
in the brain, e.g., as suggested in [29], could also be explained by spatio-temporal dynamics depending on more than just
the instantaneous past. These considerations lead us to suggest a class of stochastic neural field models that allows for
time delay, and a proposed estimation methodology that provides sparse nonparametric estimation of synaptic weight
functions. Thus we do not make assumptions about spatial homogeneity or isotropy of the functional connectivity, nor
do we assume that the signal propagation is instantaneous.

In order to derive a statistical model that, from a computational viewpoint, is feasible for realistically sized data sets,
a time and space discretized version of the infinite dimensional dynamical model is obtained by replacing the various
integrals with Riemann–Itô type summations and relying on an Euler scheme approximation. This approximation scheme
makes it possible to derive a statistical model with an associated likelihood function such that regularized maximum-
likelihood estimation becomes computationally tractable. Especially, we show that by expanding each component function
in a tensor product basis we can formulate the statistical model as a type of multi-component linear array model, see [23].

The paper is organized as follows. First we give a brief technical introduction to the stochastic dynamical model that
forms the basis for the paper. Then we present the aggregated results from the application of our proposed estimation
methodology to part of a VSD imaging data set. The remaining part of the paper presents the derivation of the linear
array model and the key computational techniques required for the actual estimation of the model using array data. The
appendix contains further technical proofs, a meta algorithm and implementation details. Finally to further illustrate our
results we also provide a Shiny app available at shiny.science.ku.dk/AL/NetworkApp/ as well as supplementary
material, [22], containing results from fitting the model to individual trials and the aggregated result for the entire data
set.

2. A stochastic functional differential equation

The data that we will ultimately consider is structured as follows. With ⌧ , T > 0, T := [�⌧ , T ] and Nx,Ny,M, L 2 N
we record, to each of Nt := M + L + 1 time points

� ⌧ = t�L < · · · < t0 < · · · < tM = T , (1)

a 2-dimensional rectangular Nx ⇥ Ny image of neuronal activity in an area of the brain represented by the Cartesian
product S := X ⇥ Y ✓ R2. These images consist of D := NxNy pixels each represented by a coordinate (xi, yj) lying on
a grid G2 ✓ S . To each time point each pixel has a color represented by a value v(xi, yj, tk) 2 R. Thus the observations
are naturally organized in a 3-dimensional array v := {v(xi, yj, tk)}i,j,k where the first two dimensions correspond to the
spatial dimensions and the third dimension corresponds to the temporal dimension.

As such it is natural to view v as a discretely observed sample in time and space of an underlying spatio-temporal
random field V . Following Definition 1.1.1 in [1] any measurable map V : ⌦ ! RR, with R ✓ Rd, d 2 N, a parameter
set, is called a (d, 1)-random field or simply a d-dimensional random field. Especially, for the brain image data, V is
real valued with a 3-dimensional parameter set R := S ⇥ T where S refers to space while T refers to time. We
emphasize the conceptual asymmetry between these dimensions by calling V a spatio-temporal random field. For fixed
t , as V (t) := V (·, ·, t) : R2 ! R this model will inevitably be a stochastic dynamical model on a function space, that is
an infinite dimensional stochastic dynamical model.

Following the discussion in the introduction above we propose to model the random neural field V via a stochastic
functional differential equation (SFDE) with the propagation network incorporated into the drift as a spatio-temporal
linear filter (a convolution) with an impulse-response function (convolution kernel) quantifying the network. The solution
to the SFDE in a Hilbert space H is then the underlying time and space continuous model V for the data v.

To introduce the general model more formally let (⌦,F, Pr) be a probability space endowed with an increasing and
right continuous family (Ft ) of complete sub-� -algebras of F . Let H be a reproducing kernel Hilbert space (RKHS) of
continuous functions over the compact set S⇥S . Suppose (V (t))t is a continuous Ft-adapted, H-valued stochastic process
and let C := C([�⌧ , 0],H) denote the Banach space of continuous maps from [�⌧ , 0] to H. Then (V t )t , where

V t := {V (t + s)}s2(�⌧ ,0), t � 0, (2)

defines a C-valued stochastic process over R+. We call V t the ⌧ -memory of the random field {V (r)}r2S⇥T at time t � 0.
Let µ : C⇥[0, T ] ! H be a bounded linear operator and consider the stochastic functional differential equation (SFDE)

on H given by

dV (t) = µ(V t , t)dt + dW (t). (3)

http://shiny.science.ku.dk/AL/NetworkApp/
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Here W is a spatially homogeneous Wiener process with spectral measure � (� is a finite symmetric measure on R2)
as in [26]. That is, W is a centered Gaussian random field such that {W (x, y, t)}t is a (Ft )t-Wiener process for every
(x, y) 2 R2, and for t, s � 0 and (x, y), (x0, y0) 2 R2

E{W (x, y, t)W (x,0 y0, s)} = (t ^ s)c(x � x0, y � y0). (4)

Here c : R2 ! R, the covariance function defined as the Fourier transform of the spectral measure � , quantifies the
spatial correlation in W .

Compared to a typical SDE, the infinitesimal dynamic at time t as described by (3) depends on the past via the
⌧ -memory of V in the drift operator µ. Hence processes satisfying (3) will typically be non-Markovian. We note that
all the memory in the system is modeled by the drift µ.

The non-Markovian property makes theoretical results regarding existence, uniqueness and stability of solutions to (3)
much less accessible. Corresponding to Section 0.2 in [11], in order to obtain theoretical results, it should be possible to
lift Eq. (3) and obtain a Markovian SDE on the Banach space C. Consequently an unbounded linear operator (the differential
operator) then appears in the drift. It is outside the scope of this paper to pursue a discussion of the theoretical properties
of (3). General theoretical results on SDEs on Banach spaces are not abundant, see, e.g., [9], where SDEs and especially
SDDEs on Banach spaces are treated. Especially, Corollary 4.17 in [9] gives an existence result for a strong solution to
(3). Also in [36] mild existence results are given for an SDDE on a Hilbert space and for the specification introduced next
this result can be strengthened to a strong solution result. In general, one neccessary requirement for a solution to exist
is, corresponding to the finite dimensional case, that the coefficient operators are Lipschitz continuous, which, e.g., the
integral operator presented next satisfies.

2.1. Drift operator

The idea here is that the drift operator µ will capture both external input to the system (the brain in our context)
as well as the subsequent propagation of this input over time and space. By decomposing the drift operator we obtain
drift components responsible for modeling instantaneous effects and propagation effects respectively. To this end we will
specify the drift operator by the decomposition

µ(V t , t) := S(t) + F(V t ) + H{V (t)}. (5)

Here S : T ! H, S(t)(x, y) := s(x, y, t), with s 2 L2(R3,R) a smooth function of time and space, models a deterministic
time dependent external input to the system. H : H ! H, H{V (t)}(x, y) := h(x, y)V (x, y, t) where h 2 H, a smooth
function of space, captures the short range (infinitesimal) memory in the system.

