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About this document

This document constitutes the full analysis of the intron size distribution for ortholog genes across 203
vertebrates. The main results are reported in the manuscript

FANCD2 binding identifies conserved fragile sites at large transcribed genes in avian cells

Constanze Pentzold, Shiraz Ali Shah, Niels Richard Hansen, Benoît Le Tallec, Andaine Seguin-Orlando,
Michelle Debatisse, Michael Lisby, Vibe H. Oestergaard.

Data

The vertGenomes data set loaded below contains data on ortholog genes from 204 vertebrates. The fish
Latimeria chalumnae is removed before the original data set, and the remaining 203 species were used in the
analysis.
vertGenomes <- read_delim(

"data/vert.flt.lengths.OG.genes.tax.tsv",
"\t", escape_double = FALSE,
col_names = c(

"ensembl_id", ## Protein ID
"glength", ## Gene length
"mRNAlength", ## Length of mature (spliced) mRNA
"plength", ## Protein length
"orthId", ## Ortholog ID
"gName", ## Gene name
"species", ## Species name
"class" ## Class name (Mammal, reptile (includes three amphibiens), bird, fish)

),
trim_ws = TRUE,
progress = FALSE)

## Parsed with column specification:
## cols(
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## ensembl_id = col_character(),
## glength = col_integer(),
## mRNAlength = col_integer(),
## plength = col_integer(),
## orthId = col_character(),
## gName = col_character(),
## species = col_character(),
## class = col_character()
## )
## The total intron length is computed by subtracting the length of (mature) mRNA
## from the length of the gene, and correction of a class label mistake in the data.
vertGenomes <- filter(vertGenomes, species != "Latimeria_chalumnae") %>%

mutate(ilength = pmax(glength - mRNAlength, 0),
class = ifelse(species == "Manacus_vitellinus", "bird", class),
class = ifelse(species == "Callorhinchus_milii", "fish", class))

The galgal data set below contains the experimental data from Gallus gallus (chicken).
galgal <- read_delim(

"data/galgal5n.flt.chr.features.tsv",
"\t",
escape_double = FALSE,
trim_ws = TRUE)

## Parsed with column specification:
## cols(
## ensembl_id = col_character(),
## size = col_integer(),
## timing = col_double(),
## RNAseq = col_integer(),
## ChIP1 = col_integer(),
## ChIP2 = col_integer(),
## within_peak = col_integer(),
## name = col_character()
## )

The data set has 15900 rows, each corresponding to a Gallus gallus gene. The within_peak column is an
indicator of whether the gene is located within the peak from the chip-chip experiment.

For later use we first extract the ortholog id for those genes that are within the peak.
peaks <- filter(galgal, within_peak == 1) %>%

inner_join(vertGenomes, by = "ensembl_id")
peaksId <- peaks$orthId

Initial analysis

This section presents a descriptive analysis of the mean-variance relation of introns per gene. This analysis
ignores any systematic differences between species in intron length.

We first summarize the lengths of genes by ortholog id. Note that the empirical standard deviation (or
empirical variance for that matter) is most likely a biased estimate of the standard deviation, since the
lengths are dependent due to shared ancestry. A general positive correlation is expected, which will make the
variance estimator downward biased.
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vertSum <- vertGenomes %>%
group_by(orthId) %>%
summarize(mglength = mean(glength, na.rm = TRUE),

sglength = sd(glength, na.rm = TRUE),
mmRNAlength = mean(mRNAlength, na.rm = TRUE),
smRNAlength = sd(mRNAlength, na.rm = TRUE),
milength = mean(ilength, na.rm = TRUE),
silength = sd(ilength, na.rm = TRUE),
count = n()) %>%

arrange(count)
## Here we join the summary statistics back into the vert data
## for later usage
vertGenomesSum <- inner_join(vertGenomes, vertSum, by = "orthId")

There are 29150 different ortholog ids in the data set.

The following figure shows a histogram of the number of occurrences of each ortholog id.
ggplot(vertSum, aes(count)) + geom_histogram(binwidth = 5, boundary = 0) +

xlab("species count") +
ylab("frequency")

We observe a U-shaped distribution with a large fraction of genes present in all or almost all species, and a
large fraction present in fewer than 50 species. There are 2161 genes that are present in only one or two
species.

