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ABSTRACT
Large-scale generalized linear array models (GLAMs) can be challenging to fit. Computation and storage of
its tensor product designmatrix canbe impossible due to timeandmemory constraints, andpreviously con-
sidered design matrix free algorithms do not scale well with the dimension of the parameter vector. A new
design matrix free algorithm is proposed for computing the penalized maximum likelihood estimate for
GLAMs, which, in particular, handles nondifferentiable penalty functions. The proposed algorithm is imple-
mented and available via the R package glamlasso. It combines several ideas—previously considered
separately—to obtain sparse estimates while at the same time efficiently exploiting the GLAM structure.
In this article, the convergence of the algorithm is treated and the performance of its implementation is
investigated and compared to that of glmnet on simulated as well as real data. It is shown that the com-
putation time for glamlasso scales favorably with the size of the problem when compared to glmnet.
Supplementary materials, in the form of R code, data, and visualizations of results, are available online.

1. Introduction

The generalized linear array models (GLAMs) were introduced
in Currie, Durban, and Eilers (2006) as generalized linear mod-
els (GLMs) where the observations can be organized in an array
and the design matrix has a tensor product structure. One main
application treated in Currie, Durban, and Eilers (2006)—that
will also be central to this article—is multivariate smoothing
where data are observed on a multidimensional grid.

In this article, we present results on three-dimensional
smoothing for two quite different real datasets where the aim
was to extract a smooth mean signal. The first dataset con-
tains voltage sensitive dye recordings of spiking neurons in a
live ferret brain and was modeled in a Gaussian GLAM frame-
work. The second dataset contains all registered Medallion taxi
pickups in New York City during 2013 and was modeled in a
Poisson GLAM framework. In both examples, we fitted an �1-
penalized B-spline basis expansion to obtain a clear signal. For
the taxi data, we also demonstrate how the �1-penalized fit lead
to a lower error, compared to the nonpenalized fit, when try-
ing to predictmissing observations. Other potential applications
include factorial designs and contingency tables.

Currie, Durban, and Eilers (2006) showed how the structure
of GLAMs can be exploited for computing the maximum likeli-
hood estimate and other quantities of importance for statistical
inference. The penalized maximum likelihood estimate for
a quadratic penalty function can also be computed easily by
similar methods. The computations are simple to implement
efficiently in any high-level language like R or MATLAB that
supports fast numerical linear algebra routines. They exploit
the GLAM structure to carry out linear algebra operations
involving only the tensor factors—called array arithmetic,
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see also De Boor (1979) and Buis and Dyksen (1996)—and
they avoid forming the design matrix. This design matrix free
approach offers benefits in terms of memory as well as time
usage compared to standard GLM computations.

The approach of Currie, Durban, and Eilers (2006) has
some limitations when the dimension p of the parameter vec-
tor becomes large. The p× p weighted cross-product of the
design matrix has to be computed, and though this computa-
tion can benefit from the GLAM structure, a linear equation in
the parameter vector remains to be solved. The computations
can become prohibitive for large p. Moreover, the approach does
not readily generalize to nonquadratic penalty functions like the
�1-penalty or for that matter nonconvex penalty functions like
the smoothly clipped absolute deviation (SCAD) penalty.

In this article, we investigate the computation of the penal-
ized maximum likelihood estimate in GLAMs for a general
convex penalty function. However, we note that by employing
the multi-step adaptive lasso (MSA-lasso) algorithm from
sec. 2.8.5 and 2.8.6 in Bühlmann and van de Geer (2011) our
algorithm can easily be extended to handle nonconvex penalty
functions. This modification is already implemented in the R
package glamlasso for the SCAD-penalty, see Lund (2016).
The convergence results presented in this article are, however,
only valid for a convex penalty.

Algorithms considered in the literature hitherto for �1-
penalized estimation in GLMs, see, for example, Friedman et al.
(2010), cannot easily benefit from theGLAM structure, and typ-
ically they need the design matrix explicitly or at least direct
access to its columns. Our proposed algorithm based on proxi-
mal operators is design matrix free—in the sense that the tensor
product design matrix need not be computed—and can exploit
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the GLAM structure, which results in an algorithm that is both
memory and time efficient.

The article is organized as follows. In Section 2, GLAMs
are introduced. In Section 3, our proposed GD-PG algorithm
for computing the penalized maximum likelihood estimate is
described. Section 4 presents twomultivariate smoothing exam-
ples where the algorithm is used to fit GLAMs. This section
includes a benchmark comparison between our implementation
of the GD-PG algorithm in the R package glamlasso and
the algorithm implemented in glmnet. Section 5 presents a
convergence analysis of the proposed algorithm. In Section 6,
a number of details on how the algorithm is implemented in
glamlasso are collected. This includes details on how the
GLAM structure is exploited, and the section also presents fur-
ther benchmark results. Section 7 concludes the article with a
discussion. Some technical and auxiliary definitions and results
are presented in two appendices.

2. Generalized Linear ArrayModels

A generalized linear model (GLM) is a regression model of
n independent real valued random variables Y1, . . . ,Yn, see
Nelder and Wedderburn (1972). A generalized linear array
model (GLAM) is a GLM with some additional structure of the
data. We first introduce GLMs and then the special data struc-
ture for GLAMs.

With X an n × p design matrix, the linear predictor η :
R

p → R
n is defined as

η(θ ) := Xθ (1)

for θ ∈ R
p. With g : R → R denoting the link function, the

mean value of Yi is given in terms of ηi(θ ) via the equation

g(E(Yi)) = ηi(θ ). (2)

The link function g is throughout assumed invertible with a con-
tinuously differentiable inverse.

The distribution of Yi is, furthermore, assumed to belong to
an exponential family, see Appendix B, which implies that the
log-likelihood, θ �→ l(η(θ )), is given in terms of the linear pre-
dictor. With y = (y1, . . . , yn)� ∈ R

n denoting a vector of real-
ized observations of the variables Yi, the log-likelihood (with
weights ai ≥ 0 for i = 1, . . . , n) and its gradient are given as

l(η(θ )) =
n∑
i=1

ai(yiϑ(ηi(θ ))− b(ϑ(ηi(θ ))) and (3)

∇θ l(η(θ )) = X�u(η(θ )), (4)

respectively, where ϑ : R → R denotes the canonical param-
eter function, and u(η) := ∇ηl(η) is the score statistic, see
Appendix B.

The main problem considered in this article is the computa-
tion of the penalized maximum likelihood estimate (PMLE),

θ∗ := argmin
θ∈Rp

−l(η(θ ))+ λJ(θ ), (5)

where J : Rp → (−∞,∞] is a proper, convex and closed
penalty function, and λ ≥ 0 is a regularization parameter con-
trolling the amount of penalization.Note that J is allowed to take
the value ∞, which can be used to enforce convex parameter

constraints. The objective function of this minimization prob-
lem is thus the penalized negative log-likelihood, denoted

F := −l + λJ, (6)

where −l is continuously differentiable.
For a GLAM, the vector y is assumed given as y = vec(Y )

(the vec operator is discussed in Appendix A), where Y is
an n1 × · · · × nd d-dimensional array. The design matrix X is
assumed to be a concatenation of cmatrices

X = [X1|X2| . . . |Xc],

where the rth component is a tensor product,

Xr = Xr,d ⊗ Xr,d−1 ⊗ · · · ⊗ Xr,1, (7)

of d matrices. The matrix Xr, j is an nj × pr, j matrix, such that

n =
d∏
j=1

nj, pr :=
d∏
j=1

pr, j, p =
c∑

r=1

pr.