The long range memory responsible for propagating the input to the system over time and space is modeled by the
operator F : C([0, ⌧ ],H) ! H given as the integral operator

F(V t )(x, y) =

Z

S

Z 0

�⌧

w(x, y, x0, y0, r)V (x0, y0, t + r)drdx0dy0. (6)

Here w 2 L2(E5,R) is a smooth weight function quantifying the impact of previous states on the current change in the
random field V . Especially, the value w(x, y, x0, y0, r) is the weight by which the change in the field at location (x, y) is
impacted by the level of the field at location (x0, y0) with delay r . With this specification, a solution to (3), if it exists, can
be written in integral form as

V (x, y, t) =

Z t

0

⇢
s(x, y, u)+

Z

S

Z 0

�⌧

w(x, y, x0, y0, r)V (x0, y0, u+ r)drdx0dy0
+ h(x, y)V (u)

�
du+

Z t

0
dW (x, y, u)du. (7)

Thus (7) characterizes a solution to a stochastic delay differential equation (SDDE) on H with delays distributed over
time and space (spatio-temporal distributed delays) according to the impulse-response function w. We can think of w as
quantifying a spatio-temporal network in the brain that governs how the propagation of the input is to be distributed
over time and space, and we will refer to w as the network function.

Standard neural field models usually include a non-linear transformation of V , via a so-called gain function, inside the
integral operator F. It is possible to include a known gain function transformation in (7) without substantial changes to
our proposed methodology for estimating s, w and h. However, to the best of our knowledge the appropriate choice of
gain function for empirical data has not been settled. It is, of course, possible to attempt to estimate the gain function
from data as well, but to avoid complicating matters we proceed by regarding (7) as corresponding to a linearization of
the unknown gain function. We note that the interpretation of w will always be relative to the choice of gain function,
and it might not quantitatively represent physiological properties of the brain, if the gain function is misspecified.

Next we present an example where a statistical model based on the spatio-temporal SDDE model proposed above
is fitted to real high dimensional brain image data. The derivation of this statistical model relies on a space–time
discretization and is discussed in Section 4. We note that key elements in our approach involve expanding the network
function (along with the other component functions) using basis functions with compact support in time and space
domain. We then apply regularization techniques to obtain a sparse (i.e., space–time localized) estimate of the network.
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Fig. 1. Mean aggregated estimate 69 ms after stimulus onset. The white dot in the right panel indicates the pixel visualized in Fig. 2.

3. Brain imaging data

The data considered in this section consists of in vivo recordings of the visual cortex in ferret brains provided by
Professor Per Ebbe Roland. In the experiment producing the data, a voltage sensitive dye (VSD) technique was used to
record a sequence of images of the visual cortex, while presenting a visual stimulus, a stationary white square displayed
for 250 ms on a gray screen, to the ferret. Each recording or trial is thus a film showing activity in a live ferret brain
before, during and after a visual stimulus is presented. The purpose of the experiment was to study the response in brain
activity to the stimulus and its propagation over time and space.

For each of a total of 13 ferrets the experiment was repeated several times producing a large-scale spatio-temporal
data set with 10 to 40 trials pr. ferret resulting in 275 trials (films) in total. Each trial contains between 977 and 1720
images with time resolution equal to 0.6136 ms pr. image. For this particular data set each image was recorded using a
hexagonal photodiode array with 464 channels and a spatial resolution equal to 0.15 mm pr. channel (total diameter is
4.2 mm), see [29]. The hexagonal array is then mapped to a 25 ⇥ 25 rectangular array to yield one frame or image. This
mapping in principle introduces some distortion of the image but we ignore that here and consider 0.15 mm pr. pixel to
be the spatial resolution.

Here we present an aggregated fit obtained by first fitting the above model to all trials for animal 308 (12 trials) each
consisting of 977 25 ⇥ 25 images. Then by mean aggregating these single trial fits we obtain one fit based on all trials
for this animal. Note that each of the 12 single trial fits for animal 308 is visualized in Section 3 in the supplementary
material. We have carried out this analysis for all 13 animals – the entire data set – and present the visualizations of the
remaining 12 aggregated fits in Section 2 in the supplementary material. The estimation procedure and a snippet of the
data is available from CRAN via the R package dynamo, see [20].

For the analysis we let L := 50 thus allowing a 31 ms delay. For each single trial (film) the model is fitted using a
lasso regularized linear array model derived in Section 4. The lasso regression is carried out for 10 penalty parameters
�1 > · · · > �10 > 0. Here we present the fit for model 6, i.e., � = �6, which we selected using 4-fold cross validation on
the 12 trials, see Section 1 in the supplementary material. For additional details about the specific regression setup see
Appendix C.1.

3.1. The aggregated stimulus and network estimates

Fig. 1 shows the estimate of the stimulus for all pixels 69 ms after onset. We argue that the ‘‘high stimulus’’ areas
visible in Fig. 1 correspond to the expected mapping of the center of field of view (CFOV), see Fig. 1 in [19].

For the pixel indicated with a white dot in the right panel of Fig. 1, we show the raw data for each trial along with
the trial specific estimate of the stimulus component and the aggregated stimulus component in Fig. 2. Notice that the
estimated stimulus component shows both an on-signal after the stimulus start and an off-signal after the stimulus stop.
Also notice the considerable variation over trials in the raw data with some trials displaying a clear signal and others
almost no signal.

Visualizing the aggregated estimate of the network is more challenging as this is quantified by the function w : R5 !

R. A Shiny app visualizing w is available online (see shiny.science.ku.dk/AL/NetworkApp/), and here we present
various time and space aggregated measures of propagation effects — some of which are inspired by analogous concepts
from graph theory.

http://shiny.science.ku.dk/AL/NetworkApp/
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Fig. 2. The data observed at pixel (x, y) (indicated in Fig. 1) (black) and the estimate of s(x, y, ·) for each trial (red) and the mean aggregated
estimated (green). Dotted vertical lines indicate stimulus start and stop. Notice the considerable variation among the trials . (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

In Fig. 3 we plot the fitted version of the two bivariate functions w�, w+ : R2 ! R given by

w�(x, y) :=
1

deg�(x, y)

Z

S

Z 0

�⌧

|w(x, y, x0, y0, t)|dtdx0dy0, (8)

w+(x0, y0) :=
1

deg+(x0, y0)

Z

S

Z 0

�⌧

|w(x, y, x0, y0, t)|dtdxdy (9)

where

deg�(x, y) :=

Z

S

Z 0

�⌧

1{w(x,y,x0,y0,t)6=0}dtdx0dy0 and deg+(x0, y0) :=

Z

S

Z 0

�⌧

1{w(x,y,x0,y0,t)6=0}dtdxdy,

are the aggregated non-zero effects going in to (x0, y0) (indegree) respectively out from (x, y) (outdegree). Here w+(x0, y0)
quantifies the effect of (x0, y0) on all other coordinates relative to the aggregated non-zero effects, that is time and space
aggregated propagation effects from (x0, y0). Similarly w�(x, y) quantifies time and space aggregated propagation effects
to (x, y). Mean aggregated estimates of these functions are shown in Fig. 3.