The following figure shows the standard deviation of intron length against mean intron length. The points
are color coded according to the number of species with the corresponding gene.
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ggplot(data = vertSum, aes(milength, silength)) +
scale_x_log10() + scale_y_log10() +
xlab("Mean intron length") +
ylab("Standard deviation of intron length") +
geom_point(aes(color = count)) +
scale_colour_gradientn(colors = rainbow(3))

There is a relatively good linear relation between mean and variance. The main extreme deviations correspond
to genes present in few (mostly only two corresponding to the red points) species, for which the estimate of
variance is expected to be severely downward biased (this is particularly so if those species are evolutionary
closely related).

The following is a residual plot in form of boxplots for each species ordered according to the species median
residual. Gallus gallus is yellow.
specOrd <- vertGenomesSum %>%

group_by(species) %>%
summarize(medres = median((ilength - milength) / silength, na.rm = TRUE)) %>%
arrange(desc(medres)) %>%
.$species

ggplot(vertGenomesSum, aes(x = factor(species, levels = specOrd),
y = (ilength - milength) / silength,
color = class, fill = class)) +

geom_boxplot(outlier.alpha = 0.2, outlier.size = 1) +
geom_boxplot(data = filter(vertGenomesSum, species == "Gallus_gallus"),

fill = "yellow", color = "yellow") +
geom_abline(intercept = 0, slope = 0, size = 0.8) +
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coord_flip() +
xlab("Species") +
ylab("Standardized residuals") +
scale_color_manual("Class:", labels = c("Bird", "Fish", "Mammal", "Reptile/Amphibian"),

values = classPalette[-1]) +
scale_fill_manual("Class:", labels = c("Bird", "Fish", "Mammal", "Reptile/Amphibian"),

values = classPalette[-1]) +
theme(axis.text.y = element_text(size = 6),

legend.position = "top")
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We see a clear difference in residual distribution across the different species. In conclusion, introns are
generally shorter in some species across genes than in other species.

An additive model

Due to the observed species effect, we construct a model that describes the intron length as a function of
both gene (ortholog id) and species.

Some theory

We want to construct an additive effects model:

E(t(Lg,s)) = αg + βs

where Lg,s is the intron length of gene g (identified by ortholog id) and species s, and t is a transformation.
In the analysis below, the log-transformation (t(x) = log(x)) is used. The model is fitted by least-squares,
and the purpose of the transformation is variance stabilization. One alternative could be the square-root
transformation.

Fitting this model is a non-trivial problem as the number of levels for the gene factor (the number, 29150, of
unique gene ortholog ids) is very large.

We let A and B0 denote the design matrices with dummy variable encoding of the two factors. With n
observations, p genes and q species these matrices are n× p and n× (q − 1), respectively. The reason that
the latter has only q − 1 columns is that we have to remove one column (use one species as reference species)
to have an identifiable parametrization of the additive model. We note that each of these matrices have
orthogonal columns, and the projection onto the column space of A is

P = A(DA)−1AT ,

where DA = ATA is diagonal ((DA)gg is the number of occurrences of gene g).

It follows that
B = (I − P )B0 = B0 −A(DA)−1ATB0 = B0 −A(DA)−1C,

with C = ATB0, has columns orthogonal to those in A, and that

X =
[
A B

]
spans the same column space as

[
A B0

]
. The projection onto this column space can therefore be computed

as

Q = X(XTX)−1XT

=
[
A B

] [ DA 0
0 BTB

]−1 [
AT

BT

]
= P +B(BTB)−1BT ,

which is the sum of projections onto the two orthogonal spaces.

The cross product, BTB, can be computed as follows

BTB = (B0 −A(DA)−1C)T (B0 −A(DA)−1C)
= (B0)TB0 − CT (DA)−1ATB0 − (B0)TA(DA)−1C + CT (DA)−1ATA(DA)−1C

= DB0 − CT (DA)−1C.

7



The matrix C is computed as a cross-tabulation of genes and species. The diagonal entries in DA and DB

are the row sums and column sums, respectively, of C.

Multiplication with AT and BT can be computed by groupwise summation, and multiplication by A and B
can be computed by join operations. The function implemented below uses these operations, cross-tabulation,
and linear algebra for p × (q − 1) matrices to compute the projections. The dummy variable encoding is
avoided.