We let 〈Xr, j〉 := 〈X1,1, . . . ,Xc,d〉 denote the tuple of marginal
design matrices.

The assumed data structure induces a corresponding struc-
ture on the parameter vector, θ , as a concatenation of c vectors,

θ� = (vec(�1)
�, . . . , vec(�c)

�),

with�r a pr,1 × · · · × pr,d d-dimensional array. We let 〈�r〉 :=
〈�1, . . . , �c〉 denote the tuple of parameter arrays.

Given this structure it is possible to define amap, ρ, such that
with θr = vec(�r),

Xrθr = vec
(
ρ(Xr,d, . . . , ρ(Xr,2, (ρ(Xr,1,�r))) . . .)

)
(8)

for r = 1, . . . , c. The algebraic details of ρ are spelled out in
Appendix A.

As a consequence of the array structure, the linear predictor
can be computed using ρ without explicitly constructing X .
The most obvious benefit is that no large tensor product matrix
needs to be computed and stored. In addition, the array struc-
ture can be beneficial in terms of time complexity. As noted in
Buis andDyksen (1996), withXr, j being a square nr × nr matrix,
say, the computation of the direct matrix-vector product in (8)
has O(n2dr ) time complexity, while the corresponding array
computation has O(dnd+1

r ) time complexity. This reduced time
complexity for d ≥ 2 translates, as mentioned in the introduc-
tion, directly into a computational advantage for computing the
PMLE with a quadratic penalty function, see Currie, Durban,
and Eilers (2006). For nonquadratic penalty functions, the
translation is less obvious, but we present one algorithm that is
capable of benefitting from the array structure.

3. Penalized Estimation in a GLAM

In most situations, the PMLE must be computed by an iterative
algorithm. We present an algorithm that solves the optimiza-
tion problem (5) by iteratively optimizing a partial quadratic
approximation to the objective function while exploiting the
array structure. The proposed algorithm is a combination of a
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gradient-based descent (GD) algorithm with a proximal gradi-
ent (PG) algorithm. The resulting algorithm, which we call GD-
PG, thus consists of the following two parts:

� an outer GLAM enhanced GD loop
� an inner GLAM enhanced PG loop.
We present these two loops in the sections below postpon-

ing the details on how the array structure can be exploited to
Section 6, where it is explained in detail how the two loops can
be enhanced for GLAMs.

3.1. The Outer GD Loop

The outer loop consists of a sequence of descent steps based on a
partial quadratic approximation of the objective function. This
results in a sequence of estimates, each of which is defined in
terms of a penalized weighted least-square estimate and whose
computation involves an iterative choice of weights. The weights
can be chosen so that the inner loop can better exploit the array
structure.

For k ∈ N and θ (k) ∈ R
p, let η(k) = η(θ (k)) and u(k) =

∇ηl(η(k)), let W (k) denote a positive definite diagonal n × n
weight matrix, and let z(k) denote the n-dimensional vector (the
working response) given by

z(k) := (W (k))−1u(k) + η(k). (9)

The sequence (θ (k)) is defined recursively from an initial θ (0) as
follows. Given θ (k) let

θ̃ (k+1) := argmin
θ∈Rp

1
2n

‖
√
W (k)(Xθ − z(k))‖22 + λJ(θ ) (10)

denote the penalizedweighted least-square estimate and define

θ (k+1) := θ (k) + αk(θ̃
(k+1) − θ (k)), (11)

where the stepsize αk > 0 is determined to ensure suffi-
cient descent of the objective function, for example, by using
the Armijo rule. A detailed convergence analysis is given in
Section 5, where the relation to the class of gradient-based
descent algorithms in Tseng and Yun (2009) is established.

3.2. The Inner PG Loop

The inner loop solves (10) by a proximal gradient algorithm. To
formulate the algorithm, consider a generic version of (10) given
by

x∗ := argmin
x∈Rp

h(x)+ λJ(x), (12)

where h : Rp → R is convex and continuously differentiable. It
is assumed that there exists aminimizer x∗. Define for γ > 0 the
proximal operator, proxγ : Rp → R

p, by

proxγ (z) = argmin
x∈Rp

{1
2
‖x − z‖22 + γ J(x)

}
.

The proximal operator is particularly easy to compute for a
separable penalty function like the 1-norm or the squared 2-
norm. Given a stepsize δk > 0, initial values x(0) = x(1) ∈ R

p

and an extrapolation sequence (ωl ) with ωl ∈ [0, 1) define the

sequence (x(l)) recursively by

y := x(l) + ωl

(
x(l) − x(l−1)

)
and (13)

x(l+1) := proxδkλ(y − δk∇h(y)). (14)

The choice of ωl = 0 for all l ∈ N gives the classical proximal
gradient algorithm, see Parikh and Boyd (2014). Other choices
of the extrapolation sequence, for example, ωl = (l − 1)/(l +
2), can accelerate the convergence. Convergence results can be
established if ∇h is Lipschitz continuous and δk is chosen suffi-
ciently small—see Section 5 for further details.

For the convex function

h(θ ) := 1
2n

‖
√
W (k)(Xθ − z(k))‖22, (15)

we have that

∇h(θ ) = 1
n
X�W (k)(Xθ − z(k)). (16)

This shows that ∇h(θ ) is Lipschitz continuous, and its explicit
form in (16) indicates how the array structure can be exploited—
see also Section 6.

3.3. The GD-PG Algorithm

The combinedGD-PG algorithm is outlined as Algorithm 1. It is
formulated using array versions of themodel components. Espe-
cially, U (k) and Z(k) denote n1 × · · · × nd array versions of the
score statistic, u(k), and the working response, z(k), respectively.
Also V (k) is an n1 × · · · × nd array containing the diagonal of
then × nweightmatrixW (k). The details on how the steps in the
algorithm can exploit the array structure are given in Section 6.

Algorithm 1 GD-PG

Require: 〈�(0)
r 〉, 〈Xr, j〉

1: for k = 0 to K ∈ N do
2: given 〈�(k)

r 〉: computeU (k), specifyV (k) and computeZ(k)
3: specify the proximal stepsize δk
4: given 〈�(k)

r 〉,V (k),Z(k), δk: compute 〈�̃(k+1)
r 〉 by the inner

PG loop
5: given 〈�(k)

r 〉, 〈�̃(k+1)
r 〉: use a line search to compute

〈�(k+1)
r 〉

6: if convergence criterion is satisfied then
7: break
8: end if
9: end for

The outline of Algorithm 1 leaves out some details that are
required for an implementation. In Step 2, the weights must be
specified. In Section 5, we present results on convergence of
the outer loop, which put some restrictions on the choice of
weights. In Step 3, the proximal gradient stepsize must be speci-
fied. In Section 5,we give a computable upper boundon the step-
size that ensures convergence of the inner PG loop. Convergence
with the same convergence rate can also be ensured for larger
stepsizes if a backtracking step is added to the inner PG loop.
In Step 4, 〈�(k)

r 〉 is a natural choice of initial value in the inner
PG loop, but this choice is not necessary to ensure convergence.
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712 A. LUND, M. VINCENT, AND N. R. HANSEN

In Step 4 it is, in addition, necessary to specify the extrapolation
sequence. Finally, in Step 5 a line search is required. In Section 5,
convergence of the outer loop is treated when the Armijo rule is
used.

4. Applications toMultidimensional Smoothing

As a main application of the GD-PG algorithm, we consider
multidimensional smoothing, which can be formulated in the
framework of GLAMs by using a basis expansion with tensor
product basis functions. We present the framework below and
report the results obtained for two real datasets.