From bottom panel in Fig. 3 we see that an area is identified which across all pixels has a relatively great weight on
other pixels across the 12 trials. Thus this area is identified by the model as important in the propagation of neuronal
activity across trials. We notice that this high output as quantified by w+ overlaps with the strongest of the two high
stimulus areas (CFOV) in Fig. 2. Thus the estimated weight functions propagate primarily the direct stimulus signal.

From the top panel we see that the pixels receiving propagation effects on the other hand are more scattered around
the cortex. However, the high input areas overlap with both of the high stimulus areas (CFOVs) in Fig. 2 suggesting the
existence of a propagation network connecting the high stimulus area and the low stimulus area and the immediate
surroundings of the high stimulus area.
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Fig. 3. The aggregated weight functions ŵ� (top) and ŵ+ (bottom).

Next for fixed (x0, y0) consider quantifying the aggregated (in) effects from all points that lie s spatial units away and
that arrive with a delay of t time units. Letting p denote the polar coordinate parametrization of the s-sphere S1(s) in R2

with center (0, 0),

p : [0, 2⇡ ] ! S1(s),

and compute the desired quantity for fixed s, t, x0, y0 as a curve integral
Z

S1(s)
w(p + (x0, y0), x0, y0, t)dp =

Z 2⇡

0
w{p1(r) + x0, p2(r) + y0, x0, y0, t}|p0(r)|dr.

Integrating this over S we obtain a bivariate function

W (s, t) :=

Z ⇢Z

S1(s)
w(p + (x0, y0), x0, y0, t)dp

�
dx0dy0

giving the aggregated effects in the entire field as a function of spatial separation s (Euclidian distance) and temporal
separation (time delay) t .

From bottom panel in Fig. 3 we see that an area is identified which across all pixels has a relatively great weight on
other pixels across the 12 trials. Thus this area is identified by the model as important in the propagation of neuronal
activity across trials. We notice that this high output as quantified by w+ overlaps with the strongest of the two high
stimulus areas (CFOV) in Fig. 2. Thus the estimated weight functions propagate primarily the direct stimulus signal.

From the top panel we see that the pixels receiving propagation effects on the other hand are more scattered around
the cortex. However, the high input areas overlap with both of the high stimulus areas (CFOVs) in Fig. 2 suggesting the
existence of a propagation network connecting the high stimulus area and the low stimulus area and the immediate
surroundings of the high stimulus area.

Fig. 4 summarizes the network function as a function of temporal and spatial separation. The largest effects seem
to occur with a delay of around 7 ms and have an effect on coordinates approximately 0–0.3 mm away. Especially the
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Fig. 4. Plot of Ŵ quantifying the mean aggregated estimate of propagation effects as a function of temporal and spatial separation.

Fig. 5. Truncated density plots of the estimated weight values.

significant propagation effects do not seem to extend beyond 1.2 mm from the source and arrive with no more than 28 ms
delay.

Finally, Fig. 5 shows a density plot of the estimated weight values in ŵ. The density plot is truncated as most weights
are estimated to zero. From Fig. 5 we can see that the most frequent delay of the estimated effects is roughly 9 to 10 ms.

4. A linear model

The statistical model underlying the inferential framework used to obtain the results in Section 3 is based on a
discretized version of the SFDE (3). The first step in our approach is to discretize space by aggregating the field over small
areas. Let (Sm,n)m,n := (Xm ⇥ Yn)

Nx,Ny
m=1,n=1 denote a partition of S with D := NxNy elements with size Leb(Sm,n) = �s > 0

for all m, n. We have from the integral representation of V in (7) that
Z

Sm,n

V (x, y, t)dxdy =

Z t

0

⇢ Z

Sm,n

s(x, y, u)dxdy +

Z 0

�⌧

X

i,j

Z

Si,j

V (x0, y0, u + r)
Z

Sm,n

w(x, y, x0, y0, r)dxdydx0dy0dr

+

Z

Sm,n

V (x, y, u)h(x, y)dxdy
�

du +

Z

Sm,n

Z t

0
dW (x, y, u)dxdy. (10)
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Here as noted in [26] the last term for each (x, y) is an Itô-integral with respect to a real valued Wiener process.
Furthermore, using the covariance function for the random field from (4), the covariance of two such terms is

E
⇢Z

Sm,n

Z t

0
dW (x, y, u)dxdy

Z

Si,j

Z t

0
dW (x, y, u)dxdy0

�
=

Z

Sm,n

Z

Si,j

E{W (x, y, t)W (x0, y0, t)}dx0dy0dxdy

=

Z

Sm,n

Z

Si,j

tc(x � x0, y � y0)dx0dy0dxdy.

We then apply a Riemann type approximation of the space integrals over the partition sets Sm,n on the left and the
right of (10). This leads us to consider the D-dimensional real valued stochastic process denoted Ṽ , with the (m, n)th entry
process given by

Ṽm,n(t) =

Z t

0

⇢
S̃m,n(u) +

Z 0

�⌧

X

i,j

Ṽ i,j(u + r)
Z

Sm,n

w(x, y, xi, yj, r)dxdydr + H̃m,n{Ṽ (u)}
�
du +

Z t

0
dW̃m,n(u)du, (11)

as a space discretized model for the random field V , where S̃m,n(u) := �ss(xm, yn, u) and H̃m,n{Ṽ (u)} := �sh(xm, yn)Ṽm,n(u).
Notice that in (11) Ṽ (t) is an Nx ⇥ Ny matrix. However we might as well think of it as an NxNy ⇥ 1 vector Ṽ (t). When

necessary we will distinguish between the matrix (array) form and the vector form using the following notation.
The mapping [i1, . . . , id] :⇥

d

j=1
{1, . . . ,Nij} ! {1, . . . ,

Qd
j=1 Nij} is a bijection, and for an array A := (Ai1,...,id )i1,...,id we

denote the corresponding vector as A[i1,...,id] = Ai1,...,id . For d = 2 we may take [i1, i2] := i1 + (i2 � 1)Ni2 .
Using this notation let W̃ = {(W̃[1,1](t), . . . , W̃[Nx,Ny](t))}t denote a D-dimensional Brownian motion on (⌦,F, Pr)

adapted to (Ft )t with covariance matrix C̃ having rows given by

C̃[m,n] := (c(xm � x1, yn � y1), . . . , c(xm � xNx , yn � yNy ))�
2
s ,

for each [m, n] 2 {1, . . . ,D}, then W̃ with W̃ i,j = W̃[i,j] is the array version appearing in (11).
Aggregating V over the spatial partition (Sm,n)m,n leads to a multi-dimensional SDDE as an approximate model for

our data. Such models are mathematically easier to handle compared to the random field model (7), see [24]. Especially,
we can obtain a discrete time approximation to the solution (11) using an Euler scheme following [5]. The proof is in
Appendix A.