Note that
Qy = A β̃A︸︷︷︸

=(DA)−1AT y

+BT β̂B︸︷︷︸
=(BTB)−1BT y

= Aβ̃A +BT0 β̂B −A(DA)−1Cβ̂B

= A (β̃A − (DA)−1Cβ̂B)︸ ︷︷ ︸
=β̂A

+B0β̂B

= Aβ̂A +Bβ̂B ,

which gives the formulas for computing the coefficients in the (A,B0)-parametrization.
## Fits the additive effects model for data in a data frame 'x',
## with 'y' the name of the response column, and 'a' and 'b' the
## names of the two factors.

addBig <- function(x, y, a, b, ref_level = 1, fun = identity, funinv = identity, eps = 0) {
vars <- lapply(c(a, b), as.symbol)
funstring <- deparse(substitute(fun))
sums <- paste("sum(", funstring, "(", y, ")", ")", sep = "")
means <- list(.betaA = lazyeval::interp(~mean(fun(var)), var = as.name(y)))
crosstab <- group_by_(x, .dots = vars) %>%

summarize(count = n()) %>%
spread_(key_col = b, value_col = "count", fill = 0)

C <- as.matrix(crosstab[, -1])
p <- nrow(C)
q <- ncol(C)
DA <- rowSums(C)
C <- C[, - ref_level]
DB <- colSums(C)
Aty <- group_by_(x, .dots = vars[1]) %>%

summarize_(.dots = sums)
B0ty <- group_by_(x, .dots = vars[2]) %>%

summarize_(.dots = sums)
beta <- numeric(q)
beta[-ref_level] <- B0ty[[2]][-ref_level] - crossprod(C, DA^(-1) * Aty[[2]])
beta[-ref_level] <- solve(diag(DB) - crossprod(C, DA^(-1) * C) + diag(eps, length(DB)), beta[-ref_level])
B0ty$.betaB <- beta
Aty$.betaBA <- as.vector(DA^(-1) * C %*% beta[-ref_level])
group_by_(x, .dots = vars[1]) %>%

summarize_(.dots = means) %>%
inner_join(x, ., by = a) %>%
inner_join(B0ty[, c(1, 3)], by = b) %>%
inner_join(Aty[, c(1, 3)], by = a) %>%
mutate(.betaA = .betaA - .betaBA, .hat = funinv(.betaA + .betaB))

}
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Analysis

The additive model is fitted using the addBig function as implemented above. It’s impossible to fit the model
using standard regression techniques in R due to the large number of genes. The log-transformation (base
2) is used, but other transformations were tried, e.g. no transformation and the square-root-transformation.
The log-transformation gave by far the best model fit.
thres <- 1 ## Excluding genes with intron length 0
vertGenomes2 <- filter(vertGenomes, ilength >= thres) %>%

addBig("ilength", "orthId", "species", ref_level = 80, fun = log2, funinv = function(x) 2^x)

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

The histogram above shows the distribution of the species effects on a log-scale. We see a similar stratification
of coefficients as observed previously according to species and class. The reference species with species effect
0 is Gallus_gallus.

The histogram below shows the gene effects. Note the range of the log-scale with 5 corresponding to an intron
length of 25 = 32, 15 to an intron length of 215 = 32768.
vertGenomes2 %>% group_by(orthId) %>%

summarize(betaA = .betaA[1]) %>%
ggplot(aes(x = betaA)) +
geom_histogram() +
xlab(expression(paste("Gene effect on log-scale (", alpha[g], ")", sep =""))) +
ylab("Number of species")
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The following residual plot stratified according to class shows some lack of model fit.
nr <- 100000 ## A subset of data points plotted. Smooth fitted using all residuals.
ggplot(data = vertGenomes2[sample(nrow(vertGenomes2), nr), ],

aes(x = log2(.hat), y = (log2(ilength) - log2(.hat)), color = class)) +
geom_point(alpha = 0.2) +
## Extreme x-values excluded from smoothing
scale_x_continuous("Fitted values",

labels = 2^seq(7, 20, 3),
breaks = seq(7, 20, 3),
limits = c(7, 20)) +

ylab("Residuals") +
## Extreme y-values are included
coord_cartesian(ylim = c(-7, 5)) +
geom_smooth(data = vertGenomes2, color = "black") +
facet_wrap(~ class, ncol = 2) +
scale_color_manual(values = classPalette[-1]) +
theme(legend.position = "none")
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It’s unsurprising that the model doesn’t fit, as the species effect is unlikely to be a simple additive effect
across the vastly different intron lengths.

