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1. Introduction

The sparse group lasso is a regularization method that combines the lasso (Tibshirani, 1994) and the group lasso (Meier
et al., 2008). Friedman et al. (2010a) proposed a coordinate descent approach for the sparse group lasso optimization
problem. Simon et al. (2013b) used a generalized gradient descent algorithm for the sparse group lasso and considered
applications of this method to linear, logistic and Cox regressions. We present a sparse group lasso algorithm suitable for high
dimensional problems. This algorithm is applicable to a broad class of convex loss functions. In the algorithm we combine
three non-differentiable optimization methods: the coordinate gradient descent (Tseng and Yun, 2009), the block coordinate
descent (Tseng, 2001) and a modified coordinate descent method.

Our main application is to multiclass classification based on the multinomial regression model. The lasso penalty has, for
some time, been considered as a regularization approach for multinomial regression (Friedman et al.,2010b). The parameters
in the multinomial model are, however, naturally structured, with multiple parameters corresponding to one feature, and
the lasso penalty does not take this structure into account. To accommodate for this we suggest to add a group lasso term
with the parameters corresponding to the same feature grouped together. The resulting penalty is known as the sparse
group lasso penalty. We found that using the sparse group lasso penalty for multinomial regression generally improved the
performance of the estimated classifier and reduced the number of features included in the model.

The formulation of an efficient and robust sparse group lasso algorithm is not straightforward due to non-differentiability
of the penalty. First, the sparse group lasso penalty is not completely separable, which is problematic when using a standard
coordinate descent scheme. To obtain a robust algorithm an adjustment is necessary. Our solution, which efficiently treats
the singularity at zero that cannot be separated out, is a minor modification of the coordinate descent algorithm. Second,
our algorithm is a Newton type algorithm, hence we sequentially optimize penalized quadratic approximations of the loss
function. This approach raises another challenge: how to reduce the costs of computing the Hessian? In Section 3.6 we show
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that an upper bound on the Hessian is sufficient to determine whether the minimum over a block of coefficients is attained
at zero. This approach enables us to update a large percentage of the blocks without computing the complete Hessian. In
this way we reduce the run-time, provided that the upper bound of the Hessian can be computed efficiently. We found that
this approach reduces the run-time on large data sets by a factor of more than 2.

Our focus is on applications of the multinomial sparse group lasso to problems with many classes. For this purpose we
have investigated three multiclass classification problems. We found that multinomial group lasso and sparse group lasso
perform well on these problems. The error rates were substantially lower than the best obtained with multinomial lasso, and
the low error rates were achieved for models with fewer features having non-zero coefficients. For example, we consider a
text classification problem consisting of Amazon reviews with 50 classes and 10 k textual features. This problem showed a
large improvement in the error rates: from approximately 40% for the lasso to less than 20% for the group lasso.

We provide a generic implementation of the sparse group lasso algorithm in the form of a C++ template library.
The implementation for multinomial and logistic sparse group lasso regressions is available as an R package. For our
implementation the time to compute the sparse group lasso solution is of the same order of magnitude as the time required
for the multinomial lasso algorithm as implemented in the R package glmnet. The computation time of our implementation
scales well with the problem size.

1.1. Sparse group lasso

Consider a convex, bounded below and twice continuously differentiable function f : R"™ — R. We say that B e R"isa
sparse group lasso minimizer if it is a solution to the unconstrained convex optimization problem

minimize f + A® (1)

where @ : R" — R is the sparse group lasso penalty (defined below) and A > 0.
Before defining the sparse group lasso penalty some notation is needed. We decompose the search space

R"=R" x ... x R™

into m € N blocks having dimensions n; € Nfori = 1,...,m, hencen = ny + - -- + n,,. For a vector 8 € R" we write
B = BY,..., ™) where BV € R, ..., ™ e R™ ForJ = 1,...,m we call 8O the J'th block of 8. We use the
notation /31'(]) to denote the i'th coordinate of the J'th block of 8, whereas g; is the i’th coordinate of .

Definition 1 (Sparse Group Lasso Penalty). The sparse group lasso penalty is defined as
def m n
e
PBEA—a) Yy |BV],+a ) &lBl
J=1 i=1

for « € [0, 1], group weights y € [0, c0)™, and parameter weights & = (€@, ... €M) e [0, c0)* where £V ¢
[0, 00)", ..., ™ € [0, co)™.

The sparse group lasso penalty includes the lasso penalty (¢« = 1) and the group lasso penalty (o« = 0). Note also that for
sufficiently large values of X the solution of (1) is zero. The infimum of these, denoted ).y, is computable, see Section 3.2.
We emphasize that the sparse group lasso penalty is specified by

e a grouping of the parameters 8 = (8", ..., p™),
e and the weights «, y and &.

It is well known that the lasso penalty results in sparse solutions to (1), while the group lasso penalty results in groupwise
sparse solutions (that is, the entire group of parameters is zero or non-zero). However group lasso does not give sparsity
within groups — sparse group lasso does.

In the second part of the paper we develop an algorithm for solving the optimization problem (1). The convergence of the
algorithm is established for any sparse group lasso penalty, regardless of how the parameters are grouped. For multinomial
regression, as considered in the next section, we restrict attention to a specific grouping of the parameters that reflects the
features. In the symmetric parametrization of the multinomial regression model with K classes there are K parameters per
feature. Our suggestion is to group these K parameters together. Thus we do not group the features, only the parameters
associated with each feature. For the examples we considered this particular grouping resulted in models with fewer features
having non-zero parameters compared to ordinary lasso penalization. More importantly, the error rates were typically also
smaller.