Proposition 4.1. Let (tk)Mk=�L with �t := tk+1 � tk > 0 denote a partition of T . With (w`)�1
`=�L a sequence of weight matrices

depending on the network function w, the solution ( ˜̃Vk)k to the forward Euler scheme

˜̃Vk+1 �
˜̃Vk =

⇢
S̃(tk) +

�1X

`=�L

w`
˜̃Vk+` + H̃( ˜̃Vk)

�
�t + C̃

p
�t✏k, (12)

where (✏k)k are independent and N (0, ID) distributed, converges weakly to the (vectorized) solution Ṽ to (11).

Note that for each k, S̃(tk) and H̃( ˜̃Vk) are just the vectorized versions of S̃(tk) and H̃( ˜̃V k) respectively with ˜̃V the array
version of ˜̃V .

Next as the component functions; the stimulus functions s, the network function w and the short range memory h,
are assumed to be square integrable we can use basis expansions to represent them, i.e., for ps, pw, ph 2 N,

s(x, y, t) =

psX

q=1

↵q�q(x, y, t), (13)

w(x, y, x0, y0, t) =

pwX

q=1

�q�q(x, y, x0, y0, t), (14)

h(x, y) =

phX

q=1

�q�q(x, y). (15)

where (↵q)q, (�q)q and (�q)q are three sets of basis coefficients and (�q)q is generic notation for a set of basis functions. We
let p := ps + pw + ph denote the total number of basis functions used. Using (13)–(15) we can formulate the dynamical
model (12) as a vector autoregressive model. The proof is given in Appendix A.

Proposition 4.2. There exist a D⇥ 1 vector yk and a D⇥ p matrix Xk such that we can write the dynamical model (12) as an
autoregression

yk = Xk✓ + ek, k = 0, . . . ,M � 1 (16)
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where (ek)k are i.i.d. ND(0, ⌃) with ⌃ := C̃>C̃�t . Defining

y :=

0

B@
y1
...
yM

1

CA , X :=

0

B@
X1
...

XM

1

CA , (17)

the associated negative log-likelihood can be written as

`X (✓ , ⌃) =
M
2

ln |⌃ | +
���

IM ⌦ ⌃�1/2�(y � X✓ )
��2
2, (18)

with IM the M ⇥ M identity matrix.

We note that due to the structure of the linear model (16) the MLEs of ✓ and ⌃ are not available in closed form.
Especially the normal equations characterizing the MLEs are coupled in this model leading to a generalized least squares
type estimation problem. Furthermore, the DM ⇥ p design matrix X will for realistically sized data become very large
making it infeasible to fit the model (16) directly by minimizing (18) . Next we will discuss how to compute regularized
estimates of the parameters ✓ and ⌃ by exploiting the array structure of the problem to reformulate the autoregressive
model (16) as a (partial) linear array model. This in turn makes the computations involved in the fitting procedure feasible.

4.1. Penalized linear array model

In order to obtain time and space localized estimates of the component functions, we will minimize a regularized
version of (18). Letting ⌦ := ⌃�1 denote the precision matrix, this is achieved by solving the unconstrained problem

min
✓2Rp,⌦2MD⇥D

`X (✓ , ⌦�1) + �J1(✓ ) + ⌫J2(⌦), (19)

where J1 and J2 are convex penalty functions and � � 0 and ⌫ � 0 the penalty parameters controlling the amount of
regularization. For non-differentiable penalty functions Ji, i = 1, 2, solving (19) results in sparse estimates of ✓ and ⌦ . In
the following we will use the lasso or `1 penalty, i.e., J1 = J2 = k · k1, see [33].

Following [30] we solve (19) using their approximate MRCE algorithm. In our setup the steps are as follows:

1. For fixed ⌦̂ and each penalty parameter �1 � · · · � �K , K 2 N, solve

min
✓2Rp

`X (✓ , ⌦̂�1) + �iJ1(✓ ). (20)

2. For i 2 {1, . . . , K } let ✓̂�i denote the estimate from step 1, let ⌃̂R,i := (y � X ✓̂�i )
>(y � X ✓̂�i ) and use graphical lasso,

see [17], to solve

⌦̂ := argmin
⌦

tr(⌃̂R,i⌦) � ln |⌦| + ⌫J2(⌦).

3. Repeat step 1 and 2 with weighted data ỹ := ⌦̂1/2y and X̃ := ⌦̂1/2X .

Now, solving the problem (20) requires a numerical procedure. However from a computational viewpoint evaluating
`X given in (18) becomes infeasible as the design matrix X in practice is enormous. For instance for each of the trials
considered in Section 3 and the setup described in Appendix C.1 the design X takes up around 200 GB of memory. In
addition, even if we could allocate the memory needed to store X the time needed to compute the entries in X would be
considerable and any algebraic operation involving X potentially computationally infeasible.

The solution to this computational problem is to choose basis functions in the representations (13)–(15) that will lead
to a decomposable design matrix X . In particular, assume px, py, pt , p` 2 N such that ps = pxpypt , pw = pxpypxpyp` and
ph = pxpy. Then using tensor product basis functions we can write (13)–(15) as

s(x, y, t) =

pxX

j1

pyX

j2

ptX

j3

↵j1,j2,j3�
x
j1 (x)�

y
j2 (y)�

t
j3 (t), (21)

w(x, y, x0, y0, t) =

pxX

j1

pyX

j2

pxX

j3

pyX

j4

pX̀

j5

�j1,j2,j3,j4,j5�
x
j1 (x)�

y
j2 (y)�

x
j3 (x

0)�y
j4 (y

0)�l
j5 (t), (22)

h(x, y) =

pxX

j1

pyX

j2

� j1,j2�
x
j1 (x)�

y
j2 (y). (23)

Note that ↵, � and � are the array versions of ↵, � and � respectively.
Using (21)–(23), it turns out that X can essentially be componentwise tensor factorized, see the proof of Proposition 4.3

in Appendix A, implying that we can perform algebraic operations involving X without having to construct it. This is
achieved by using the so called rotated H-transform from [10].
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Definition 4.1. Let A be p1 ⇥ · · · ⇥ pd and Xi ni ⇥ pi for i 2 {1, . . . , d}. The rotated H-transform is defined as the map ⇢
such that

Xd ⌦ · · · ⌦ X1vec(A) = vec[⇢{Xd, ⇢(. . . , ⇢[X1,A])}], (24)

where vec is the vectorization operator.

