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AIC for Gaussian regression (fixed variance)

If Y ~ N(& 021) then
AIC = ||Y —€|]?/o® + 2d

when o2 is fixed and f is the least squares estimator in a subset of
dimension d.

Fix 02 = 1 from hereon, and for A € A (an index set) let

ATC(N) = [|Y — &M +2d(N).

Example: £ = X3 for X and n x p matrix and 8 € RP.
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AIC as a test error and risk estimate

Let Y 1L YNew and y 2 yNew

If Y ~ (€,1), € = S\Y and d(\) = tr(Sy) then

E(AIC(\) = E| Y — &> = n+ Efl¢ - €.
—_———

MSE

Thus
AICAN) —n=|Y = S\Y|2+2d(\) —n

is an unbiased estimate of MSE.
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Forward stepwise variable selection

If Sy is a fixed projection then d(\) = rank(S,).
Forward stepwise variable selection results in a sequence of

projections
So,.--,5p

onto nested subspaces of dimensions 0 <1 <2... < p.

Note: Sy is selected in a data dependent way.
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Model weights and model averaging

Introduce weights

_exp(—IC(V)
J exp(—7IC(A))m(dA)

wy(A)

e v =1/2 has a Bayes interpretation
e v — 0 gives all models the same weight

e v — 00 concentrates the weights on models with minimal IC.

&= [é0m @y

is the model averaging estimator. @
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Best subspace selection

T = n
&(y)

Best subspace selection is the projection onto the union of
subspaces. The estimator is discontinous on the union of the @
diagonals. Py
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Fundamental identity
Recall the fundamental AIC identity
E|YNY -2 = E|ly—¢ + 2d,
—— N——
expected test error expected training error
which justifies
AIC = ||Y — €|+ 2d
as a prediction error estimate and AIC — n as a risk estimate.

For Lipschitz continuous estimators (Stein's lemma)

d=E(V-§).
Theorem (NRH, Mikkelsen, Sokol)
In general
1 _ly=¢i? »su?
d=E(V- f) F = / dv(dy)
o o
with v a measure singular w.r.t. Lebesgue measure. °®
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The singular measure v
H"1 is Hausdorff measure.

o If ECR"is closed and é: E¢ — R" is continuously
differentiable then v = 0 if #""1(E) = 0. (Reduced rank
estimators, NRH (2018) Stat. Prob. Letters.)

o If é is a metric projection onto a closed subset of R” then v is
a positive measure (NRH & Sokol, arXiv:1402.2997).

° |fé: Zigilui then

1 5 g -1
v= EZlv,-mUj@J — &) - H"

i#j
with 7; the outer unit normal to the boundary of U;.
(Mikkelsen & NRH (2018), Ann. Inst. H. Poincaré Probab. Statist.) @
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Two examples

Lasso-OLS Best subset selection

A oomMamen A ool
1

Ange: 90 Angle:60 Angie: 90 Angle: 60
0- = z D- = =
Ange:45 Angle: 30 Angie: 45 Angle: 30
n- E E n- = =
) 0 0 )

http://web.math.ku.dk/~richard/selectionAnimation.html @
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The correction term

Suppose that Uf = F(t, U?) and &bt are parametrized by t € R
and F is a flow.

Example: Lasso gives Uf = et U? for penalty A = et.

Theorem (Mikkelsen & NRH, in preparation)

There is a statistic H(t, Y') such that under technical conditions

Example: Lasso-OLS gives H(t,Y) = —V - £1(Y).

Applies to: marginal screening, relaxed lasso, best subset selection,
some smoothing-selection algorithms and greedy basis pursuit.
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A refined information criterion

We propose
1C(t) = ||Y — (V)2 + 2 (v - E4(Y) + O smooth(H(t, Y)))

with smooth(H(t, Y)) denoting a t-smoothing of the stochastic
jump function t — H(t,Y).

Forward stepwise variable selection can be recast in flow-form as

d(t) =argmin||Y — SgY|]? + &% d
() = srgmin Y = S, + £

with V- E(Y) = d(¢).
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