Our msgl R package supports the particular grouping for multinomial regression as well as additional groupings of the
features, i.e. the number of parameters in each group is a multiple of K. The sgl C++ template library can be configured to
handle any grouping.
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Table 1

Summary of data sets and the associated classification problem.
Data set Features K N p
Cancer sites microRNA expressions 18 162 217
Amazon reviews  Various textual features 50 1500 10k
Muscle diseases Gene expression 10 107 22k

2. The multinomial sparse group lasso classifier

In this section we examine the characteristics of the multinomial sparse group lasso method. Our main interest is the
application of the multinomial sparse group lasso classifier to problems with many classes. For this purpose we have chosen
three classification problems based on three different data sets, with 10, 18 and 50 classes. In Lu et al. (2005) the microRNA
expression profile of different types of primary cancer samples is studied. In Section 2.2.1 we consider the problem of
classifying the primary site based on the microRNA profiles in this data set. The Amazon reviews author classification
problem, presented in Liu et al. (2011), is studied in Section 2.2.2. The messenger RNA profile of different human muscle
diseases is studied in Bakay et al. (2006). We consider, in Section 2.2.3, the problem of classifying the disease based on
the messenger RNA profiles in this data set. Table 1 summarizes the dimensions and characteristics of the data sets and the
associated classification problems. Finally, in Section 2.3, we examine the characteristics of the method applied to simulated
data sets.

2.1. Setup

Consider a classification problem with K classes, N samples, and p features. Assume given a data set (x1, y1), ..., (Xn, Yn)
where, foralli = 1,...,N,x; € RP is the observed feature vector and y; € {1, ..., K} is the categorical response. We
organize the feature vectors in the N x p design matrix

XExy x0T

As in Friedman et al. (2010b) we use a symmetric parametrization of the multinomial model. With h : {1, ..., K} x R?
— R given by

hd. ) def KeXP(m) 7

> exp(mi)

k=1

the multinomial model is specified by
P(y; = llx) = h(, B + Bx).

The model parameters are organized in the K-dimensional vector, 89, of intercept parameters together with the K x p
matrix

13d=5f(13(1)“.ﬂ(p))’ (2)

where 8@ e RX are the parameters associated with the i'th feature.
The log-likelihood is

N
(B2, p) = Zlogh()’i, B + Bx). )
i=1

Our interest is the sparse group lasso penalized maximum likelihood estimator. Thatis, (8@, ) is estimated as a minimizer
of the sparse group lasso penalized negative-log-likelihood:

p Kp
—K(ﬁ(o),ﬁ)+k<(1—a)2yjIIﬂ(’)H2+aZ§ilﬂfl>- (4)
J=1

i=1

In our applications we let y; = JKforall] =1,...,pand& = 1foralli = 1, ..., Kp, but other choices are possible in the
implementation. Note that the parameter grouping, as part of the penalty specification, is given in terms of the columns in
(2),i.e.m=p.

A common parametrization of the multinomial regression model singles out a reference class, and the probabilities of the
other classes are then given relative to the reference class. As pointed out in Kim et al. (2006) this is problematic when lasso
penalization is used for parameter estimation, and the symmetric parametrization introduced above, and used in Friedman
et al. (2010b) as well, is preferred. It ensures that the resulting estimator is invariant to permutations of the classes. The
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parameters in the symmetric parametrization are, however, not identifiable. If 8; denotes the I'th row of the matrix 8, then

forl, k=1,...,K
P(yi = I|x)
P(yi = k|x)

and it follows that the differences 8; — By and ,3,(0) — ,8,50) are identifiable. In practice, as was also noted in Section 4.1 in
Friedman et al. (2010b), the consequence of the penalization is that the estimated parameters minimize the sparse group
lasso penalty among all equivalent parameters. If some parameters, like 8, are not penalized, a procedure like mean
centering suggested in Friedman et al. (2010b) can be used to numerically select one of the equivalent parameters.

=exp(8” — B + (B — B),

2.2. Data examples

The data sets were preprocessed before applying the multinomial sparse group lasso estimator. Two preprocessing
schemes were used: normalization and standardization. Normalization is sample centering and scaling in order to obtain
a design matrix with row means 0 and row variances 1. Standardization is feature centering and scaling in order to obtain a
design matrix with column means 0 and column variances 1. Note that the order in which normalization and standardization
are applied matters.

The purpose of normalization is to remove technical (non-biological) variation. A range of different normalization
procedures exist for biological data. Sample centering and scaling is one of the simpler procedures. We use this simple
normalization procedure for the two biological data sets in this paper. Normalization is done before and independently of
the sparse group lasso algorithm.

The purpose of standardization is to create a common scale for the features. This ensures that differences in scale will not
influence the penalty and thus the variable selection. Standardization is an option for the sparse group lasso implementation,
and it is applied as the last preprocessing step for all three example data sets.

We want to compare the performance of the multinomial sparse group lasso estimator for different values of the
regularization parameter «. Applying the multinomial sparse group lasso estimator with a given « € [0, 1] and A-sequence,
M, ..., Ag > 0O, results in a sequence of estimated models with parameters {B (Ai, @) }i=1,... ¢- The generalization error can be
estimated by cross validation (Hastie et al., 2001). For our applications we keep the sample ratio between classes in the cross
validation subsets approximately fixed to that of the entire data set. Hence, we may compute a sequence, {Err(A;, @) }i=1,.._.4,
of estimated expected generalization errors for the sequence of models. However, for given oy and o, we cannot simply
compare Err(};, 1) and Err(};, a3), since the }; value is scaled differently for different values of . We will instead compare
the models with the same number of non-zero parameters and the same number of non-zero parameter groups, respectively.
Define

def

b
OO ) =Y 1BV (@) #0)

J=1

with ﬁ(k, «) the estimator of g for the given values of X and «. That s, é (A, ) is the number of non-zero parameter blocks
in the fitted model. Note that there is a one-to-one correspondence between parameter blocks and features in the design
matrix. Furthermore, we define the total number of non-zero parameters as