Conditional Analysis

Due to the lack of model fit, we refit the model using only a subset of genes. These are selected using the
gene effect estimate from the additive model as a proxy quantification of “typical gene length”. It’s clear that
this decision can be affected by the composition of species in our data set. We set the threshold to a species
effect of 100, 000. For a small subset of observations, intron lengths are still extremely short in one or a few
species, and we have discarded those extremes as well as they will affect the least squares fit a lot. We have
set the threshold on the intron length to be at least 1,000.
vertGenomesLarge <- filter(vertGenomes2, .betaA > log2(100000) & ilength >= 1000) %>%

select(-c(.betaA, .betaB, .betaBA, .hat))

vertGenomesLarge <- addBig(vertGenomesLarge,
"ilength", "orthId", "species",
ref_level = 80, fun = log2, funinv = function(x) 2^x)

group_by(vertGenomesLarge, by = species) %>%
summarize(betaB = .betaB[1], class = class[1]) %>%
ggplot(aes(betaB, fill = class)) +
geom_histogram() +
scale_fill_manual("Class:", labels = c("Bird", "Fish", "Mammal", "Reptile/Amphibian"),

values = classPalette[-1]) +
xlab(expression(paste("Species effect on log-scale (", beta[s], ")", sep = ""))) +
ylab("Number of species")
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The histogram above shows the distribution of the species effects on a log-scale for the analysis conditional
on long genes. The reference species with species effect 0 is Gallus_gallus.
The residual plots below (stratified according to class) shows a rather good model fit except for bird with
a skewed residual distribution. The central 98% of the intron lengths are within factors 1/16 and 4 of the
model prediction. The skewed distribution can, for instance, be explained by some genes having lost a large
fraction of its intron in a species due to a large deletion event.
ggplot(data = vertGenomesLarge,

aes(x = log2(.hat), y = (log2(ilength) - log2(.hat)), color = class)) +
geom_point(alpha = 0.2) +
## Extreme x-values excluded from smoothing
scale_x_continuous("Fitted values",

labels = 2^seq(14, 20, 2),
breaks = seq(14, 20, 2),
limits = c(14, 20)) +

ylab("Residuals") +
## Extreme y-values are included
coord_cartesian(ylim = c(-7, 5)) +
geom_smooth(color = "black") +
facet_wrap(~ class, ncol = 2) +
scale_color_manual(values = classPalette[-1]) +
theme(legend.position = "none")
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Visualization of fitted models

birdThres <- -0.5

vertGenomesLarge <- filter(vertGenomesLarge, species == "Gallus_gallus") %>%
transmute(orthId = orthId, label = paste(orthId, "\n(", gName, ")", sep = "")) %>%
inner_join(vertGenomesLarge, .)

## Joining, by = "orthId"
orthOrd <- filter(vertGenomesLarge, species == "Gallus_gallus", orthId %in% peaksId) %>%

arrange(.hat - ilength) %>%
.$label

specOrd <- group_by(vertGenomesLarge, species) %>%
summarize(class = class[1], .betaB = .betaB[1]) %>%
arrange(class, .betaB) %>%
.$species

nrShortBird <- filter(vertGenomesLarge, class == "bird" & .betaB < birdThres) %>%
group_by(species) %>% summarize() %>% count() %>% .$n

nrBird <- filter(vertGenomesLarge, class == "bird") %>%
group_by(species) %>% summarize() %>% count() %>% .$n

nrGallus <- which(specOrd == "Gallus_gallus")

vertPeaks <- vertGenomesLarge %>% filter(orthId %in% peaksId) %>%
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mutate(label = factor(label, levels = orthOrd))

Gallus <- filter(vertPeaks, species == "Gallus_gallus")

p1 <- ggplot(vertPeaks, aes(species, .hat)) +
geom_polygon(data = data.frame(species = c(1, nrShortBird, nrShortBird, 1),

