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Overview

e Present qPCR data set on miRNA expression from primary
cancers and liver biopsies.

e A brief detour around the multinomial group lasso predictor.

e Present a computational method for dealing with
heterogeneous tissue composition in biopsy samples.

e Present a general modeling framework for class prediction
based on heterogeneous tissue and some preliminary methods
and results.
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Prediction of primary site

Class description Resections  Liver core
(primaries)  biopsies
Breast cancer 17 7(5/2)
Colorectal cancer 20 12 (8/4)
Gastric/Cardia cancer 18 12 (8/4)
Pancreatic cancer 20 10 (5/5)
Squamous cell cancers (of different origins) 16 12 (6/6)
Hepatocellular carcinoma 17 3
Cholangiocarcinoma 20 4
Subtotal 128 60
Cirrhotic liver 17 8
Normal liver 20 7
Total 165 75
Objective: Predict site of primary tumor from liver biopsy. @
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Misclassification for biopsies from metastases

Principal Number ANOVA+PAM  Multinomial
training data of core biopsies group lasso

Number of miRNAs
50 100 50 100

0 (0) 81%*  T71%° 17% 74%
Primaries 2 (10) 4%  71%  59% 54%
4 (20) 64%  64%  48% 45%
0 (0) 60% 57% 45% 43%
Avrtificial 2 (10) b b 39%  41%
4 (20) b b 34%  39%

2Constructed as in Ferracin et al. J. Pathol., 255, 4353, 2011.
bSample weights not directly supported by ANOVA+PAM.
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Multinomial regression
Class variable Y € {1,...,K}, X € RP

P(Y =y | X) x exp <Zx,ﬂ,-y) :

1

Ordinary lasso objective:

g@ + AZW.

neg. log-like y

Sparse group lasso objective:

(B+r|@ —a)Z 116112 *O‘Z 1By |
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Multinomial regression - test example
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Classification of Amazon reviewers. Group lasso clearly
outperforms lasso.

Sparse group lasso implementation in R package msgl. o
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The heterogeneity model

The “standard” model of molecular signatures from heterogenous
tissue:

a X primary tumor signature + (1 — «) X normal liver signature

Our model, conditionally on class Y = y, allows for a non-linear
transformation due to qPCR:

Z,=f (af (X)) + (1 — a)f (X))

Model assumption:
ol X 1L XO ’ Y
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Artificial training data

Based on

Z,=f (af 1(X,) + (1 — a)f (X))
and

e sampling of X, with replacement from primary signatures for
class y

e sampling of Xy with replacement from liver signatures
e and sampling of a from the Beta(2,2)-distribution

we artificially sampled Z, used to train the multinomial predictor.

In the paper we considered two choices of f: the identity or
fi(x;) = —1.7 log x;

corresponding to a PCR amplification efficiency of 80%.
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Misclassification for biopsies from metastases

Principal Number ANOVA+PAM  Multinomial
training data of core biopsies group lasso

Number of miRNAs
50 100 50 100

0 (0) 81%*  T7%° T1% 74%
Primaries 2 (10) 4%  71%  59% 54%
4 (20) 64%  64%  48% 45%
0 (0) 60% 57% 45% 43%
Avrtificial 2 (10) b b 39%  41%
4 (20) b b 34%  39%

2Constructed as in Ferracin et al. J. Pathol., 255, 4353, 2011.
bSample weights not directly supported by ANOVA+PAM.
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A general modeling approach

Consider a triple of variables (X, Z, Y) with X, Z € RP and
Y € {1,..., K} the class label.

e Observations of (X, Y) are available for construction of a
predictor,

e but observations of Z are available for prediction.
With 7 the joint distribution of (Z,Y), thenif Y 1L Z | X

mo(z,y) = /p(z|x)7r(x,y)dx
/77(y]x)q(x|z)dx.

mo(y|2)
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Our previous solution

mo(z,y) = /p(z]x)ﬂ(x,y)dx

Effectively, we computed estimates 7(x, y) (the empirical
distribution), and p(z|x) to make a forward simulation from

7/'I-O(Zvy)'

The forward simulated data were used to fit a model of 7p(y|z).
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An alternative solution

roly|z) = / r(yIx)q(xl2)dx

Alternatively, we can compute the estimate #(y|x) and use a
Monte Carlo method to compute

ho(yl2) = 5 Zwmx,

with x; from a Markov Chain with invariant distribution g(x|z).

This is a backward simulation solution.
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Latent Gaussian model

Z=[XX_qlate

with X = [X X_1] being a p x k matrix, and «, ¢, X are
independent Gaussian, then

X|Z,a~N(-,-)

and
al Z,X~N(,).

This is what is needed to implement the Gibbs sampler.
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Parameters used
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Projections of primary samples

class Breast — CCA Cirrhosis — CRC EG — HCC Liver —— Pancreas Squamous

pPC2

' . '
-4 0 4
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Projections of primary and biopsy samples

class Breast @ CCA Cirrhosis @~ CRC EG @~ HCC Liver @~ Pancreas Squamous
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Projections of primary and biopsy posterior means

class Breast @ CCA Cirrhosis @~ CRC EG @~ HCC Liver @~ Pancreas Squamous

4 0 4 @
PC1 .
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Top 10 miRNAs for class prediction
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Top 10 miRNAs for class prediction
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Preliminary results

Principal Number Backward Forward
training data  of core biopsies multinomial multinomial
Method Number of miRNAs
Fo(ylz)  #(y[%) 50 100
0 (0) 48%  50%  77% 74%
Primaries 2 (10) - - 59% 54%
4 (20) - - 48% 45%
0 (0) - - 45% 43%
Artificial 2 (10) - - 39% 41%
4 (20) - - 34% 39%
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Conclusions

e Tissue heterogeneity can be a big problem for prediction
based on molecular signatures.

e A forward or backward simulation can decrease but not solve
the problem.

e The forward solution was first understood in the Machine
Learning lingo as domain adaptation.

e Backward simulation is closely related to deconvolution of the
molecular signature.

M. Vincent, N. R. Hansen. Sparse group lasso and high dimensional
multinomial classification, Comp. Stat. Data Anal. 2014

M. Vincent, K. Perell, F. C. Nielsen, G. Daugaard and N. R. Hansen Modeling
tissue contamination to improve molecular identification of the primary tumor
site of metastases, Bioinformatics, 2014.
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