10, ) E Y 1(BiG, @) #0).
i=1

In particular, we want to compare the fitted models with the same number of parameter blocks. There may, however,
be more than one A-value corresponding to a given value of @. Thus we compare the models on a subsequence of the
A-sequence. This subsequence is defined below. With 0; < --- < 6y for d’ < d denoting the different elements of the set
{(:) (Ai, @)}i=1...q in increasing order we define

Ji(@) & min {A )é(x,a) - 9,-}.
We then compare the characteristics of the multinomial sparse group lasso estimators for different « values by comparing
the estimates

[(BnGi@). @, 6Gu@). 1Gi@)) ]

i=

2.2.1. Cancer sites

The data set consists of bead-based expression data for 217 microRNAs from normal and cancer tissue samples. The
samples are divided into 11 normal classes, 16 tumor classes and 8 tumor cell line classes. For the purpose of this study we
select the normal and tumor classes with more than 5 samples. This results in an 18 class data set with 162 samples. The
data set is unbalanced, with the number of samples in each class ranging from 5 to 26 and with an average of 9 samples per



M. Vincent, N.R. Hansen / Computational Statistics and Data Analysis 71 (2014) 771-786 775

0.30 - 1
0.28 - \ 1
0.26 \ .
a —
g 9247 11 a=025
(5022 | — 005
0.20 - 1 \ —a=075
0.18 - 7 lasso
0.16 - 1
20 40 60 80 100 120 500 1000 1500
8) 1

Fig. 1. Estimated expected generalization error, for different values of «, for the microRNA cancer site data set. The cross validation based estimate of
the expected misclassification error is plotted against the number of non-zero parameter blocks in the model (left), and against the number of non-zero
parameters in the model (right). The estimated standard error is approximately 0.03 for all models.
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Fig. 2. Estimated expected generalization error, for different values of «, for the Amazon reviews author classification problem. The cross validation based
estimate of the expected misclassification error is plotted against the number of non-zero parameter blocks in the model (left), and against the number of
non-zero parameters in the model (right). The estimated standard error is approximately 0.01 for all models.

class. Data was normalized and then standardized before running the sparse group lasso algorithm. For more information
about this data set see Lu et al. (2005). The data set is available from the Gene Expression Omnibus with accession number
GSE2564.

Fig. 1 shows the result of a 10-fold cross validation for 5 different values of «, including the lasso and group lasso. The
A-sequence runs from Ay to 1074, with d = 200. It is evident that the group lasso and sparse group lasso models achieve
a lower expected error using fewer genes than the lasso model. However, models with a low « value have a larger number
of non-zero parameters than models with a high « value. A reasonable compromise could be the model with @ = 0.25. This
model does not only have a low estimated expected error, but the low error is also achieved with a lower estimated number
of non-zero parameters, compared to group lasso.

2.2.2. Amazon reviews

The Amazon review data set consists of 10 k textual features (including lexical, syntactic, idiosyncratic and content
features) extracted from 1500 customer reviews from the Amazon Commerce Website. The reviews were collected among
the reviews from 50 authors with 50 reviews per author. The primary classification task is to identify the author based on the
textual features. The data and feature set were presented in Liu et al. (2011) and can be found in the UCI machine learning
repository (Frank and Asuncion, 2010). In Liu et al. (2011) a Synergetic Neural Network is used for author classification, and
a 2 k feature based 10-fold CV accuracy of 0.805 is reported. The feature selection and training of the classifier were done
separately.

We did 10-fold cross validation using multinomial sparse group lasso for five different values of «. The results are
shown in Fig. 2. The A-sequence runs from Apax to 1074, with d = 100. The design matrix is sparse for this data set. Our
implementation of the multinomial sparse group lasso algorithm utilizes the sparse design matrix to gain speed and for
memory efficiency. No normalization was applied for this data set. Features were scaled to have variance 1, but were not
centered. For this data set it is evident that lasso performs badly, and that the group lasso performs best — in fact much
better than lasso. The group lasso achieves an accuracy of around 0.82 with a feature set of size ~1 k. This outperforms the
neural network in Liu et al. (2011).

2.2.3. Muscle diseases
This data set consists of messenger RNA array expression data of 119 muscle biopsies from patients with various muscle
diseases. The samples are divided into 13 diagnostic groups. For this study we only consider classes with more than
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Fig. 3. Estimated expected generalization error, for different values of «, for the muscle disease classification problem. The cross validation based estimate
of the expected misclassification error is plotted against the number of non-zero parameter blocks in the model (left), and against the number of non-zero
parameters in the model (right). The estimated standard error is approximately 0.04 for all models.

5 samples. This results in a classification problem with 107 samples and 10 classes. The data set is unbalanced with class
sizes ranging from 4 to 20 samples per class. Data was normalized and then standardized before running the sparse group
lasso algorithm. For background information on this data set, see Bakay et al. (2006). The data set is available from the Gene
Expression Omnibus with accession number GDS1956.

The results of a 10-fold cross validation are shown in Fig. 3. The A-sequence runs from Amax to 107>, with d = 200. We see
the same trend as in the other two data examples. Again the group lasso models perform well, but not significantly better
than the closest sparse group lasso models (o« = 0.25). The lasso models perform reasonably well on this data set, but they
are still outperformed by the sparse group lasso models.

2.3. Asimulation study

In this section we investigate the characteristics of the sparse group lasso estimator on simulated data sets. We are
primarily interested in trends in the generalization error as « is varied and A is selected by cross validation on a relatively
small training set. We suspect that this trend will depend on the distribution of the data. We restrict our attention to
multiclass data where the distribution of the features given the class is Gaussian. Loosely speaking, we suspect that if the
differences in the data distributions are very sparse, i.e. the centers of the Gaussian distributions are mostly identical across
classes, the lasso will produce models with the lowest generalization error. If the data distribution is sparse, but not very
sparse, then the optimal « is in the interval (0, 1). For a dense distribution, with center differences between all or most
classes, we expect the group lasso to perform best. The simulation study confirms this.