4.1. A Generalized Linear ArrayModel for Smoothing

Letting X1, . . . ,Xd ⊆ R denote d finite sets define the d-
dimensional grid

Gd := X1 × · · · × Xd.

The set X j is the set of (marginal) grid points in the jth
dimension and nj := |X j| denotes the number of such marginal
points in the jth dimension. We have a total of n := ∏d

j=1 nj d-
dimensional joint grid points, or d-tuples,

(x1, . . . , xd ) ∈ Gd.

For each of the n grid points, we observe a corresponding
grid value yx1,...,xd ∈ R assumed to be a realization of a real
valued random variable Yx1,...,xd with finite mean. That is, the
observations can be regarded as a d-dimensional array Y . With
g : R → R a link function let

f (x1, . . . , xd ) := g(E(Yx1,...,xd )), (x1, . . . , xd ) ∈ Gd. (17)

The objective is to estimate f , which is assumed to possess some
form of regularity as a function of (x1, . . . , xd ). Assuming that
f belongs to the span of p basis functions, φ1, . . . , φp, it holds
that

f (x1, . . . , xd ) =
p∑

m=1

βmφm(x1, . . . , xd ), (x1, . . . , xd ) ∈ Gd,

for β ∈ R
p. If the basis function evaluations are collected into

an n × pmatrix� := (φm((x1, . . . , xd )i))i,m, and if the entries
in the arrayY are realizations of independent random variables
from an exponential family as described in Appendix B, the
resulting model is a GLM with design matrix � and regression
coefficients β .

For d ≥ 2, the d-variate basis functions can be specified via
a tensor product construction in terms of d (marginal) sets of
univariate functions by

φm1,...,md := φ1,m1 ⊗ φ2,m2 ⊗ · · · ⊗ φd,md , (18)

where φ j,m : R → R for j = 1, . . . , d and m = 1, . . . , p j . The
evaluation of each of the p j univariate functions in the nj points
in X j results in an nj × p j matrix � j = (φ j,m(xk))k,m. It then
follows that the n × p (p := ∏d

j=1 p j) tensor product matrix

� = �d ⊗ · · · ⊗�1 (19)

is identical to the design matrix for the basis evaluation in the
tensor product basis, and the GLM has the structure required of
a GLAM.

4.2. Benchmarking on Real Data

The multidimensional smoothing model described in the pre-
vious section was fitted using an �1-penalized B-spline basis
expansion to two real datasets using the GD-PG algorithm as
implemented in the R package glamlasso. See Section 6.4 for
details about the R package. In this section, we report bench-
mark results forglamlasso and the coordinate descent-based
implementation in the R package glmnet, see Friedman et al.
(2010).

For both datasets, we fitted a sequence of models to data
from an increasing subset of grid points, which correspond to
a sequence of designmatrices of increasing size. For each design
matrix, we fitted 100 models for a decreasing sequence of values
of the penalty parameter λ. We report the run time for fitting
the sequence of 100 models using glamlasso and glmnet.
We also report the run time for the combined computation of the
tensor product designmatrix and the fit usingglmnet. The lat-
ter is more relevant for a direct comparison with glamlasso,
since glamlasso requires only the marginal design matrices
while glmnet requires the full tensor product design matrix.

To justify the comparison, we report the relative deviation of
the objective function values attained by glamlasso from the
objective function values attained by glmnet, that is,

F(θ̂glamlasso)− F(θ̂glmnet)
|F(θ̂glmnet)|

(20)

with θ̂x denoting the estimate computed bymethodx. This ratio
is computed for each fitted model. We note that (20) has a ten-
dency to blowup in absolute valuewhenF becomes small, which
happens for small values of λ.

The benchmark computations were carried out on a Mac-
book Pro with a 2.8 GHz Intel core i7 processor and 16 GB of
1600MHzDDR3memory. Scripts and data are included as sup-
plementary materials online.

... Gaussian Neuron Data
The first dataset considered consists of spatio-temporal voltage
sensitive dye recordings of a ferret brain provided by Professor
Per Ebbe Roland, see Roland et al. (2006). The dataset consists of
images of size 25 × 25 pixels recorded with a time resolution of
0.6136 ms per image. The images were recorded over 600 ms,
hence the total size of this three-dimensional array dataset is
25 × 25 × 977 corresponding to n = 610,625 data points.

As basis functions we used cubic B-splines with p j :=
max{[nj/5], 5} basis functions in each dimension (see Currie,
Durban, and Eilers 2006 or Wood 2006). This corresponds to
a parameter array of size 5 × 5 × 196 (p = 4900) and a design
matrix of size 610,625 × 4900 for the entire dataset. The byte
size for representing this design matrix as a dense matrix was
approximately 22 GB. For the benchmark, we fitted Gaussian
models with the identity link function to the full dataset as well
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Figure . The raw neuron data (left) and the smoothed fit (right) after . ms. The supplementary material contains movies of the complete raw data and smoothed fit.

as to subsets of the dataset that correspond to smaller design
matrices.

Figure 1 shows an example of the raw data and the smoothed
fit for a particular time point. Movies of the raw data and the
smoothed fit can be found as supplementary material.

Run times and relative deviations are shown in Figure 2. The
model could not be fitted using glmnet to the full dataset due
to the large size of the design matrix, and results for glmnet
are thus only reported for models that could be fitted. The
run times for glamlasso were generally smaller than for
glmnet, and were, in particular, relatively insensitive to the
size of the design matrix. When a sparse matrix representation
of the design matrix was used, glmnet was able to scale to
larger design matrices, but it was still clearly outperformed by
glamlasso in terms of run time. The relative deviations in
the attained objective function values were quite small.

... Poisson Taxi Data
The seconddataset considered consists of spatio-temporal infor-
mation on registered taxi pickups in New York City during
January 2013. The data can be downloaded from the web-
page www.andresmh.com/nyctaxitrips/. We used a subset of this
dataset consisting of triples containing longitude, latitude, and

date-time of the pickup. First, we cropped the data to pick-
ups with longitude in [−74.05◦,−73.93◦] and latitude in
[40.7◦, 40.82◦]. Figure 3 shows the binned counts of all pick-
ups during January 2013 with 500 bins in each spatial dimen-
sion. Pickups registered in Hudson or East River were ascribed
to noise in the GPS recordings.

For this example attention was restricted to Manhattan pick-
ups during the first week of January 2013. To this end, the data
were rotated and summarized as binned counts in 100 × 100 ×
168 spatial-temporal bins. Each temporal bin represents 1 h. The
data were then further cropped to cover Manhattan only, which
removed the large black parts—as seen in Figure 3—where pick-
ups were rare. The total size of the dataset was 33 × 81 × 168
corresponding to n = 449,064 data points. The observation in
each bin consisted of the integer number of pickups registered
in that bin.

We used p j := max{[nj/4], 5} cubic B-spline basis func-
tions in each dimension. The resulting parameter array was
9 × 21 × 42 corresponding to p = 7938 and a design matrix of
size 449,064 × 7938 for the entire dataset. The byte size for rep-
resenting this designmatrix as a densematrixwas approximately
27GB. For the benchmark, we fitted Poissonmodels with the log
link function to the full dataset as well as to subsets of the dataset
that correspond to smaller design matrices.