The above definition is not very enlightening in terms of how ⇢ actually computes the matrix–vector product. These
details can be found in [10]. Definition 4.1 shows, however, that for a tensor structured matrix we can compute matrix–
vector products via ⇢ using only its tensor components. This makes ⇢ very memory efficient. Furthermore, as discussed
in [6,10,13], ⇢ is also computationally efficient as the left hand side of (24) takes more multiplications to compute than
the right hand side. In this light the following proposition is relevant. The proof is in Appendix A.

Proposition 4.3. There exist arrays �x, �y, �t , �xyt , �x, �y and C such that

X✓ = vec
h
⇢[�t , ⇢{�y, ⇢(�x, ↵)}] + ⇢[�xyt , ⇢{�y, ⇢(�x, �)}] +

˜̃V�1 � C
i
. (25)

Here ˜̃V�1 := ( ˜̃V k)M�1
k=�1, �x and �x are Nx ⇥ px for x 2 {t, x, y}, �xyt is M ⇥ pxpyp`, C is Nx ⇥ Ny ⇥ M and � denotes the

Hadamard product.

Proposition 4.3 shows that we can in fact write the linear model (16) as a three component partial 3-dimensional
linear array model, see [23] for multi-component array models. Note we say partial since the last component does not
have a full tensor decomposition. This in turn has important computational consequences for the model fitting procedure
as shown in [23], where a gradient descent proximal gradient (gd-pg) algorithm is proposed for this kind of model setup.
The gd-pg algorithm uses a minimal amount of memory and can exploit efficient array arithmetic (the ⇢ operator in (25))
while solving the non-differentiable penalized estimation problem (20). Especially it is fairly straightforward to construct
an estimation procedure based on the gd-pg algorithm that will solve the penalized problem (20) for all three model
components at once, that is minimize the penalized log-likelihood over all parameters ↵, �, � simultaneously.

4.2. Block relaxation model fitting

We propose a variation of the gd-pg algorithm, which uses a block relaxation scheme, to solve (20) for one parameter
block (e.g., ↵) at a time while fixing the rest (� and �), see [14]. We note that due to the additive mean structure this
approach corresponds to a back-fitting algorithm where the partial residuals, resulting from fixing all but one parameter
block, are fitted to data for one model component at the time.

The block relaxation approach is directly motivated by the application to neural field models as a way to achieve a
particular structure on the estimated stimulus component. Without any structural constraints, the stimulus component
would effectively just be a smoothing of the observed signal, and we would not achieve the decomposition of the drift into
a direct stimulus component and a propagation component. We argue that the temporal evolution in the direct reaction
to the stimulus is homogeneous across space, though the size of the direct stimulus component vary. Thus the stimulus
component consists of a spatially modulated temporal signal.

This model constraint corresponds to assuming that s can be factorized into a product of a bivariate function of space
and a univariate function of time. Representing each of these factors in a tensor basis then leads to the representation

s(x, y, t) =

ptX

k=1

pyX

j=1

pxX

i=1

�t
k(t)�

y
j (y)�

x
i (x)⇣k⌘i,j.

Using a block relaxation scheme we can place the reduced rank restriction

↵i,j,k = ⇣k⌘i,j

on the coefficients in the 3-dimensional coefficient array ↵ when solving the subproblem pertaining to the stimulus
component. We note that the resulting reduced rank subproblem may then be solved with a modified version of the
gd-pg algorithm where (again) a block relaxation algorithm is incorporated to obtain the desired factorization of the
parameter array.

Applying this block relaxation approach we may use the existing software in the glamlasso R package (see [21]) to
obtain the estimates for the parameter blocks ↵, �, � respectively. In Appendix C we give additional details on how to
construct the algorithm, which is implemented in the R package dynamo available on CRAN, see [20].

5. Discussion

The VSD imaging data analyzed in this paper exemplifies noisy spatio-temporal array data with a potentially
complicated spatio-temporal dependence structure. Our proposed methodology entails modeling this type of data as a
non-stationary stochastic process (random field) in order to obtain a viable statistical model. We note that one immediate
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challenge inherent in this methodology is to find a sensible decomposition of the drift into a stimulus component and
a propagation component such that the statistical model can yield meaningful estimates of these components. Two
related issues turned out to be of particular importance: first, the resulting fitted dynamical model should be stable; and
second, both the fitted stimulus component and the fitted propagation component should be non-zero. The reduced rank
procedure we used for fitting the stimulus component specifically addressed the latter issue while the sparsity inducing
penalty addressed the former.

Next we showed how to exploit the particular array-tensor structure inherent in this specific data-model combination,
to obtain a computationally tractable estimation procedure. The computational challenge was primarily addressed via the
discretization schemes and basis expansions which resulted in a linear array model, that can be fitted using the algorithm
proposed in [23]. This allowed us to obtain a design matrix free procedure with a minimal memory footprint that utilizes
the highly efficient array arithmetic, see [6,13] and [10]. Consequently we were able to fit the model to VSD imaging
data for a single trial (film) with 625 pixels in the spatial dimension and recorded over thousands of time points while
modeling very long time delays, on a standard laptop computer in a matter of minutes. Given the results in [23] we expect
our procedure to scale well with the size of the data.

In conclusion we highlight that both in terms of interpretability and computability the methodology developed in
this paper compared to existing methods is particularly attractive for larger-scale applications. For instance we note that
fitting data on this scale is computationally prohibitive using conventional time series techniques. An unrestricted vector
autoregression (VAR) has a parameter dimension that grows quadratically in the size of the spatial dimension, see [15],
and would be difficult to interpret and suffer from large variances on the parameter estimates. See, e.g., [35] for a VAR
model applied to fMRI brain image or the approach in [12] to high dimensional VAR analysis, both considering data with
size on a much smaller scale than the VSD imaging data. Specifically, fitting a traditional VAR type model to the data
and setup considered here would result in a model with LD2 = 19, 531, 250 parameters. In comparison our proposed
estimation framework only uses 46,848 parameters of which only around 1,800 are non-zero in the aggregated estimate
(model no. 6, animal 308). Within our methodological framework, this dimension reduction is obtained by modeling the
array data as a random field, which makes it possible to represent the drift components in terms of smooth functions that
in turn are easier to interpret compared to millions of single parameter estimates. In addition, by using a combination of
local basis functions and sparsity inducing penalties we achieve even more regularization without restricting the model
to a narrow parametric class.
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Appendix A. Proofs

Proof of Proposition 4.1. With w the network function let w̃ denote a D ⇥ D matrix-valued signed measure on [�⌧ , 0]
with density F̃ : R ! RD⇥D,

F̃ (t) :=

0

BBBBB@

Z

S1,1

w(x, y, xi, yj, t)dxdy . . .

