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AIC for Gaussian regression (fixed variance)

If Y ∼ N (ξ, σ2I ) then

AIC = ‖Y − ξ̂‖2/σ2 + 2d

when σ2 is fixed and ξ̂ is the least squares estimator in a subset of
dimension d .

Fix σ2 = 1 from hereon, and for λ ∈ Λ (an index set) let

AIC(λ) = ‖Y − ξ̂λ‖2 + 2d(λ).

Example: ξ = Xβ for X and n × p matrix and β ∈ Rp.
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AIC as a test error and risk estimate

Let Y ⊥⊥ YNew and Y
D
= YNew.

If Y ∼ (ξ, I ), ξ̂λ = SλY and d(λ) = tr(Sλ) then

E (AIC(λ)) = E‖YNew − ξ̂λ‖2 = n + E‖ξ − ξ̂λ‖2︸ ︷︷ ︸
MSE

.

Thus
AIC(λ)− n = ‖Y − SλY ‖2 + 2d(λ)− n

is an unbiased estimate of MSE.
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Forward stepwise variable selection

If Sλ is a fixed projection then d(λ) = rank(Sλ).

Forward stepwise variable selection results in a sequence of
projections

S0, . . . ,Sp

onto nested subspaces of dimensions 0 < 1 < 2 . . . < p.

Note: Sd is selected in a data dependent way.
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Model weights and model averaging

Introduce weights

wγ(λ) =
exp(−γIC(λ))∫

exp(−γIC(λ))π(dλ)
.

• γ = 1/2 has a Bayes interpretation

• γ → 0 gives all models the same weight

• γ →∞ concentrates the weights on models with minimal IC.

ξ̂γ =

∫
ξ̂(λ)wγ(λ)π(dλ)

is the model averaging estimator.
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n = 100, p = 50
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n = 100, p = 50
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Best subspace selection

y1

y2

ξ̂(y)

y
ξ̂(y)

y

Best subspace selection is the projection onto the union of
subspaces. The estimator is discontinous on the union of the
diagonals.
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Fundamental identity
Recall the fundamental AIC identity

E‖YNew − ξ̂‖2︸ ︷︷ ︸
expected test error

= E‖Y − ξ̂‖2︸ ︷︷ ︸
expected training error

+ 2d ,

which justifies
AIC = ‖Y − ξ̂‖2 + 2d

as a prediction error estimate and AIC− n as a risk estimate.

For Lipschitz continuous estimators (Stein’s lemma)

d = E (∇ · ξ̂).

Theorem (NRH, Mikkelsen, Sokol)

In general

d = E (∇ · ξ̂) +
1

(2π)n/2

∫
e−
‖y−ξ‖2

2 dν(dy)

with ν a measure singular w.r.t. Lebesgue measure.
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The singular measure ν
Hn−1 is Hausdorff measure.

ξ̂(y)
y ξ̂(y)y

• If E ⊆ Rn is closed and ξ̂ : E c → Rn is continuously
differentiable then ν = 0 if Hn−1(E ) = 0. (Reduced rank
estimators, NRH (2018) Stat. Prob. Letters.)

• If ξ̂ is a metric projection onto a closed subset of Rn then ν is
a positive measure (NRH & Sokol, arXiv:1402.2997).

• If ξ̂ =
∑

i ξ̂
i1Ui

then

ν =
1

2

∑
i 6=j

1U i∩U j
〈ξ̂j − ξ̂i , ηi 〉 · Hn−1

with ηi the outer unit normal to the boundary of Ui .
(Mikkelsen & NRH (2018), Ann. Inst. H. Poincaré Probab. Statist.)
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Two examples

Lasso-OLS Best subset selection

http://web.math.ku.dk/~richard/selectionAnimation.html
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The correction term

Suppose that Ut
i = F (t,U0

i ) and ξ̂i ,t are parametrized by t ∈ R
and F is a flow.

Example: Lasso gives Ut
i = etU0

i for penalty λ = et .

Theorem (Mikkelsen & NRH, in preparation)

There is a statistic H(t,Y ) such that under technical conditions

1

(2π)n/2

∫
e−
‖y−ξ‖2

2 dνt(dy) = ∂tE (H(t,Y )).

Example: Lasso-OLS gives H(t,Y ) = −∇ · ξ̂t(Y ).

Applies to: marginal screening, relaxed lasso, best subset selection,
some smoothing-selection algorithms and greedy basis pursuit.
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A refined information criterion

We propose

IC(t) = ‖Y − ξ̂t(Y )‖2 + 2
(
∇ · ξ̂t(Y ) + ∂tsmooth(H(t,Y ))

)
with smooth(H(t,Y )) denoting a t-smoothing of the stochastic
jump function t 7→ H(t,Y ).

Forward stepwise variable selection can be recast in flow-form as

d(t) = arg min
d=0,...,p

||Y − SdY ||2 + e2t︸︷︷︸
λ

d

with ∇ · ξ̂t(Y ) = d(t).
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n = 100, p = 50, γ = 0.1
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