Figure . Benchmark results for the neuron data. Run time in seconds is shown as a function of the size of the design matrix, when not stored in sparse format, in GB (left).
Relative deviation in the attained objective function values as given by () is shown as a function of model number (right), where a larger model number corresponds to
less penalization (smaller λ).
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714 A. LUND, M. VINCENT, AND N. R. HANSEN

Figure . Binned counts of registered NYC taxi pickups for January  using 500 × 500 spatial bins (left) and the same data rotated, binned to 100 × 100 spatial bins and
cropped to cover Manhattan only (right).

Figure 4 shows an example of the raw data and the smoothed
fit for around midnight on Saturday, January 5, 2013. Movies of
the rawdata and the smoothedfit can be found as supplementary
material.

Run times and relative deviations are shown in Figure 5.
As for the neuron data, the model could not be fitted to the
full dataset using glmnet, and results for glmnet are only
reported for models that could be fitted. Except for the smallest
design matrix the run times for glamlassowere smaller than
for glmnet, and they appear to scale better with the size of the
design matrix. This was particularly so when the dense matrix
representation was used with glmnet. The design matrix was
very sparse in this example, and glmnet benefitted consider-
able in terms of run time fromusing a sparse storage format. The
relative deviations in the attained objective function values were

still acceptably small though the values attained byglamlasso
were up to 1.5% larger than those attained by glmnet for the
least penalized models (models fitted with small values of λ).

4.3. Using Incomplete Array Data

The implementation in glamlasso allows for incompletely
observed arrays. This can, of course, be used for prediction of the
unobserved entries by computing the smoothed fit to the incom-
pletely observed array. In this section, we show how it can also
be used for selection of the tuning parameter λ. We also refer to
the supplementary materials online for scripts and data.

We used the NYC taxi data and removed the observations
for 19 randomly chosen 3 × 3 blocks of spatial bins (due to
overlap of some of the blocks this corresponded to 159 spatial

Figure . The raw NYC taxi data (left) and the smoothed fit (right) around midnight on Saturday, January , . The supplementary material contains movies of the
complete raw data and smoothed fit.
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Figure . Benchmark results for the taxi data. Run time in seconds is shown as a function of the size of the design matrix, when not stored in sparse format, in GB (left).
Relative deviations in the attained objective function values as given by () is shown as a function of model number (right), where a larger model number corresponds to
less penalization (smaller λ).

bins). When fitting the model using glamlasso, the incom-
pleteness is incorporated by setting the weights corresponding
to themissing values equal to zero for all time points.We denote
by D the set of grid points that correspond to the removed bins
as illustrated by the red blocks in Figure 7.

From glamlasso, we computed a sequence of model fits
corresponding to 100 values ofλ, and for each value ofλwe com-
puted the fitted complete array Ŷ (λ) and then the mean squared
error (MSE),

MSE(λ) =
∑
x∈D
(Ŷ (λ)

x −Yx)2,

as a function of λ, see Figure 6. Model 41 attained the overall
minimal MSE.

Figure 7 (right panel) shows predictions for one spatial bin.
The under-smoothed Model 100 gives a poor prediction while
the overall optimal Model 41 gives a much better prediction.

Figure . Themean squared error for prediction on grid points left out of themodel
fitting as a function ofmodel number. The vertical red line indicates themodel with
minimal MSE (model ).

5. Convergence Analysis

Our proposed GD-PG algorithm is composed of well-known
components, whose convergence properties have been exten-
sively studied.We do, however, want to clarify under which con-
ditions the algorithm can be shown to converge and in what
sense it converges. The main result in this section is a com-
putable upper bound of the step-size, δk, in the inner PG loop
that ensures convergence in this loop. This result hinges on the
tensor product structure of the design matrix.

Wefirst state a theorem,which follows directly fromBeck and
Teboulle (2010), and which for a specific choice of extrapolation
sequence gives the convergence rate for the inner PG loop for
minimizing the objective function

G := h + λJ, (21)

where h is given by (15). In the following, ‖A‖2 denotes the spec-
tral norm of A, which is the largest singular value of A.

Theorem 1. Let x∗ = θ̃ (k+1) denote the minimizer defined by
(10) and let the extrapolation sequence for the inner PG loop
be given byωl = (l − 1)/(l + 2). Let (x(l)) denote the sequence
obtained from the inner PG loop. If δ(k) ∈ (0, 1/L(k)] where

L(k) := ‖X�W (k)X‖2/n, (22)

then

G(x(l))− G(x∗) ≤ 2L(k)h ‖x(0) − x∗‖22
(l + 1)2

. (23)

Proof. The theorem is a consequence of Theorem1.4 inBeck and
Teboulle (2010) oncewe establish thatL(k) is a Lipschitz constant
for∇h. To this end note that the spectral norm ‖ · ‖2 is the oper-
ator norm induced by the 2-norm on R

p, which implies that

‖∇h(θ )− ∇h(θ ′)‖2 ≤ 1
n
‖X�W (k)X‖2‖θ − θ ′‖2, (24)

and L(k) is indeed the minimal Lipschitz constant. It should be
noted that Theorem 1.4 in Beck and Teboulle (2010) is phrased
in terms of an extrapolation sequence of the form ωl = (tl −
1)/tl+1 where (tl ) is a specific sequence that fulfills tl ≥ (l +
1)/2. The extrapolation sequence considered here corresponds
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716 A. LUND, M. VINCENT, AND N. R. HANSEN

Figure . Binned number of NYC taxi pickups as in Figure  (left) with red 3 × 3 squares indicating bins that were removed from the data before model fitting. Predicted
and observed number of pickups at spatial bin (8, 23) (indicatedwith a “+”on the left figure) are shown as a function of time in hours (right). Model  predictions (green)
were from the least penalized model while Model  predictions (red) were from the model with an overall minimal MSE.

to tl = (l + 1)/2, and their proof carries over to this case with-
out changes. �

From (23), we see that the objective function values converge
at rate O(l−2) for the given choice of extrapolation sequence.
Without extrapolation, that is, withωl = 0 for all l ∈ N, the con-
vergence rate is O(l−1), see, for example, Theorem 1.1 in Beck
and Teboulle (2010). In this case (x(l)) always converges toward
a minimizer, see Theorem 1.2 in Beck and Teboulle (2010). We
are not aware of results that establish convergence of (x(l)) for
general h when extrapolation is used. However, if X has rank
p and the weights are all strictly positive, the quadratic h given
by (15) results in a strictly convex and level bounded objective
function G, in which case (23) forces (x(l)) to converge toward
the unique minimizer.

The following result shows how the tensor product struc-
ture can be exploited to give a computable upper bound on the
Lipschitz constant (22).

Proposition 1. LetW (k) denote the diagonal weight matrix with
diagonal elements w(k)

i , i = 1, . . . , n, then

L(k) ≤ L̂(k) := max(w(k)
i )

n

c∑
r=1

d∏
j=1

�(X�
r, jXr, j), (25)

where � denotes the spectral radius.