Z

SNx,Ny

w(x, y, xi, yj, t)dxdy

...
. . .

...Z

S1,1

w(x, y, xNx , yNy , t)dxdy . . .

Z

SNx,Ny

w(x, y, xNx , yNy , t)dxdy

1

CCCCCA
,

with respect to the Lebesgue measure on R. Following [5] we consider a stochastic delay differential equation for a
D-dimensional (vector) process Ṽ given by

dṼ (t) =


S̃(t) +

Z 0

�⌧

w̃(dr)Ṽ (t + r) + H̃{Ṽ (t)}
�
dt + C̃dW̃ (t) (A.1)

Ṽ (0) 2 RD, Ṽ (u) = Ṽ0(u) u 2 (�⌧ , 0), (A.2)

where Ṽ (0) and Ṽ0 2 C([�⌧ , 0],RD) are initial conditions. A solution to (A.1) and (A.2) is then given by the integral
equation (11) giving the coordinate-wise evolution in the space discretized model for the random field V .

The sequence of D ⇥ D weight matrices (w`)` is defined by

w` :=

Z 0

�⌧

1[t`,t`+1)(s)dw̃(s) =

Z 0

�⌧

1[t`,t`+1)(s)F̃ (s)ds,

where 1[t`,t`+1) is equal to ID on [t`, t`+1) and zero otherwise. Especially the entry in the [m, n]th row and [i, j]th column
of w` is given as

w[m,n],[i,j],` =

Z tk+1

tk

Z

Sm,n

w(x, y, xi, yj, s)dxdyds, (A.3)
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and we note that w is a D⇥D⇥L array. Letting (✏k)k denote a sequence of i.i.d. N (0, ID) variables the Euler scheme from [5]
is now given by the D-dimensional discrete time (vector) process ˜̃V = ( ˜̃Vk)k solving the stochastic difference equation (12)
for k 2 {0, . . . ,M �1} with initial conditions ˜̃V` = Ṽ0(t`) for ` 2 {�L, . . . ,�1} and ˜̃V0 = Ṽ (0). Thus by Theorem 1.2 in [5]
and using that the deterministic function s is continuous, for �t # 0, ˜̃V defined in (12) converges weakly to the (vector)
process solving SDDE (A.1) and (A.2), i.e., the vector process Ṽ with evolution identical to that of Ṽ given by (11). ⇤

Note ˜̃V is simply the vectorized version of ˜̃V , that is ˜̃V[i,j],k =
˜̃V i,j,k.

Proof of Proposition 4.2. First using the expansion in (14) we can write the entries in each weight matrix w` from (A.3)
as

w[m,n],[i,j],` =

X

q

�q

Z t`+1

t`

Z

Sm,n

�q(x, y, xi, yj, s)dxdyds.

Then we can write the [m, n]th coordinate of the vector process from (12) as

˜̃V[m,n],k+1 =

⇢
s̃(xm, yn, tk) +

�1X

`=�L

X

i,j

w[m,n],[i,j],`
˜̃V[i,j],k+` + (1 + h̃(xm, yn)) ˜̃V[m,n],k

�
�t + C̃[m,n]

p
�t✏k

= �t

X

q

↵q�q(xm, yn, tk) + �qF[m,n],k,q + �q�q(xm, yn) ˜̃V[m,n],k + C̃[m,n]
p

�t✏k (A.4)

where

F[m,n],k,q :=

�1X

l=�L

X

i,j

˜̃V[i,j],k+l

Z tl+1

tl

Z

Sm,n

�q(x, y, xi, yj, r)dxdydr (A.5)

for q 2 {1, . . . , pw}. Then letting ✓ := (↵, �, � )>, yk :=
˜̃Vk+1, ek := C̃[m,n]

p
�t✏k, and Xk := (Sk | Fk | Hk) with

Sk :=

0

B@
�1(x1, y1, tk) · · · �ps (x1, y1, tk)

...
...

...
�1(xNx , yNy , tk) · · · �ps (xNx , yNy , tk)

1

CA , Fk :=

0

B@
F[1,1],k

...
F[Nx,Ny],k

1

CA ,

Hk :=

0

BB@

�1(x1, y1) ˜̃V[1,1],k · · · �ph (x1, y1)
˜̃V[1,1],k

...
...

...

�1(xNx , yNy )
˜̃V[Nx,Ny],k · · · �ph (xNx , yNy )

˜̃V[Nx,Ny],k

1

CCA . (A.6)

the model equation (16) follows from (A.4).
To obtain the likelihood (18) note that the transition density for the model is

f (yk | Xk) = (
p
2⇡ )�D

|⌃ |
�1/2 exp

⇢
�

1
2
(yk � Xk✓ )>⌃�1(yk � Xk✓ )

�
.

As yk | Xk is independent of y0, . . . , yk�1, X0, . . . , Xk�1 we get by successive conditioning that we can write the joint
conditional density as

f (y0, . . . , yM�1 | X0, . . . , XM�1) = (
p
2⇡ )�MD

|⌃ |
�M/2 exp

⇢
�

1
2

M�1X

k=0

(yk � Xk✓ )>⌃�1(yk � Xk✓ )
�
.

Taking � ln yields the negative log-likelihood

`X (✓ , ⌃) :=
M
2

ln |⌃ | +
1
2

M�1X

k=0

(yk � Xk✓ )>⌃�1(yk � Xk✓ ).
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With X and y as in (17) it follows that

�
IM ⌦ ⌃�1/2�(y � X✓ ) =

0

B@
⌃�1/2(y0 � X0✓ )

...
⌃�1/2(yM�1 � XM�1✓ )

1

CA =

0

BBBBBBBBBBBBBBBB@

DX

j

⌃
�1/2
1,j (y0 � X0✓ )j

...
DX

j

⌃
�1/2
D,j (y0 � X0✓ )j

...
DX

j

⌃
�1/2
D,j (yM�1 � XM�1✓ )j

1

CCCCCCCCCCCCCCCCA

.