The mathematical formulation is as follows. Let

H= (1. Ux)
where ; € RPfori =1, ..., K and p = p,+ ps. Denote by £, a data set consisting of N samples for each of the K classes —
each sampled from the Gaussian distribution with centers w1, . .., i, respectively, and with a common covariance matrix

X.Let A be the smallest A-value with the minimal estimated expected generalization error, as determined by cross validation
on D,,. Denote by Err, (A, «) the generalization error of the model S(A, ) that has been estimated from the training set

D,,, by the sparse group lasso, for the given values of A and «. Then let
Z, (o) = Err, ()Ah a) — ErrBayes(M)

where Errgayes(1t) is the Bayes rate. We are interested in trends in Z,, as a function of «, for different configurations of
U1, ..., k. To be specific, we will sample w1, ..., ugx from one of the following distributions:

e A sparse model distribution, where the first p, entries of w; are i.i.d. with a distribution that is a mixture of the uniform
distribution on [—2, 2] and the degenerate distribution at 0 with point probability po.
e A dense model distribution, where the first p, entries of u; are i.i.d. Laplace distributed with location 0 and scale b.

The last p;, entries are zero. We take p, = |5/(1 — po)| throughout for the sparse model distribution. The within class
covariance matrix X' is constructed using features from the cancer site data set. Let Xy be the empirical covariance matrix
of p randomly chosen features. To avoid that the covariance matrix becomes singular we take

X =(1-=8)%y+ I
foré € (0, 1).
The primary quantity of interest is

err(@) €E (Z,(@) , (5)
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Fig.4. The estimated expected error gap (solid black line) for the three configurations. The central 95% of the distribution of Z, () is shown as the shaded
area on the plot. The error gap for 5 randomly selected p-configurations is shown (red dashed lines). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Thin | \ Dense

T T
— —
L. . D -]
SR RN SO e N T~ BT R e e R IS A R N < e
o o

Fig. 5. The estimated expected true positive rate (solid black line) for the three configurations. The central 95% of the distribution of tpr is shown as the
shaded area on the plot. The true positive rate for 5 randomly selected p-configurations is shown (red dashed lines). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

the expectation being over u and the data set D,,. We are also interested in how well we can estimate the non-zero patterns
of the u;’s. Consider this as Kp two class classification problems, one for each parameter, where we predict the p; to be
non-zero if Bu is non-zero, and ;; to be zero otherwise. We calculate the number of false positives, true positives, false
negatives and true negatives. The positive predictive value (ppv) and the true positive rate (tpr) are of particular interest.
The true positive rate measures how sensitive a given method is at discovering non-zero entries. The positive predictive value
measures the precision with which the method is selecting the non-zero entries. We consider the following two quantities

tpr(a) d:efE [tpr (B(i, a))] and ppv(x) d:efE [ppv ([3():, a))] . (6)

In order to estimate the quantities (5) and (6) we sample M configurations of i« from one of the above distributions. For
each configuration we sample a training and a test data set of sizes NK and 100K, respectively. Using the training data set we
fit the model B():, o) and estimate Z, («) using the test data set. Estimates err(o), t/p\r(a) and ppv(«) are the corresponding
averages over the M configurations.

For this study we chose M = 100,N = 15,K = 25,p, = 50,6 = 0.25 and the following three configuration
distributions:

e Thin configurations, where the centers are distributed according to the sparse model distribution with pg = 0.95, as

defined above.
e Sparse configurations, where the centers are distributed according to the sparse model distribution with pg = 0.80.
e Dense configurations, where the centers are distributed according to the dense model distribution with scale b = 0.2

and p, = 25.

In Fig. 4 we see that for thin configurations the lasso has the lowest estimated error gap, along with the sparse group
lasso with & = 0.8. For the sparse configurations the results indicate that the optimal choice of « is in the open interval
(0, 1), but in this case all choices of « result in a comparable error gap. For the dense configurations the group lasso is among
the methods with the lowest error gap.

In Fig. 5 we plotted the true positive rate for the three configurations. Except for the thin configurations, the lasso is
markedly less sensitive than the sparse group and group lasso methods. However, looking at Fig. 6 we see that the sparse
group and group lasso methods have a lower precision than the lasso, except for the dense configurations. We note that the
group lasso has the worst precision, except for the dense configurations.
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Fig. 6. The estimated expected positive predictive value (solid black line) for the three configurations. The central 95% of the distribution of ppv is shown
as the shaded area on the plot. The positive predictive value for 5 randomly selected p-configurations is shown (red dashed lines). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

3. The sparse group lasso algorithm

In this section we present the sparse group lasso algorithm. The algorithm is applicable to a broad class of loss functions.
Specifically, we require that the loss function f : R" — R is convex, twice continuously differentiable and bounded below.
Additionally, we require that all quadratic approximations around a point in the sublevel set

{B R f(B) +212(B) < f(Bo) + 1@ (o) |

are bounded below, where By € R" is the initial point. The last requirement will ensure that all subproblems are well
defined.

The algorithm solves (1) for a decreasing sequence of A values ranging from A, to a user specified Ap;,. The algorithm
consists of four nested main loops:

e A numerical continuation loop, decreasing A.

e An outer coordinate gradient descent loop (Algorithm 1).
e A middle block coordinate descent loop (Algorithm 2).

e An inner modified coordinate descent loop (Algorithm 3).

In Sections 3.3-3.5 we discuss the outer, middle and inner loop, respectively. In Section 3.6 we develop a method allowing
us to bypass computations of large parts of the Hessian, hereby improving the performance of the middle loop. Section 4
provides a discussion of the available software solutions, as well as run-time performance of the current implementation.

