Faculty of Science

Modeling Tissue Heterogeneity of Test Samples to Improve Class Prediction

Niels Richard Hansen & Martin Vincent Department of Mathematical Sciences

March 14, 2014 Slide 1/23

Overview

- Present qPCR data set on miRNA expression from primary cancers and liver biopsies.
- A brief detour around the multinomial group lasso predictor.
- Present a computational method for dealing with heterogeneous tissue composition in biopsy samples.
- Present a general modeling framework for class prediction based on heterogeneous tissue and some preliminary methods and results.

Prediction of primary site

Class description	Resections (primaries)	Liver core biopsies
Breast cancer	17	7 (5/2)
Colorectal cancer	20	12 (8/4)
Gastric/Cardia cancer	18	12 (8/4)
Pancreatic cancer	20	10 (5/5)
Squamous cell cancers (of different origins)	16	12 (6/6)
Hepatocellular carcinoma	17	3
Cholangiocarcinoma	20	4
Subtotal	128	60
Cirrhotic liver	17	8
Normal liver	20	7
Total	165	75

Objective: Predict site of primary tumor from liver biopsy.

Slide 3/23— Niels Richard Hansen — Modeling Tissue Heterogeneity of Test Samples to Improve Class Prediction — March 14, 2014

Misclassification for biopsies from metastases

Principal training data	Number of core biopsies	ANOVA+PAM		Multinomial group lasso	
		Number of miRNAs			
		50	100	50	100
	0 (0)	81%ª	77% ^a	77%	74%
Primaries	2 (10)	74%	71%	59%	54%
	4 (20)	64%	64%	48%	45%
	0 (0)	60%	57%	45%	43%
Artificial	2 (10)	_b	_b	39%	41%
	4 (20)	_b	_b	34%	39%

^aConstructed as in *Ferracin et al.* J. Pathol., 255, 4353, 2011. ^bSample weights not directly supported by ANOVA+PAM.

Multinomial regression

Class variable $Y \in \{1, \dots, K\}$, $X \in \mathbb{R}^p$

$$P(Y = y \mid X) \propto \exp\left(\sum_{i} X_{i}\beta_{iy}\right).$$

Ordinary lasso objective:

$$\underbrace{\ell(\beta)}_{\text{neg. log-like}} + \lambda \sum_{iy} |\beta_{iy}|.$$

Sparse group lasso objective:

$$\ell(\beta) + \lambda \left((1 - \alpha) \sum_{i} ||\beta_i||_2 + \alpha \sum_{iy} |\beta_{iy}| \right)$$

Multinomial regression - test example

Classification of Amazon reviewers. Group lasso clearly outperforms lasso.

Sparse group lasso implementation in R package msgl.

The heterogeneity model

The "standard" model of molecular signatures from heterogenous tissue:

lpha imes primary tumor signature + (1 - lpha) imes normal liver signature

Our model, conditionally on class Y = y, allows for a non-linear transformation due to qPCR:

$$Z_{y} = f(\alpha f^{-1}(X_{y}) + (1 - \alpha)f^{-1}(X_{0}))$$

Model assumption:

$$\alpha \perp\!\!\!\perp X \perp\!\!\!\perp X_0 \mid Y$$

Artificial training data

Based on

$$Z_{y} = f(\alpha f^{-1}(X_{y}) + (1 - \alpha)f^{-1}(X_{0}))$$

and

- sampling of X_y with replacement from primary signatures for class y
- sampling of X_0 with replacement from liver signatures
- and sampling of α from the Beta(2,2)-distribution we artificially sampled Z_y used to train the multinomial predictor. In the paper we considered two choices of f: the identity or

$$f_i(x_i) = -1.7 \log x_i$$

corresponding to a PCR amplification efficiency of 80%.

Comparison of real and artificial data

Slide 9/23— Niels Richard Hansen — Modeling Tissue Heterogeneity of Test Samples to Improve Class Prediction — March 14, 2014

Misclassification for biopsies from metastases

Principal training data	Number of core biopsies	ANOVA+PAM		Multinomial group lasso	
		Number of miRNAs			
		50	100	50	100
	0 (0)	81%ª	77% ^a	77%	74%
Primaries	2 (10)	74%	71%	59%	54%
	4 (20)	64%	64%	48%	45%
	0 (0)	60%	57%	45%	43%
Artificial	2 (10)	_b	_b	39%	41%
	4 (20)	_b	_b	34%	39%

^aConstructed as in *Ferracin et al.* J. Pathol., 255, 4353, 2011. ^bSample weights not directly supported by ANOVA+PAM.