Proof. Since the spectral norm is an operator norm, it is submul-
tiplicative, which gives that

L(k) ≤ 1
n
‖X�‖2‖X‖2‖W (k)‖2 = 1

n
‖X‖22‖W (k)‖2. (26)

NowW (k) is diagonal with nonnegative entries, so ‖W (k)‖2 =
max(w(k)

i ), and ‖X‖22 is the largest eigenvalue of the symmetric
matrix X�X (the spectral radius), hence

L(k) ≤ max(w(k)
i )

n
�(X�X ). (27)

Furthermore, as X�X is a positive semidefinite matrix with
diagonal blocks given by X�

r Xr, we get (see, e.g., Lemma 3.20
in Bapat 2010) that

�(X�X ) ≤
c∑

r=1

�(X�
r Xr). (28)

By the properties of the tensor product, we find that

X�
r Xr = X�

r,1Xr,1 ⊗ · · · ⊗ X�
r,dXr,d, (29)

whose eigenvalues are of the form α1,k1α2,k2 . . . αd,kd , with α j,k j

being the k jth eigenvalue of X�
r, jXr, j, see, for example, Theorem

4.2.12 in Horn and Johnson (1991). In particular,

�(X�
r Xr) =

d∏
j=1

�(X�
r, jXr, j),

and this completes the proof. �

Note that for c = 1, the upper bound is L̂(k) =
max(w(k)

i )
∏d

j=1 �(X
�
1, jX1, j)/n, which is valid for any weight

matrix. If the weight matrix is itself a tensor product, it is
possible to compute the Lipschitz constant exactly. Indeed, if
W (k) = W (k)

d ⊗ · · · ⊗W (k)
1 then

X�W (k)X = X�
1,dW

(k)
d X1,d ⊗ · · · ⊗ X�

1,1W
(k)
1 X1,1,

and by similar arguments as in the proof above,

L(k) = 1
n

d∏
j=1

�(X�
1, jW

(k)
j X1, j). (30)

The outer loop is similar to the outer loop used in, for
example, the R packages glmnet, Friedman et al. (2010), and
sglOptim, Vincent and Hansen (2014). For completeness, we
demonstrate that the outer loop with the stepsize determined by
theArmijo rule is a special case of the algorithm treated in Tseng
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and Yun (2009), which implies a global convergence result of the
outer loop.

Following Tseng and Yun (2009), the Armijo rule gives the
stepsize αk := bjα0, where α0 > 0 and b ∈ (0, 1) are given con-
stants and j is determined as follows: With d(k) = θ̃ (k+1) − θ (k)

and

�k := −(u(k))�Xd(k) + λ(J(θ̃ (k+1))− J(θ (k))),

then j ∈ N0 is the smallest nonnegative integer for which

F(θ (k) + bjα0d(k)) ≤ F(θ (k))+ bjα0v�k, (31)

where v ∈ (0, 1) is a fixed constant.

Theorem 2. Let the stepsize, αk, be given by the Armijo rule
above. If the design matrix X has rank p and if there exist con-
stants c̄ ≥ c > 0 such that for all k ∈ N the diagonal weights in
W (k), denoted w(k)

i , satisfy

c ≤ w(k)
i ≤ c̄ (32)

for i = 1, . . . , n, then (F(θ (k))) is nonincreasing and any cluster
point of (θ (k)) is a stationary point of the objective function F .

Proof. The theorem is a consequence of Theorem 1 (a) and (e) in
Tseng and Yun (2009) once we have established that the search
direction, d(k) = θ̃ (k+1) − θ (k), coincides with the search direc-
tion defined by (6) in Tseng and Yun (2009). Letting d := θ −
θ (k) denote a (potential) search direction we see that

1
2n

‖
√
W (k)(Xθ − z(k))‖22

= 1
2n
(−(W (k))−1u(k)

+X (θ − θ (k)))�W (k)(−(W (k))−1u(k) + X (θ − θ (k)))

= 1
2n
((u(k))�(W (k))−1u(k) − (u(k))�Xd − d�X�u(k)

+ d�X�W (k)Xd)

∝ − (u(k))�X︸ ︷︷ ︸
∇θ l(η(k) )�

d + 1
2
d� X�W (k)X︸ ︷︷ ︸

H (k)

d +Ck,

whereCk is a constant not depending upon θ . This shows that

d(k) = argmin
d∈Rp

−∇θ l(η(k))�d + 1
2
d�H (k)d + λJ(θ (k) + d),

(33)

and this is indeed the search direction defined by (6) in Tseng
andYun (2009) (with the coordinate block consisting of all coor-
dinates). Observe that H (k) = XTW (k)X fulfills Assumption 1
in Tseng and Yun (2009) by the assumptions that X has rank p
and that the weights are uniformly bounded away from 0 and
∞. Therefore, all conditions for Theorem 1 in Tseng and Yun
(2009) are fulfilled, which completes the proof. �

The convergence conclusion can be sharpened by making
further assumptions on the objective function and the weights.

Corollary 1. Suppose that the weights are given by

w(k)
i = ϑ ′(η(k)i )(g−1)′(η(k)i ), i = 1, . . . , n. (34)

If X has rank p, if F is level bounded, if the PMLE, θ∗, is unique
and if (g−1)′ is nonzero everywhere it holds that θ (k) → θ∗ for
k → ∞.

Proof. The sublevel set �0 := {θ | F(θ ) ≤ F(θ (0))} is bounded
by assumption, and it is closed because J is closed and−l is con-
tinuous. Hence, �0 is compact. Since the weights as a function
of θ ,

θ �→ ϑ ′(ηi(θ ))(g−1)′(ηi(θ )) (35)

for i = 1, . . . , n, are continuous and strictly positive
functions—because (g−1)′ is assumed nonzero everywhere,
see Appendix B—they attain a strictly positive minimum and a
finite maximum over the compact set�0. This implies that (32)
holds. Since θ (k) ∈ �0 and θ∗ is a unique stationary point in
�0, it follows from Theorem 2, using again that�0 is compact,
that θ (k) → θ∗ for k → ∞. �

The weights given by (34) are the common weights used for
GLMs, but exactly the same argument as above applies to other
choices as long as they are strictly positive and continuous func-
tions of the parameter θ . A notable special case is w(k)

i = 1.
Another possibility, which is useful in the framework ofGLAMs,
is discussed in Section 6.

Observe that if−l is strongly convex, then F is level bounded,
X has rank p and θ∗ is unique. If X does not have rank p, in par-
ticular, if p > n, we are not presenting any results on the global
convergence of the outer loop. Clearly, additional assumptions
on the penalty function J must then be made to guarantee
convergence.

6. Implementation

In this section, we show how the computations required in
the GD-PG algorithm can be implemented to exploit the array
structure. The penalty function J is not assumed to have any
special structure in general, and its evaluation is not discussed,
but we do briefly discuss the computation of the proximal
operator for some special choices of J. We also describe the R
package, glamlasso, which implements the algorithm for
two- and three-dimensional array models with the �1-penalty
and the smoothly clipped absolute deviation (SCAD) penalty,
and we present results of further benchmark studies using
simulated data.

6.1. Array Operations

The linear algebra operations needed in the GD-PG algorithm
can all be expressed in terms of two maps, H and G, which are
defined below. The maps work directly on the tensor factors in
terms of ρ defined in Appendix A. Introduce

H(〈Xr, j〉, 〈�r〉) :=
c∑

r=1

ρ(Xr,d, . . . , ρ(Xr,1,�r) . . .), (36)

which gives an n1 × · · · × nd array such that vec(H(〈Xr, j〉,
〈�r〉)) is the linear predictor. Introduce also

G(〈Xr, j〉,U ) := 〈ρ(X�
1,d, . . . , ρ(X

�
1,1,U ) . . .), . . . ,

ρ(X�
c,d, . . . , ρ(X

�
c,1,U ) . . .)〉 (37)
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718 A. LUND, M. VINCENT, AND N. R. HANSEN

forU an n1 × · · · × nd array, which gives a tuple of c arrays. The
map G is used to carry out the gradient computation in (4).