Algorithms for solving the group lasso optimization problem have been around for some time, see, for example, Simil
etal. (2007) for an interesting application to multi-response linear regression. The sparse group lasso optimization problem
is, however, more complicated, and group lasso algorithms cannot be used to compute a solution to the sparse group lasso
optimization problem. Coordinate descent methods still constitute the core of our algorithm, and we give a short review
tailored to this paper in Appendix A. See also Tseng and Yun (2009) and Tseng (2001) for further details.

3.1. The sparse group lasso penalty
In this section we derive fundamental results regarding the sparse group lasso penalty.

We first observe that @ is separable in the sense that if, for any groupJ € 1,..., m, we define the convex penalty
&9 :RY — Rby

Xi

n
VR E -y 7], +ed &
i=1

then @ (B) = 2}11 @D (BV). Separability of the penalty is required to ensure convergence of coordinate descent methods,
see Tseng and Yun (2009), Tseng (2001), and see also Appendix A.

In a block coordinate descent scheme the primary minimization problem is solved by minimizing each block, one at a
time, until convergence. We consider conditions ensuring that

0 € argming(x) + 129 (x) (7)
xer"
for a given convex and twice continuously differentiable function g : RY — R.ForJ = 1,...,m a straightforward

calculation shows that the subdifferential of @’ at zero is

30D (0) = (1 — a)y;BY + adiag( V)T
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where B" d=ef{x eR" [|x]l, <1}, T" d:ef[—l, 1]" and where for x € R" diag(x) denotes the n x n diagonal matrix with
diagonal x. For an introduction to the theory of subdifferentials see Chapter 4 in Bertsekas et al. (2003).

Proposition 1 below gives a necessary and sufficient condition for (7) to hold. Before we state the proposition the
following definition is needed.

Definition 2. For n € N we define the map « : R" x R" — R" by

def{o |zi] < v;

K (v, 2)i = z — sgn(z)v; otherwise fori=1,....n

and the function K : R" x R*" — R by

K2 Ek@ali= Y @-—sgn@w)?.

{illzi|>vi }

Proposition 1. Assume givena > 0, v, z € R" and define the closed sets
Y =z +diag(v)T, and X =aB"+Y.
Then the following hold:

a. (v, z) = argminyey [|yll,.
b. 0 € X ifand only if K(v, z) < a@°.
c. If K(v,z) > a* then arg minyey ||x]l, = (1 — a//K(v,2)) k (v, 2).

The proof of Proposition 1 is given in Appendix C. Proposition 1 implies that (7) holds if and only if

VKQagD, Vg(0) <21 —a)y.

The following observations will prove to be valuable. Note that we use < to denote coordinatewise ordering.

Lemma 1. For any three vectors v, z, ' € R" the following hold:

a. K(v,z) =K (v, |z]).
b. K(v,z) < K(v,z') when |z| < |Z/|.

Proof. (a)is a simple calculation and (b) is a consequence of the definition and (a). O

3.2, The A-sequence

For sufficiently large A values the only solution to (1) will be zero. We denote the infimum of these by A.x. By using the
above observations it is clear that

A inf{x >0 ‘B(x) - o}

= inf{k >0 ‘V] =1,...,m: \/K(mg(/), Vi) < a(1 —oz))/j}

= max inf{A >0 ‘\/K(mgw, VA0 <21 - )y } )

It is possible to compute

inf{)\ >0 ‘\/K(,\as(/), Vi0)P) < r(1 = ot)y]}
by using the fact that the function A — K(rax&?, VF(0)?) is piecewise quadratic and monotone.

3.3. Outer loop

In the outer loop a coordinate gradient descent scheme is used. In this paper we use the simplest form of this scheme. In
this simple form the coordinate gradient descent method is similar to Newton’s method; however the important difference
is the way the non-differentiable penalty is handled. The convergence of the coordinate gradient descent method is not
trivial and is established in Tseng and Yun (2009).
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The algorithm is based on a quadratic approximation of the loss function f, at the current estimate of the minimizer.
The difference, A, between the minimizer of the penalized quadratic approximation and the current estimate is then a
descent direction. A new estimate of the minimizer of the objective is found by applying a line search in the direction of
A. We repeat this until a stopping condition is met, see Algorithm 1. Note that a line search is necessary in order to ensure
global convergence. For most iterations, however, t = 1 will give sufficient decrease in the objective. With ¢ = Vf(8) and
H = V?f(B) the quadratic approximation of f around the current estimate, 8, is

1 1 1 1
¢ x=B)+ = BHTHE =) ='x—q' B+ xX'He— - (BTHx+x"HB) + S BHP.
H is symmetric, thus it follows that the quadratic approximation of f around g8 equals
T 17
Qx)—q B+ 5/‘3 HB,

where Q : R" — R is defined by

Q) (g —HB) x+ %XTHX.

We have reduced problem (1) to the following penalized quadratic optimization problem
min Q (x) + AP (x). (8)
XeRN

Algorithm 1 Outer loop. Solve (1) by coordinate gradient descent.
Require: § = Sy
repeat
Letq = Vf(B),H = V3f(B) and Q(x) = (g — HB)"x + 1xHx.
ComputeB =argminQ (x) + AP (X).
XeRM
Compute step sizet andset § = B+ tA,forA =g — B
until stopping condition is met.

The convergence of Algorithm 1 is implied by Theorem 1e in Tseng and Yun (2009). This implies:
Proposition 2. Every cluster point of the sequence {By}xen generated by Algorithm 1 is a solution of problem (1).

Remark 1. The convergence of Algorithm 1 is ensured even if H is a (symmetric) positive definite matrix approximating
VZ2f(B). For high dimensional problems it might be computationally beneficial to take H to be diagonal, e.g. as the diagonal
of V2f (B).