Hence,

���
IM⌦⌃�1/2�(y�X✓ )

��2
2 =

M�1X

k=0

DX

i

⇢ DX

j

⌃
�1/2
i,j (yk�Xk✓ )j

�2

=

M�1X

k=0

k⌃�1/2(yk�Xk✓ )k2
2 =

M�1X

k=0

(yk�Xk✓ )>⌃�1(yk�Xk✓ )

yielding the expression for the negative log-likelihood given in (18). ⇤

Proof of Proposition 4.3. Noting that

(S | F | H) :=

0

B@
S1 F1 H1
...

...
...

SM FM HM

1

CA = X

the claim follows if we show that S and F are appropriate 3-tensor matrices and that H� = vec( ˜̃V�1 � C ) for an
appropriately defined array C .

Letting �x := {�q(xi)}i,q denote a Nx⇥px matrix with px basis functions evaluated at Nx points in the x domain it follows
directly from the definition of the tensor product that we can write S = �x ⌦ �y ⌦ �t .

Next let �x := {
R
Xi

�q(x)}i,q denote the integrated version of �x. Then inserting the tensor basis functions in to (A.5)
we can write

F[m,n],k,[q1,q2,q3,q4,q5] =

�1X

`=�L

X

i,j

˜̃V[i,j],k+`

Z t`+1

tl

Z

Sm,n

�q1 (x)�q2 (y)�q3 (xi)�q4 (yj)�q5 (s)dxdyds

=

Z

Xm

�q1 (x)dx
Z

Yn

�q2 (y)dy
�1X

`=�L

X

i,j

˜̃V[i,j],k+`�q3 (xi)�q4 (yj)
Z t`+1

t`
�q5 (s)ds.

Letting �xy` denote a M ⇥ pxpyp` matrix with entries

�
xy`
k,[q3,q4,q5]

:=

�1X

`=�L

X

i,j

˜̃V[i,j],k+`�q3 (xi)�q4 (yj)
Z t`+1

t`
�q5 (s)ds (A.7)

we can write F = �xyt ⌦ �y ⌦ �x.
Finally let C be a Nx ⇥ Ny ⇥ M array such that C k = �y�(�x)>. With Hk given in (A.6) we can write

Hk� =

0

BBBBB@

˜̃V[1,1],k

X

q1,q2

�x
q1 (x1)�

y
q2 (y1)�[q1,q2]

...
˜̃V[Nx,Ny],k

X

q1,q2

�x
q1 (xNx )�

y
q2 (yNy )�[q1,q2]

1

CCCCCA
=

˜̃Vk � �x
⌦ �y� = vec( ˜̃V k � C k)

showing that H� = vec( ˜̃V�1 � C ). ⇤
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Fig. C.6. Spatial basis splines (left) and temporal basis splines (middle and right).

Appendix B. Tensor product basis

Consider a d-variate function f 2 L2(Rd) that we want to represent using some basis expansion. Instead of directly
specifying a basis for L2(Rd) we will specify d marginal sets of univariate functions

(�1,k1 )
1

k1=1, . . . , (�d,kd )
1

kd=1 (B.1)

with each marginal set a basis for L2(R). Then for any (k1, . . . , kd) 2 Nd we may define a d-variate function ⇡k1,...,kd :

Rd ! R via the product of the marginal functions, i.e.,

(x1, . . . , xd) 7! ⇡k1,...,kd (x1, . . . , xd) :=

dY

i=1

�i,ki (xi). (B.2)

Since each marginal set of functions in (B.1) constitutes a basis of L2(R) it follows using Fubini’s theorem, that the induced
set of d-variate functions (⇡k1,...,kd )k1,...,kd constitutes a basis of L2(Rd). Especially again by Fubini’s theorem we note that
if the functions in (B.1) all are orthonormal marginal bases then they generate an orthonormal basis of L2(Rd). Finally, if
the marginal functions have compact support then the induced d-variate set of functions will also have compact support.

Appendix C. Implementation details

Here we elaborate a little on various details pertaining to the implementation of the inferential procedure for the
specific data considered in Section 3 and on some more general details relating to the computations.

C.1. Regression setup

For animals in the data set we use the first 600 ms of the recording corresponding to 977 images. Thus for each trial of
VSD data we have a total of 250112 observations arranged in a 25 ⇥ 25 ⇥ 977 grid. We model a delay of L := 50 images
corresponding to ⌧ ⇡ 31 ms which gives us M := 926 modeled time points.

As explained above we can use tensor basis functions to represent the component functions. For the analysis of the
brain image data we will use B-splines as basis functions in each dimension as these have compact support. Specifically
in the spatial dimensions we will use quadratic B-splines while in the temporal dimension we will use cubic B-splines,
see Fig. C.6. Note that for the temporal factor of the stimulus function we choose basis function covering the stimulus
interval and post stimulus interval.

The number of basis functions in each spatial dimension is px = py := 8 and in the temporal dimension we have
p` := 11 basis functions to capture the delay and pt := 27 temporal basis functions to model the stimulus, see Fig. C.6.
With this setup we have a total of p := ps + pw + ph = pxpypt + pxpypxpyp` + pxpy = 46848 model parameters that need
to be estimated.

For the lasso regression we give all parameters the same weight 1, except for the basis function representing the
temporal component of the stimulus. In particular, basis functions located right after stimulus start and stop are penalized
less than the rest of the basis function. Fig. C.6 (right) shows the basis function weighted with the inverse of the parameter
weights. With this weighing scheme the stimulus component will be focused on picking up the direct stimulus effect while
it will be less likely to pick up propagation effects.

We fit the model for a sequence of penalty parameters �max := �1 > · · · > �K =: �min with K := 10. Here given data,
�max is the smallest value yielding a zero solution to (20). The results presented in the text are from model number 6. See
the supplementary material, Section 1, for more on model selection.
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C.2. Algorithmic details

We will here sketch how to solve the subproblem (20) using a generalized block relaxation algorithm and the R
software package glamlasso, see [21]. The entire method, which relies on Algorithm 1, is available from CRAN via the
R package dynamo, see [20].

Algorithm 1 Block relaxation algorithm

Require: {↵(0), �(0), � (0)}, �xy`, � t , �x, �y, ⌃̂
while a < N 2 N do

a = a + 1
for b = 1 to 3 do

if b = 1 then

compute Ŷ�↵ using �̂
(a)

, �̂
(a) and solve the reduced rank problem

↵̂
(a+1)

= argmin
↵

O�(↵, �̂
(a)

, �̂
(a)) s.t. ↵i,j,k = ⇣k⌘i,j (C.1)

using data Ŷ�↵, �x, �y, � t , ⌃̂ .
else if b = 2 then

compute Ŷ�� using ↵̂
(a+1)

, �̂
(a)

, and solve

�̂
(a+1)

= argmin
�

O�(↵̂
(a+1)

, �, �̂
(a)) (C.2)

using data Ŷ�� , �x, �y, �xy`, ⌃̂ .
else if b = 3 then

compute Ŷ�� using ↵̂
(a+1)

, �̂
(a+1)

and solve

�̂
(a+1)

= argmin
�

O�(↵̂
(a+1)

, �̂
(a+1)

, �) (C.3)

using data Ŷ�� , �x, �y, ⌃̂ .
end if

end for

if convergence criterion is satisfied then

break
end if

end while

Algorithm 1 works by fixing different blocks of the parameter in an alternating fashion and then optimize over the
non fixed blocks. Let O� := `X +�J1, � > 0 denote the objective function in (20) considered as a function of the parameter
arrays (or blocks) {↵, �, �}. Let Ŷ�b denote the partial residuals array obtained by setting parameter block b 2 {↵, �, �}, to
zero when computing the linear predictor in (25), for given estimates of the remaining parameter blocks, and then using
this to compute the model residuals.