In the following we describe how the linear algebra opera-
tions required in Steps 2, 4, and 5 in Algorithm 1 can be car-
ried out using the two maps above. In doing so we use “≡” to
denote equality of vectors and arrays (or tuples of arrays) up to a
rearrangement of the entries. In the implementation such a rear-
rangement is never required, but it gives a connection between
the array and vector representations of the components in the
algorithm.

Step 2: The linear predictor is first computed,

X�θ (k) ≡ H(〈Xr, j〉, 〈�(k)
r 〉). (38)

The arrayV (k) is computed by an entrywise compu-
tation, for example, by (34). The arraysU (k) and Z(k)
are computed by entrywise computations using (B.2)
and (9), respectively. If the weights given by (34) are
used, Z(k) can be computed directly by (B.4) andU (k)

does not need to be computed.
Step 4: In the inner PG loop, the gradient, ∇h, must be

recomputed in each iteration. To this end,

X�W (k)z(k) ≡ G(〈Xr, j〉,V (k) � Z(k)) (39)

is precomputed. Here, � denotes the entrywise
(Hadamard) product. Then ∇h(θ ) is computed in
terms of

X�W (k)Xθ ≡ G(〈Xr, j〉,V (k) � H(〈Xr, j〉, 〈�r〉)). (40)

Step 5: For the stepsize computation using the Armijo rule
the linear predictor,

X�θ̃ (k+1) ≡ H(〈Xr, j〉, 〈�̃(k+1)
r 〉), (41)

is first computed. The computation of�k is achieved
via computing inner products of U (k) and the lin-
ear predictors (38) and (41). The line search then
involves iterative recomputations of the linear pre-
dictor via the map H.

If δk is not chosen sufficiently small to guarantee conver-
gence of the inner PG loop, a line search must also be car-
ried out in Step 4. To this end, repeated evaluations of h are
needed, with h(θ ) being computed as the weighted 2-norm of
H(〈Xr, j〉, 〈�r〉)− Z(k) with weightsV (k).

6.2. Tensor ProductWeights

The bottleneck in the GD-PG algorithm is (40), which is an
expensive operation that has to be carried out repeatedly. If the
diagonal weight matrix is a tensor product, the computations
can be organized differently. This can reduce the run time, espe-
cially when pr, j < nj.

Suppose thatW (k) = W (k)
d ⊗ · · · ⊗W (k)

1 , then

X�
r W

(k)Xm = X�
r,dW

(k)
d Xm,d ⊗ · · · ⊗ X�

r,1W
(k)
1 Xm,1,

r,m = 1, . . . , c.

Hence X�W (k)X has tensor product blocks and (40) can be
replaced by

X�W (k)Xθ ≡ 〈H(〈X�
1, jW

(k)
j Xr, j〉, 〈�r〉),

. . . ,H(〈X�
c, jW

(k)
j Xr, j〉, 〈�r〉)〉. (42)

The matrix products X�
r,kW

(k)
j Xm, j for r,m = 1, . . . , c and j =

1, . . . , d can be precomputed in Step 4.
If the weight matrix is not a tensor product, it might be

approximated by one so that (42) can be exploited. With V (k)

denoting the weights in array form, then V (k) can be approxi-
mated by V̂ (k), where

V̂ (k)
i1,...,id = v̂ (k)1,i1 . . . v̂

(k)
d,id
, (43)

with

v̂ (k)j,i j =
( ∏

i1,...,i j−1,i j+1,...,id

V (k)
i1,...,id

V (k)

) 1
mj

= exp
(

1
mj

∑
i1,...,i j−1,i j+1,...,id

logV (k)
i1,...,id − logV (k)

)
.

Heremj = n/nj = ∏
j′ �= j n j′ and

V (k) =
( ∏

i1,...,id

Vi1,...,id

) 1
n

.

The array V̂ (k) is equivalent to a diagonal weight matrix, which
is a tensor product of diagonal matrices with diagonals (v̂ (k)j,i ).
Observe that if the weights in V (k) satisfy (32) then so do the
approximating weights in V̂ (k).

6.3. Proximal Operations

Efficient computation of the proximal operator is necessary for
the inner PG loop to be fast. Ideally proxγ (z) should be given
in a closed form that is fast to evaluate. This is the case for
several commonly used penalty functions such as the 1-norm,
the squared 2-norm, their linear combination, and several other
separable penalty functions.

For the 1-norm, proxγ (z) is given by soft thresholding, see
Beck and Teboulle (2010) or Parikh and Boyd (2014), that is,

proxγ (z)i = (|zi| − γ )+sign(zi). (44)

For the squared 2-norm (ridge penalty), the proximal operator
amounts to multiplicative shrinkage,

proxγ (z) = 1
1 + 2γ

z, (45)

see, for example, Moreau (1962). For the elastic net penalty,

J(θ ) = ||θ ||1 + α||θ ||22, (46)

the proximal operator amounts to a composition of the proximal
operators for the 1-norm and the squared 2-norm, that is,

proxγ (z)i = 1
1 + 2αγ

(|zi| − γ )+sign(zi), (47)
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see Parikh and Boyd (2014). For more examples see Parikh and
Boyd (2014) and see also Zhang, Jiang, and Luo (2013) for the
proximal group shrinkage operator.

6.4. The glamlasso R Package

The glamlasso R package provides an implementation of the
GD-PG algorithm for �1-penalized as well as SCAD-penalized
estimation in two- and three-dimensional GLAMs.We note that
as the SCAD penalty is nonconvex the resulting optimization
problem becomes nonconvex and hence falls outside the orig-
inal scope of our proposed method. However, by a local lin-
ear approximation to the SCAD penalty, one obtains a weighted
�1-penalized problem. This is a convex problem, which may
be solved within the framework proposed above. Especially,
by iteratively solving a sequence of appropriately weighted �1-
penalized problems, it is, in fact, possible to solve nonconvex
problems, see Zou and Li (2008). In the glamlasso package,
this is implemented using the multistep adaptive lasso (MSA-
lasso) algorithm from Bühlmann and van de Geer (2011).

The package is written in C++ and uses the Rcpp package
for the interface to R, see Eddelbuettel and François (2011). At
the time of writing, this implementation supports the Gaussian
model with identity link, the Binomial model with logit link, the
Poisson model with log link, and the Gamma model with log
link, but see Lund (2016) for the current status.

The functionglamlasso in the package solves the problem
(5) with J either given by the �1-penalty or the SCAD penalty for
a (user-specified) number of penalty parameters λmax > · · · >
λmin. Hereλmax is the infimumover the set of penalty parameters
yielding a zero solution to (5) and λmin is a (user-specified) frac-
tion of λmax. For each model (λ-value), the algorithm is warm-
started by initiating the algorithmat the solution for the previous
model.

The interface of the function glamlasso resembles
that of the glmnet function with some GD-PG-specific
options.

The argument penalty controls the type of penalty to use.
Currently, the �1-penalty (”lasso”) and the SCAD penalty
(”scad”) are implemented.

The argument steps controls the number of steps to use in
the MSA algorithm when the SCAD penalty is used.

The argument ν ∈ [0, 1] (nu) controls the stepsize in the
inner PG loop relative to the upper bound, L̂(k), on the Lips-
chitz constant. Especially, for ν ∈ (0, 1) the stepsize is initially
δ(k) := 1/(νL̂(k)) and the backtracking procedure from Beck
and Teboulle (2009) is employed only if divergence is detected.
For ν = 1, the stepsize is δ(k) := 1/L̂h and no backtracking is
done. For ν = 0, the stepsize is initially δ(k) := 1 and backtrack-
ing is done in each iteration.