3.4. Middle loop

In the middle loop the penalized quadratic optimization problem (8) is solved. The penalty @ is block separable, i.e.
p
QW) + 10X =Q) +1y_ dPK")

J=0

with @9 convex, and we can therefore use the block coordinate descent method over the blocks xV, . .., x™_ The block
coordinate descent method will converge to a minimizer even for non-differentiable objectives if the non-differentiable
parts are block separable, see Tseng (2001). Since @ is separable and Q is convex, twice continuously differentiable and
bounded below, the block coordinate descent scheme converges to the minimizer of problem (8). Hence, our problem is

reduced to the following collection of problems, one foreach] =1, ..., m,
min Q¥ ®) 4+ 20?P (%) 9)
Rer"
where Q¥ : RY — R is the quadratic function
2= QM . xU7Y 2 xUED L x™)
up to an additive constant. We decompose an n x n matrix H into block matrices in the following way
Hyyn Hip -+ Him
Hyp Hyp -+ Hyp
H = . . .

Hml HmZ Hmm
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where Hy is an n; x n; matrix. By the symmetry of H it follows that
O3y — 3T o, ] ST D _ 3TH D 4 3TH, 2
QY () =X (g—HB) t3 ZZX Hyx" — 2"HyxV + X Hyx
I

N 1.0 .
= XT (q(') + [H(X — ,B)]U) — H]]X(])) + EXTH]]X
up to an additive constant. We may, therefore, redefine

A def o 1., .
QVR) EiTgW) 4 ixTHl,x

where the block gradient g?’ is defined by

def
gV =gV +Hx - BV — Hx?. (10)

For the collection of problems given by (9) a considerable fraction of the minimizers will be zero in practice. By Lemma 1
this is the case if and only if

VKQagD, g0) <A1 —a)y.

These considerations lead us to Algorithm 2.

Algorithm 2 Middle loop. Solve (8) by block coordinate descent.
repeat
Choose next block index J according to the cyclic rule.
Compute the block gradient g&.
if VK(a&D,g0) < A(1 — )y, then

Letx! = 0.
else
Letx¥ = argmin QP ®) + A0V (R).
%R
end if

until stopping condition is met.

3.5. Inner loop

Finally we need to determine the minimizer of (9), i.e. the minimizer of

ny
QV® + 21—y [&], +re Y &P ] (11)

i=0

loss

penalty

The two first terms of (11) are considered the loss function and the last term is the penalty. Note that the loss is not
differentiable at zero (due to the L,-norm), thus we cannot completely separate out the non-differentiable parts. This implies
that ordinary block coordinate descent is not guaranteed to converge to a minimizer. Algorithm 3 adjusts for this problem,
and we have the following proposition.

Proposition 3. For any € > 0 the cluster points of the sequence {X;}ren generated by Algorithm 3 are minimizers of (11).

Proof. Since Q¥ (0) + A®Y(0) = 0 Algorithm 3 is a modified block coordinate descent scheme. Furthermore J is chosen
such that (11) is not optimal at 0. We can therefore apply Lemma 4 in Appendix B, from which the claim follows directly. O

Hence, for a given block ] = 1, ..., m we need to solve the following two problems:
I. Foreachj =1, ..., nj, compute a minimizer for the function
Ro&— QYY) .. .,xj@],)?, xj(fr)l, . .,x,ﬁ?) + 2PV, .. .,xﬂ)l,f(, xj(’+)1, . .,x,%)).

II. Compute a descent direction at zero for (11).
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Regarding 1. Writing out the equation we see that in the j’th iteration we need to find the minimizer of the functionw : R — R
given by

N s, 1 - N
o® Eck+ Ehx2 +yVR T +ER| (12)
ithe = g Xy = A(1 — — ot = 2 . - .
withc = g + > (Hpjixi, v = A1 — )y, § = g, 1 = 3, ;x;, and where h is the j'th diagonal of the Hessian
block Hyy.

By convexity of f we conclude that h > 0. Lemma 2 below deals with the case h > 0. Since the quadratic approximation
Q is bounded below the case h = 0 implies that ¢ = 0, hence for h = 0 we have X = 0.

Lemma 2. If h > 0 then the minimizer X of w is given as follows:

a. Ifr=0or y = 0then

H+_C fe>&+y
=10 if lel<&+y
¥ fo<—k—y.
b.If r >0,y > Othenk = 0if |c| < & and otherwise the solution to
R X
c+sgn(€—6)€+hx+yﬁ—0-

Proof. Simple calculations will show the results. O

For case (b) in the above lemma we solve the equation by applying a standard root finding method.
Regarding 1I. For a convex function f : R" — R and a point x € R", the vector

A = —argmin ”)?Hz
xedf (x)

is a descent direction at x provided f is not optimal at x, see Bertsekas et al. (2003, Section 8.4). We may use this fact to
compute a descent direction at zero for the function (11). By Proposition 1 it follows that A € R" defined by

w |0 ’g,-(')‘ < rag?
otherwise

A
ng) - )\asiq)Sgn(gU))

i

is a descent direction at zero for the function (11).

Algorithm 3 Inner loop. Compute the minimizer of (11) by a modified coordinate descent scheme.

repeat
Choose next parameter index j according to the cyclic rule.
Compute
) : ) ) %
x}] = argmin Q(’)(xgl ... .,x}j_l,x, x}ﬂr)l, .. .,x,(,’]))
X€R
) (xD O 5,0 )
+r0¢ (x(’ ,...,qu,x,xjﬂ,...,x%)

if [x0], < eand Q¥ (x) + 10P (xV’) > 0 then
Compute a descent direction, A, at zero for (11).
Use line search to find t such that QU (tA) + 2@ P (tA) < 0.
LetxP =tA
end if
until stopping condition is met.