.hat = c(2^11, 2^11, 2^21, 2^21)),
fill = "#e41a1c", alpha = 0.1) +

geom_polygon(data = data.frame(species = c(nrShortBird + 1, nrBird, nrBird, nrShortBird + 1),
.hat = c(2^11, 2^11, 2^21, 2^21)),

fill = "#377eb8", alpha = 0.1) +
geom_vline(xintercept = nrGallus, color = "yellow") +
geom_point(aes(color = class)) +
geom_point(aes(y = ilength), size = 1, alpha = 0.7) +
geom_point(data = Gallus, aes(y = ilength), color = "yellow") +
facet_grid(label ~ .) +
scale_y_continuous("Intron length", breaks = c(5000, 50000, 500000),

labels = c(quote(5 %*% 10^3), quote(5 %*% 10^4), quote(5 %*% 10^5)),
trans = "log2") +

coord_cartesian(ylim = c(2^11, 2^21)) +
scale_x_discrete("Species", breaks = c(), limits = specOrd) +
scale_color_manual("Class:", labels = c("Bird", "Fish", "Mammal", "Reptile/Amphibian"),

values = classPalette[-1]) +
guides(colour = guide_legend(override.aes = list(size = 3)))

p1
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Interactions between class and gene for large genes

The bird class is divided into two according to the clear separation of typical intron length as depicted on the
figure showing species effect in the conditional analysis of the long genes.
vertGenomesLargeInt <- mutate(vertGenomesLarge,

class2 = ifelse(class == "bird" & .betaB < birdThres, "birdA", class),
class2 = ifelse(class2 == "bird", "birdB", class),
classOrth = paste(class2, orthId, sep = "_"))

The additive model is refitted with interactions between gene and class. Including the interactions requires
reference levels for each class. These are taken as: Acanthisitta_chloris for birdB (1), Alligator_mississippiensis
for reptile/Amphibian (4), Astyanax_mexicanus for fish (14), Gallus_gallus for bird (80), and Homo_sapiens
for mammal (89).
vertGenomesLargeInt <- select(vertGenomesLargeInt,

orthId, ilength, classOrth, class2, species, label) %>%
addBig("ilength", "classOrth", "species",

ref_level = c(1, 4, 14, 80, 89), fun = log2, funinv = function(x) 2^x)

ggplot(data = vertGenomesLargeInt,
aes(x = log2(.hat), y = (log2(ilength) - log2(.hat)), color = class2)) +

geom_point(alpha = 0.2) +
## Extreme x-values excluded from smoothing
scale_x_continuous("Fitted values",

labels = 2^seq(14, 20, 2),
breaks = seq(14, 20, 2),
limits = c(14, 20)) +

ylab("Residuals") +
## Extreme y-values are included
coord_cartesian(ylim = c(-7, 5)) +
geom_smooth(color = "black") +
facet_wrap(~ class2, ncol = 2) +
scale_color_manual(values = classPalette) +
theme(legend.position = "none")
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Comparative visualization of fitted model

vertIntPeaks <- vertGenomesLargeInt %>% filter(orthId %in% peaksId) %>%
mutate(label = factor(label, levels = orthOrd))
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p2 <- ggplot(vertIntPeaks, aes(species, .hat)) +
geom_vline(xintercept = nrGallus, color = "yellow") +
geom_point(aes(color = class2)) +
geom_point(aes(y = ilength), size = 1, alpha = 0.7) +
geom_point(data = Gallus, aes(y = ilength), color = "yellow") +
facet_grid(label ~ .) +
scale_y_continuous("", breaks = c(5000, 50000, 500000),

labels = c("", "", ""),
trans = "log2") +

coord_cartesian(ylim = c(2^11, 2^21)) +
scale_x_discrete("Species", breaks = c(), limits = specOrd) +
scale_color_manual("Class:", labels = c("BirdA", "BirdB", "Fish", "Mammal", "Reptile/Amphibian"),

values = classPalette) +
guides(colour = guide_legend(override.aes = list(size = 3)))

p1 <- p1 + theme(strip.background = element_blank(),
strip.text.y = element_blank())

gridExtra::grid.arrange(p1, p2, ncol = 2)
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