The argument iwls = c(”exact”, ”one”,
”kron1”, ”kron2” ) specifies whether a tensor product
approximation to the weights or the exact weights are used. The
exact weights are the weights given by (34). Note that while
a tensor product approximation may reduce the run time for
the individual steps in the inner PG loop, it may also affect the
convergence of the entire loop negatively.

Finally, the argument Weights allows for a specification
of observation weights. This can be used—as mentioned in

Currie, Durban, and Eilers (2006)—as a way to model scattered
(nongrid) data using a GLAM by binning the data and then
weighing each bin according to the number of observations
in the bin. By setting some observation weights to 0, it is also
possible to model incompletely observed arrays as illustrated in
Section 4.3

6.5. Benchmarking on Simulated Data

To further investigate the performance of the GD-PG algorithm
and its implementation inglamlasso, we carried out a bench-
mark study based on simulated data from a three-dimensional
GLAM. We report the setup and the results of the benchmark
study in this section. See the supplementary materials online for
scripts used in this section.

For each j ∈ {1, 2, 3}, we generated an nj × p j matrix Xj by
letting its rows be nj independent samples from an Np j (0, �)
distribution. The diagonal entries of the covariance matrix �
were all equal to σ > 0 and the off diagonal elements were all
equal to κ for different choices of κ . Since the design matrix
X = X3 ⊗ X2 ⊗ X1 is a tensor product, there is a nonzero cor-
relation between the columns of X even when κ = 0. Further-
more, each column of X contains n samples from a distribu-
tion with density given by aMeijerG-function, see Springer and
Thompson (1970).

We considered designs with n1 = 60r, n2 = 20r, n3 = 10r
and p1 = max{3, n1q}, p2 = max{3, n2q}, p3 = max{3, n3q} for
a sequence of r-values and q ∈ {0.5, 3}. The number q controls
if p < n or p > n and the size of the design matrix increases
with r.

The regression coefficients were generated as

θm = (−1)m exp
(−(m − 1)

10

)
Bm, m = 1, . . . , p,

whereB1, . . . ,Bp are iid Bernoulli variableswithP(Bm = 1) = s
for s ∈ [0, 1]. Note that s controls the sparsity of the coefficient
vector and s = 1 results in a dense parameter vector.

We generated observations from two differentmodels for dif-
ferent choices of parameters.

Gaussian models: We generated Gaussian observations with
unit variance and the identity link with
a dense parameter vector (s = 1). The
design was generated with σ = 1 and κ ∈
{0, 0.25} for p < n and κ = 0 for p > n.

Poisson models: We generated Poisson observations with
the log link function with a sparse
parameter vector (s = 0.01). The design
was generated with σ = 0.71 and κ ∈
{0, 0.25} for p < n and κ = 0 for p > n.
It is worth noting that this quite artifi-
cial Poisson simulation setup easily gener-
ates extremely large observations, which
in turn can cause convergence prob-
lems for the algorithms, or even NA
values.

For each of the two models above and for the different com-
binations of design and simulation parameters, we computed
the PMLE using glamlasso as well as glmnet for the same
sequence of λ-values. The default length of this sequence is 100,
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Figure . Benchmark results for the Gaussian models and p < n. Run time in seconds is shown as a function of the size of the design matrix in GB (left). Relative mean
deviation in the attained objective function values as given by () is shown as a function of model number (right). The top row gives the results for κ = 0 and the bottom
for κ = 0.25.

however, both glmnet and glamlasso will exit if conver-
gence is not obtained for some λ value and return only the
PMLEs for the preceding models along with the corresponding
λ sequence.

This benchmark study on simulated data was carried out on
the same computer as used for the benchmark study on real data
as presented in Section 4.2 However, here we ran the simula-
tion and optimization procedures five times for each size and
parameter combination and report the run times along with
their means as well as the mean relative deviations of the objec-
tive functions. See Section 4.2 for other details on how glam-
lasso and glmnet were compared. Figures 8–10 present the
results.

Figure 8 shows the results for the Gaussianmodels for p < n.
Hereglamlasso generally outperformedglmnet in terms of
run time—especially for κ = 0. It scaled well with the size of the
designmatrix and it could fit themodel for large designmatrices
that glmnet could not handle.

It should be noted that for theGaussianmodelswith the iden-
tity link there is no outer loop, hence the comparison is in this
case effectively between the (GLAM enhanced) proximal gradi-
ent algorithm and the coordinate descent algorithm as imple-
mented in glmnet.

Figure 9 shows the results for the Poisson models for p < n.
As for the Gaussian case, glamlassowas generally faster than
glmnet. The run times for glamlasso also scaled very well
with the size of the design matrix for both values of κ .

Figure 10 shows the results for both models for p > n and
κ = 0. Here the run times were comparable for small design
matrices, with glmnet being a little faster for the Gaussian
model, but glamlasso still scaled better with the size of the
design matrix. For κ > 0 (results not shown), glamlasso
retained its benefit in terms of memory usage, but glmnet
became comparable or even faster for the Gaussian model than
glamlasso.

In the comparisons above we have not included the time
it took to construct the actual design matrix for the glmnet
procedure. However, the construction and handling of matri-
ces, whose size is a substantial fraction of the computers’ mem-
ory, was quite time consuming (between 15 min and up to 1 h)
underlining the advantage of our design matrix free method.

7. Discussion

The algorithm implemented in the R package glmnet and
described in Friedman et al. (2010) computes the penalized and
weighted least-square estimate given by (10) by a coordinate
descent algorithm. For penalty functions like the 1-norm that
induce sparsity of theminimizer, this is recognized as a very effi-
cient algorithm. Our initial strategy was to adapt the coordinate
descent algorithm to GLAMs so that it could take advantage of
the tensor product structure of the design matrix. It turned out
to be difficult to do that. It is straightforward to implement a
memory efficient version of the coordinate descent algorithm
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Figure . Benchmark results for the Poisson models and p < n. Run time in seconds is shown as a function of the size of the design matrix in GB (left). Relative mean
deviation in the attained objective function values as given by () is shown as a function of model number (right). The top row gives the results for κ = 0 and the bottom
for κ = 0.25.

that does not require the storage of the full tensor product design
matrix, but it is not obvious how to exploit the array structure to
reduce the computational complexity. Consequently, our imple-
mentation of such an algorithm was outperformed by glmnet
in terms of run time, and for this reason alternatives to the coor-
dinate descent algorithm were explored.

Proximal gradient algorithms for solving nonsmooth opti-
mization problems have recently received renewed atten-
tion. One reason is that they have shown to be useful for
large-scale data analysis problems, see, for example, Parikh and
Boyd (2014). In the image analysis literature, the proximal gra-
dient algorithm for a squared error loss with an �1-penalty is
known as ISTA (iterative selection-thresholding algorithm), see
Beck and Teboulle (2009) and Beck and Teboulle (2010). The
accelerated version with a specific extrapolation sequence was
dubbed FISTA (fast ISTA) by Beck and Teboulle (2009). For
small-scale problems and unstructured designmatrices, it is our
experience that the coordinate descent algorithm outperforms
accelerated proximal algorithms like FISTA. This observation is
also in line with the more systematic comparisons presented in
sec. 5.5 in Hastie, Tibshirani, andWainwright (2015). For large-
scale problems and/or structured design matrices—such as the
tensor product design matrices considered in this article—the
proximal gradient algorithms may take advantage of the struc-
ture. The Gaussian smoothing example demonstrated that this
is indeed the case.