Each subproblem (C.1)–(C.2) in Algorithm 1 can be solved with a function from the glamlasso package. Especially
(C.1) is solved with glamlassoRR, (C.2) is solved with glamlasso and (C.3) is solved with glamlassoS. These functions
are based on the coordinate descent proximal gradient algorithm, see [23]. We note that the function glamlassoRR,
performing the reduced rank regression in this tensor setup, also utilizes a block relaxation scheme to obtain the desired
factorization of the parameter array ↵. Furthermore we note that when iterating the steps 1–3 in the approximate MCRE
algorithm above we have to reweigh data with the estimated covariance matrix. This in turn leads to weighted estimation
problems in each subproblem (C.1)–(C.2).

C.3. Computing the convolution tensor

We note that for the filter component, the tensor component �xyt , as shown in the proof of Proposition 4.3, corresponds
to a convolution of the random field. This component has to be computed upfront which in principle could be very time
consuming. However considering (A.7) this computation can be carried out using array arithmetic. Especially we can write
the convolution tensor as

�xyt
=

0

B@
vec(�xy`

1 )
...

vec(�xy`
M )

1

CA ,
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where �
xyt
k for each k is a px ⇥ py ⇥ p` array which according to (A.7) can be computed using the array arithmetic as

�
xy`
k := ⇢[(�`)>, ⇢{(�y)>, ⇢((�x)>, ( ˜̃V `)k�1

`=k�L)}].

Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2019.104532.
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Abstract

For model selection purpose we provide a cross validation study and a simulation study. We also provide results for

the remaining 12 animals as well as single trial results for animal 308.

1. Choosing a penalty parameter

●
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Fig. 1: MSE resulting from a 4-fold cross validation for animal 308.

For all animals we fit the model to data for 10 values of the penalty parameter, �1 > �2 > . . . > �10. For animal

308 we presented, in Section 3, the trial aggregated fit for model no. 6 (�6). Here we shall briefly discuss how to

evaluate the fit associated with a particular � in order to select a model (�).
For animal 308, after fitting each of the 12 trials to the model for 10 values of the penalty parameter � we perform

for each � a type of a 4-fold cross validation. We do this by dividing the trials into 4 groups (3 trials in each) and then

for each group aggregate the trial fits over the complement (9 trials). We then compute the resulting MSE obtained
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when using this aggregated fit on the held out trials. In Figure 1 the average MSE over these groups is shown for each

model. Model 6 yields the minimum MSE.

Fig. 2: For i = 2, 6, 7, 8, 9, 10 we plot all trajectories simulated with parameters given by the fit from trial 1, animal 308, when using penalty �i.

Another way to evaluate the fit for a given model no. is to perform a simulation study. For given � we can use the

parameter estimates for a single trial to simulate from the Euler scheme equation. This in turn gives us a simulated

data set that should display characteristics similar to that of the specific trial. Figure 2 below shows all the simulated

trajectories (i.e. the data for each pixel plotted over time for all pixels) based on the fit from trial 1, animal 308, for

�i, i 2 {2, 6, 7, 8, 9, 10}. We see that for models 8, 9 and 10 the simulations is increasingly unstable leading to explosive

behavior of the simulated sample paths. The penalty dampens the aggregation in the filter component which causes

the simulations from the model to stabilize.

2. Aggregated fit for each individual animal

Next for each of the 12 remaining animals we present visualizations of the mean aggregated fit, corresponding

to that presented for animal 308 in Section 3 (model no. 6). We note that the mean aggregation is carried out by

averaging the trial parameter estimates (✓̂t)T
t=1

over the T trials, for each animal,

✓̂agg =
1

T

TX

t=1

✓̂t.
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2.1. Animal 362
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Aggregated estimate of stimulus surface 307 ms after inititation
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Density plot of agg. estimated weight values for animal 362 model 6
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2.2. Animal 372
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Density plot of agg. estimated weight values for animal 372 model 6
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2.3. Animal 404
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Density plot of agg. estimated weight values for animal 404 model 6
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2.4. Animal 408
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Density plot of aggregated estimates of weight values for animal 408 model 6
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2.5. Animal 410
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2.6. Animal 412
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Density plot of agg. estimated weight values for animal 412 model 6
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2.7. Animal 413
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Density plot of agg. estimated weight values for animal 413 model 6
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2.8. Animal 447
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Density plot of agg. estimated weight values for animal 447 model 6
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2.9. Animal 568
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Agg. estimate of integrated effects as a function of separation, animal 568 , model 6
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Density plot of agg. estimated weight values for animal 568 model 6
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2.10. Animal 613
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Density plot of agg. estimated weight values for animal 613 model 6
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2.11. Animal 679
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2.12. Animal 685

x

y

z

y

●

Aggregated estimate of stimulus surface 40 ms after inititation

25



x

y

z

x

y

x

y

z

y

Mean aggregated estimate of integrated network function for model 6

5 10 15 20 25 30

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

delay (ms)

di
st

an
ce

 (m
m

)

Agg. estimate of integrated effects as a function of separation, animal 685 , model 6

1e−08

1e−05

1e−02

0 10 20 30
delay (ms)

we
ig

ht

0.000

0.001

0.002

density

Density plot of agg. estimated weight values for animal 685 model 6
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3. Individual fit for each trial for animal 308

Here we present the visualizations of the individual fits to each of the 12 trials for animal 308 that were used to

obtain the mean aggregated estimates presented in Section 3, for model no. 6.
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Trial 5 estimate of integrated effects as a function of separation, model 6
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Density plot of estimated weight values for trial 5 model 6
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Density plot of estimated weight values for trial 6 model 6
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Density plot of estimated weight values for trial 7 model 6
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Density plot of estimated weight values for trial 9 model 6
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Density plot of estimated weight values for trial 10 model 6
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Density plot of estimated weight values for trial 11 model 6
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Density plot of estimated weight values for trial 12 model 6
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