A general modeling approach

Consider a triple of variables (X, Z, Y) with $X, Z \in \mathbb{R}^p$ and $Y \in \{1, \dots, K\}$ the class label.

- Observations of (X, Y) are available for construction of a predictor,
- but observations of Z are available for prediction.

With π_0 the joint distribution of (Z, Y), then if $Y \perp \!\!\!\perp Z \mid X$

$$\begin{aligned} \pi_0(z,y) &= \int p(z|x)\pi(x,y)\mathrm{d}x \\ \pi_0(y|z) &= \int \pi(y|x)q(x|z)\mathrm{d}x. \end{aligned}$$

Our previous solution

$$\pi_0(z,y) = \int p(z|x)\pi(x,y) \mathrm{d}x$$

Effectively, we computed estimates $\hat{\pi}(x, y)$ (the empirical distribution), and $\hat{p}(z|x)$ to make a forward simulation from $\hat{\pi}_0(z, y)$.

The forward simulated data were used to fit a model of $\hat{\pi}_0(y|z)$.

An alternative solution

$$\pi_0(y|z) = \int \pi(y|x)q(x|z) \mathrm{d}x$$

Alternatively, we can compute the estimate $\hat{\pi}(y|x)$ and use a Monte Carlo method to compute

$$\hat{\pi}_0(y|z) = \frac{1}{B} \sum_{i=1}^B \hat{\pi}(y|x_i)$$

with x_i from a Markov Chain with invariant distribution q(x|z).

This is a backward simulation solution.

Latent Gaussian model

lf

$$Z = [X \mathbf{X}_{-1}]\alpha + \varepsilon$$

with $\mathbf{X} = [X \ \mathbf{X}_{-1}]$ being a $p \times k$ matrix, and α , ε , \mathbf{X} are independent Gaussian, then

$$\mathbf{X} \mid Z, \alpha \sim \mathcal{N}(\cdot, \cdot)$$

and

$$\alpha \mid Z, \mathbf{X} \sim \mathcal{N}(\cdot, \cdot).$$

This is what is needed to implement the Gibbs sampler.

Parameters used

$$\alpha \sim \left(\left[\begin{array}{c} 0.5\\ 0.5 \end{array} \right], 0.05 \left[\begin{array}{cc} 1 & -0.95\\ -0.95 & 1 \end{array} \right] \right)$$

$$\varepsilon \sim (\mathbf{0}, 0.2 I_p)$$

Projections of primary samples

Projections of primary and biopsy samples

Slide 17/23— Niels Richard Hansen — Modeling Tissue Heterogeneity of Test Samples to Improve Class Prediction — March 14, 2014

Projections of primary and biopsy posterior means

Slide 18/23- Niels Richard Hansen - Modeling Tissue Heterogeneity of Test Samples to Improve Class Prediction - March 14, 2014

Top 10 miRNAs for class prediction

CRC Cirrhosis CCA Breast

Top 10 miRNAs for class prediction

-4-202

value

<u>_</u>2

<u>-4 -2 0 2</u>

-4 -2 0

-4-2 0 2

ò

Preliminary results

Principal	Number	Backward		Forward	
training data	of core biopsies	multinomial		multinomial	
		Met $\hat{\pi}_0(y z)$	hod $\hat{\pi}(y \hat{x})$	Number 50	r of miRNAs 100
Primaries	0 (0)	48%	50%	<mark>77%</mark>	74%
	2 (10)	_	-	59%	54%
	4 (20)	_	-	48%	45%
Artificial	0 (0)	-	-	45%	43%
	2 (10)	-	-	39%	41%
	4 (20)	-	-	34%	39%

Conclusions

- Tissue heterogeneity can be a big problem for prediction based on molecular signatures.
- A forward or backward simulation can decrease but not solve the problem.
- The forward solution was first understood in the Machine Learning lingo as domain adaptation.
- Backward simulation is closely related to deconvolution of the molecular signature.
- M. Vincent, N. R. Hansen. *Sparse group lasso and high dimensional multinomial classification*, Comp. Stat. Data Anal. 2014

M. Vincent, K. Perell, F. C. Nielsen, G. Daugaard and N. R. Hansen *Modeling tissue contamination to improve molecular identification of the primary tumor site of metastases*, Bioinformatics, 2014.

Proportion posterior means