When the squared error loss is replaced by the negative log-
likelihood, our proposal is similar to the approach taken in

glmnet, where penalized weighted least-square problems are
solved iteratively by an inner loop. Themain difference is that we
suggest using a proximal gradient algorithm instead of a coor-
dinate descent algorithm for the inner loop. Including weights
is only a trivial modification of FISTA from Beck and Teboulle
(2009), but the weight matrix commonly used for fitting GLMs
is not a tensor product. Despite this, it is still possible to exploit
the tensor product structure to speed up the inner loop, but by
making a tensor approximation to the weights we obtained in
some cases further improvements. For this reason, we developed
the GD-PG algorithm with an arbitrary choice of weights. The
Poisson smoothing example demonstrated that when compared
to coordinate descent, the inner PG loop was capable of taking
advantage of the tensor product structure.

The convergence analysis combines general results from the
optimization literature to obtain convergence results for the
inner proximal algorithm and the outer gradient-based descent
algorithm. These results are strongest when the design matrix
has rank p (thus requiring p ≤ n). Convergence for p > nwould
require additional assumptions on J, whichwe have not explored
in any detail. Our experience for J = ‖ · ‖1 is that the algorithm
converges in practice also when p > n. Our most important
contribution to the convergence analysis is the computation of
the upper bound L̂(k) of the Lipschitz constant L(k). This upper
bound relies on the tensor product structure. For large-scale
problems, the computation of L(k) will in general be infeasible
due to the size of X�W (k)X . However, for the tensor product
designmatrices considered, the upper bound is computable, and
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Figure . Benchmark results for p > n. Run time in seconds is shown as a function of the size of the design matrix in GB (left). Relative mean deviation in the attained
objective function values as given by () is shown as a function of model number (right). The top row gives the results for the Gaussian model and the bottom for Poisson
model.

a permissible stepsize δ(k) that ensures convergence of the inner
PG loop can be chosen.

It should be noted that the GD-PG algorithm requires mini-
mal assumptions on J, but that the proximal operator associated
with J should be fast to compute for the algorithm to be efficient.
Though it has not been explored in this article, the generality
allows for the incorporation of convex parameter constraints.
For box constraints J will be separable and the proximal oper-
ator will be fast to compute.

The simulation study confirmed what the smoothing appli-
cations had showed, namely, that the GD-PG algorithm with
J = ‖ · ‖1 and its implementation in theR packageglamlasso
scales well with the problem size. It can, in particular, effi-
ciently handle problems where the design matrix becomes pro-
hibitively large to be computed and stored explicitly. Moreover,
in the simulation study the run times were in most cases smaller
than or comparable to that of glmnet even for small prob-
lem sizes. However, the simulation study also revealed that when
p > n, the run time benefits ofglamlasso overglmnetwere
small or diminished completely—in particular for small prob-
lem sizes. One explanation could be that glmnet implements
a screening rule, which is particularly beneficial when p > n.
It appears to be difficult to combine such screening rules with
the tensor product structure of the design matrix. When p < n,
as in the smoothing applications, glamlasso was, however,
faster than glmnet and scaled much better with the size of the

problem. This was true even when a sparse representation of the
design matrix was used, though glmnet was faster and scaled
better with the size of the design matrix in this case for both
examples. It should be noted that glamlasso achieves its per-
formance without relying on sparsity of the design matrix, and
it thus works equally well for smoothing with nonlocal as well as
local basis functions.

In conclusion, we have developed and implemented an
algorithm for computing the penalized maximum likelihood
estimate for a GLAM. When compared to Currie, Durban,
and Eilers (2006), our focus has been on nonsmooth penalty
functions that yield sparse estimates. It was shown how the pro-
posed GD-PG algorithm can take advantage of the GLAM data
structure, and it was demonstrated that our implementation
is both time and memory efficient. The smoothing examples
illustrated how GLAMs can easily be fitted to 3D data on a
standard laptop computer using the R package glamlasso.

Appendix A: TheMaps vec and ρ

Themap vec maps an n1 × · · · × nd array to a
∏d

i=1 nd-dimensional vector.
This is sometimes known as “flattening” the array. For j = 1, . . . , d and
i j = 1, . . . , nj introduce the integer

[i1, . . . , id] := i1 + n1((i2 − 1)+ n2((i3 − 1)+ · · · nd−1(id − 1) . . .)).
(A.1)
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Then vec is defined as

vec(A)[i1,...,id ] := Ai1,...,id (A.2)

for an array A. This definition of vec corresponds to flattening a matrix in
column-major order.

Following the definitions in Currie, Durban, and Eilers (2006) (see also
De Boor 1979; Buis and Dyksen 1996), ρ maps an r × n1 matrix and an
n1 × · · · × nd array to an n2 × · · · × nd × r array. With X the matrix and
A the array then

ρ(X,A)i1,...,id :=
∑
j

Xid , jA j,i1,...,id−1 . (A.3)

From this definition, it follows directly that

(Xd ⊗ · · · ⊗ X1) vec(A)[i1,...,id ]

=
∑
j1,..., jd

Xd,id , jd . . .X1,i1, j1Aj1,..., jd

=
∑
jd

Xd,id , jd · · ·
∑
j2

X2,i2, j2

∑
j1

X1,i1, j1Aj1,..., jd

= ρ(Xd, . . . , ρ(X2, ρ(X1,A)) . . .)i1,...,id

where [i1, . . . , id] denotes the index defined by (A.1).

Appendix B: Exponential Families
The exponential families considered are distributions on R whose density
is

fϑ,ψ (y) = exp
(a(ϑy − b(ϑ ))

ψ

)

w.r.t. some reference measure. Here ϑ is the canonical (real valued) param-
eter, ψ > 0 is the dispersion parameter, a > 0 is a known and fixed weight
and b is the log-normalization constant as a function of ϑ that ensures that
the density integrates to 1. In general, ϑ may have to be restricted to an
interval depending on the reference measure used. Note that the reference
measure will depend upon ψ but not on ϑ .

With η denoting the linear predictor in a generalized linear model, we
regard ϑ(η) as a parameter function that maps the linear predictor to the
canonical parameter, such that the mean equals g−1(η) when g is the link
function. From this it can easily be derived that b′(ϑ(η)) = g−1(η). For
a canonical link function, ϑ(η) = η and b′ = g−1. In terms of η the log-
density can be written as

log fϑ(η),ψ (y) ∝ a(ϑ(η)y − b(ϑ(η))).

From this it follows that

∂η log fϑ(η),ψ (y) = aϑ ′(η)(y − g−1(η)), (B.1)

and the score statistic, u = ∇ηl(η), entering in (4) is thus given by

ui = aiϑ ′(ηi)(yi − g−1(ηi)), i = 1, . . . n. (B.2)

The weights commonly used when fitting a GLM are

wi = ϑ ′(ηi)(g−1)′(ηi), (B.3)

which are known to be strictly positive provided that (g−1)′ is nonzero
everywhere (thus g−1 is strictly monotone). This is not entirely obvious, but
wi is the variance of ui (with ai = 1 andψ = 1), which is nonzerowhenever
(g−1)′ is nonzero everywhere.

We may note that when the weights are given by (B.3), the working
response z, see (9), given the linear predictor η can be computed as

zi = ai(yi − g−1(ηi))g′(g−1(ηi))+ ηi, (B.4)

which renders it unnecessary to compute the intermediate score statistic.

Supplementary Materials

SuppMatJCGS: SuppMatJCGS is a folder containing scripts and datasets
used in the examples in Sections 4.2.1, 4.2.2, 4.3, and 6.5 along with a
ReadMe file. (SuppMatJCGS.zip, zipped file).
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