3.6. Hessian upper bound optimization

In this section we present a way of reducing the number of blocks for which the block gradient needs to be computed.
The aim is to reduce the computational costs of the algorithm.
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Table 2

Timing the Hessian bound optimization scheme.
Data set n m Ratio
Cancer 3.9k 217 1.14
Amazon 500 k 10k 1.76
Muscle 220k 22k 247

In the middle loop, Algorithm 2, the block gradient (10) is computed for all m blocks. We shall demonstrate that it is
not necessary to compute the block gradient in order to determine if a block is zero, but that an upper bound of the block
gradient is sufficient. Since the gradient, g, is already computed we focus on the term involving the Hessian. That is, for
J=1,...,m we compute a by € R such that

[Hx = 8)1V] < bD,,

where D, d:ef(l, 1,...,1) € R". We define

f < sup {x >0 ’\/K, (rag®), || +xDy) < A(1 — @)y }

when ,/K; (Aa£?, |qP|) < A(1 — «)y; and otherwise let t; = 0. When by < t it follows by Lemma 1 that

KJ()\O{%—(/),g(I)) — K] ()»Oti—'(]), ‘g(/)‘)

IA

K (g, |qV] + byDy, )

IA

)\'2(1 _ a)ZyJZ

and by Proposition 1 this implies that the block J is zero. The above considerations lead us to Algorithm 4. Note that it is
possible to compute the t;’s by using the fact that function

R>x— K (hag?, [qV| + xDy))

is monotone and piecewise quadratic.

Algorithm 4 Middle loop with Hessian bound optimization.
repeat
Choose next block index J according to the cyclic rule.
Compute upper bound b.
if b] < l'] then

Letx) = 0.
else

Compute g¥ and compute new x?’ (see Algorithm 2).
end if

until stopping condition is met.

In Algorithm 4 it is unnecessary to compute the block gradient for all blocks, but only for those where x) £ 0 or when
b; < t. This will only be beneficial if we can efficiently compute a sufficiently good bound b;. For a broad class of loss
functions this can be done using the Cauchy-Schwarz inequality.

To assess the performance of the Hessian bound scheme we used our multinomial sparse group lasso implementation
with and without bound optimization (and with « = 0.5). Table 2 lists the ratio of the run-time without using bound
optimization to the run-time with bound optimization, on the three different data sets. The Hessian bound scheme decreases
the run-time for the multinomial loss function, and the ratio increases with the number of blocks m in the data set. The same
trend can be seen for other values of .

4. Software

We provide two software solutions in relation to the current paper. An R package, msgl, with a relatively simple interface
to our multinomial and logistic sparse group lasso regression routines. In addition, a C++ template library, sgl, is provided.
The sgl template library gives access to the generic sparse group lasso routines. The R package relies on this library. The
sgl template library relies on several external libraries. We use the Armadillo C++ library (Sanderson, 2010) as our primary
linear algebra engine. Armadillo is a C++ template library using expression template techniques to optimize the performance
of matrix expressions, see Eddelbuettel and Sanderson (2013). Furthermore we utilize several Boost libraries (Boost, 2012).
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Table 3

Times for computing the multinomial sparse group lasso regression solutions for a lambda sequence of length 100, on a 2.20 GHz Intel Core i7 processor
(using one thread). In all cases the sequence runs from Ay, to 0.002. The number of samples in the data sets Cancer, Muscle and Amazon are respectively
162, 107 and 1500. See also Table 1 and the discussions in Sections 2.2.1, 2.2.3 and 2.2.2 respectively.

Data set n (k) m Lasso (s) Sparse group lasso Group lasso (s)
a=0.75(s) o =0.25(s)

Cancer 3.9 217 5.9 4.8 6.3 6.0

Muscle 220 22 k 25.0 25.8 37.7 36.7

Amazon 500 10k 3316 246.7 480.4 285.1

Boost is a collection of free peer-reviewed C++ libraries, many of which are template libraries. For an introduction to these
libraries see for example Demming and Duffy (2010). Use of multiple processors for cross validation and subsampling is
supported through OpenMP (Openmp, 2011).

The msgl R package is available from CRAN. The sgl library is available upon request.

4.1. Run-time performance

Table 3 lists run-times of the current multinomial sparse group lasso implementation for three real data examples. For
comparison, the glmnet uses 5.2 s, 8.3 s and 137.0 s, respectively, to fit the lasso path for the three data sets in Table 3. The
glmnet is a fast implementation of the coordinate descent algorithm for fitting generalized linear models with the lasso
penalty or the elastic net penalty (Friedman et al., 2010b). Recently, support for multinomial group lasso has been added to
glmnet, see Simon et al. (2013a). However, glmnet cannot be used to fit models with the sparse group lasso penalty.

5. Conclusion

We developed an algorithm for solving the sparse group lasso optimization problem with a general convex loss function.
Furthermore, convergence of the algorithm was established in a general framework. This framework includes the sparse
group lasso penalized negative-log-likelihood for the multinomial model, which is of primary interest for multiclass
classification problems.

We implemented the algorithm as a C++ template library. An R package is available for the multinomial and the logistic
regression loss functions. We presented applications to multiclass classification problems using three real data examples.
The multinomial group lasso solution achieved optimal performance in all three examples in terms of estimated expected
misclassification error. In one example some sparse group lasso solutions achieved comparable performance based on fewer
features. If there is a cost associated with the acquisition of each feature, this could be beneficial if we want to minimize
the cost while optimizing the classification performance. In general, the sparse group lasso solutions provide more sparse
solutions than the group lasso. Sparsity is generally of interest for model selection purposes and for interpretation of the
model.

Appendix A. Block coordinate descent methods

In this section we review the theoretical basis of the optimization methods that we apply in the sparse group lasso
algorithm. We use three slightly different methods: a coordinate gradient descent, a block coordinate descent and a modified
block coordinate descent.

We are interested in unconstrained optimization problems on R" where the coordinates are naturally divided intom € N
blocks with dimensions n; € Nfori = 1, ..., m. We decompose the search space

R"=R" x ... x R™

and denote by P; the orthogonal projection onto the i'th block. For a vector x € R" we write x = *D, ..., x™) where
xD erm, . xM e R™ Fori=1,..., mwe callx? the i'th block of x. We assume that the objective function F : R" — R
is bounded below and of the form

F) =)+ Y ")

i=1

where f : R" — R s convex and each h; : R" — R, fori = 1, ..., m are convex. Furthermore, we assume that for any
i=1,...,mandanyx, = (%7, ..., x™) the function
R" 5% — Fxo™, ..., %"V, % %Y, ..., x%™)

is hemivariate. A function is said to be hemivariate if it is not constant on any line segment of its domain.
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Algorithm 5 Coordinate gradient descent scheme.

repeat
Compute quadratic approximation Q of f around the current point x.
Compute search direction

X" = argmin Q }) + Z hi (R7).

XER! i=1

Let A = x — x™" and compute step size t using the Armijo rule and let x <— x + tA.
until stopping condition is met.

Algorithm 6 Armijo rule.
Require: a € (0,0.5)and b € (0, 1)
Let§ = VFx)™A + Y10, (hi(xi + A) — hi(x).
while F(x + tA) > F(x) + taé do
t < bt.
end while

A.1. Coordinate gradient descent

For this scheme we make the additional assumption that f is twice continuously differentiable everywhere. The scheme
is outlined in Algorithm 5, where the step size is chosen by the Armijo rule outlined in Algorithm 6. Theorem 1e in Tseng
and Yun (2009) implies the following:

Corollary 1. If f is twice continuously differentiable then every cluster point of the sequence {x;}icn generated by Algorithm 5 is
a minimizer of F.

A.2. Block coordinate descent

Algorithm 7 Block coordinate descent.
repeat
Choose next block index i according to the cyclic rule.
xD < argmin F(R @ Pi'x).
ReRM
until some stopping condition is met.

The block coordinate descent scheme is outlined in Algorithm 7. By Corollary 2 below the block coordinate descent
method converges to a coordinatewise minimum.

Definition 3. A point p € R" is said to be a coordinatewise minimizer of F if for each blocki = 1, ..., m it holds that
F(p+(0,...,0,d;,0,...,0)) > F(p) foralld; € R".
If f is differentiable then by Lemma 3 the block coordinate descent method converges to a minimizer. Lemma 3 below is
a simple consequence of the separability of F.
Lemma 3. Let p € R" be a coordinatewise minimizer of F. If f is differentiable at p then p is a stationary point of F.
Proposition 5.1 in Tseng (2001) implies the following:

Corollary 2. For the sequence {xy}xen generated by the block coordinate descent algorithm (Algorithm 7) it holds that every
cluster point of {xi}ken is a coordinatewise minimizer of F.

Appendix B. Modified block coordinate descent

For this last scheme we make the additional assumption that f is twice continuously differentiable everywhere except at
a given non-optimal point p € R". In this case the block coordinate descent method is no longer guaranteed to be globally
convergent, as it may get stuck at p. One immediate solution to this is to compute a descent direction at p, then use a line
search to find a starting point xo with F(xg) < F(p). Since f is differentiable on the sublevel set {x € R" | F(x) < F(p) } it
follows by the results above that the cluster points of the generated sequence are stationary points of F. This procedure is
not efficient since it discards a carefully chosen starting point. We apply the modified coordinate descent loop, outlined in
Algorithm 8, instead.
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Algorithm 8 Modified coordinate descent loop.
repeat
Leti < i+ 1 mod m.
xD « argmin F(X @ Pix).
ReRM
if ||[x — p|l, < € and F(x) > F(p) then
Compute descent direction A at p for F.
Use line search to find t such that F(p + tA) < F(p).
Let XD < p 4+ tA.
end if
until stopping condition is met.

Lemma 4. Assume that f is differentiable everywhere except at p € R", and that F is not optimal at p. Then for any € > 0 the
cluster points of the sequence {x*}rcy generated by Algorithm 8 are minimizers of F.

Proof. Let z be a cluster point of {x*}. By Corollary 2, z is a coordinatewise minimizer of F. Then Lemma 3 implies that z
is either p or a stationary point of F. We shall show by contradiction that p is not a cluster point of {x*}cn, thus assume
otherwise. The sequence {F(x*)}xen is decreasing; hence, if we can find a k¥ € N such that F(x¥) < F(p) we reach a

contradiction (since this would conflict with the continuity of F). Choose k" such that ‘ XK — p H < €.Since we may assume
2

that F(x') > F(p) it follows by the definition of Algorithm 8 that F(x* 1) < F(p). O

Appendix C. Proof of Proposition 1

(a) Straightforward.

(b) If ||« (v,2)|l, < athen —k(v,z) € aB" hence 0 € X. For the other implication simply choose yo € Y such that
—Yo € aB" and note that ||« (v, 2)|l; < [lyoll, < a.

(c) Assume ||« (v, 2)|l, > a,and letx* = (1 —a/ ||« (v, 2)||,)x (v, z). Then x* € X and ||x*||, = ||« (v, 2) ||, — a. The point
x* is in fact a minimizer. To see this let ' € X, that is we have

X =z + as + diag(v)t
for some s € B" and t € T,. It follows, by the triangle inequality and (a), that
X[, +a= % —as|, = llz+ diag)tll, > k@, 2, .

So ||x’ H2 > |k (v, 2)|l, —a = ||x*||, and since X is convex and x — ||x||, is strictly convex the found minimizer x* is the
unique minimizer.
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