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ABSTRACT

We develop in this article the necessary statistical theory for computing, for instance,
E-values when searching long sequences for the occurrences of local RNA-structures.
We show in particular how the theory can be used for estimating scoring parameters with
the purpose of optimizing the discriminative performance of the algorithm. The results are
implemented in the program StemSearch, which can search for stem loop structures that are
formed by, for example, micro RNA precursors. We illustrate the use of the estimation
method in practice by considering three miRNA target datasets from Human, Arabidopsis,
and C. elegans and by optimizing three penalty parameters in StemSearch. We show that the
optimization can improve the discriminative performance considerably when using a first
order Markov model as null-distribution. Finally, we compare the output from StemSearch
with that of RNALfold, and we discuss some notable differences that are primarily due to
fundamental differences in the choice of parameters.
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1. INTRODUCTION

Almost any algorithm used in biological sequence analysis relies on a choice of parameters. In

practice, the parameters are set by using combinations of experience, expert knowledge and estimation

based on data. The popular hidden Markov models used, for instance, for protein family profiles provide

examples where parameters are typically estimated using maximum-likelihood. For local alignments, a good

choice of parameters is a little more delicate—in particular, when it comes to the choice of penalty pa-

rameters. We know, however, that to obtain truly local alignments in, for example, BLAST, one needs to

choose gap open and gap extension parameters sufficiently large and negative.

RNA folding (the computational prediction of the structure of RNA molecules from its sequence) is

another important algorithmic problem. Single molecule predictions are typically based on minimizing the

free energy in a more or less physically realistic model. In most cases the focus is on predicting the secondary

structure only and not the entire three dimensional structure with atomic coordinates. The secondary

structure is the combinatorial description of the nucleotides that form hydrogen bonds. Each possible com-

bination is assigned a free energy, which is then minimized using dynamic programming as implemented in,
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for example, RNAfold (Hofacker et al., 1994). The parameters used are based on physical binding energies

between the nucleotides.

In recent years, there has been a large interest in small non-coding RNA molecules like micro RNA

(miRNA) and the computational search for such molecules. One characteristic of miRNA’s—or rather the

slightly larger molecules called the miRNA precursors—is that they form stem loop structures (Zhang et al.,

2007). Therefore, a computational search may among other things search for bits and pieces of the genome

that are capable of forming stem loops. The challenge here is then both algorithmic as well as statistical.

How should we computationally fold a long sequence locally and how do we distinguish ‘‘random folds’’

from true folds—or more specifically in the case of miRNA precursors, how do we distinguish random stem

loops from true stem loops?

One procedure for computationally folding entire genomes locally is to choose a fixed window size L and

then, while scanning along the genome, fold subsequences of length L. An efficient implementation of this

procedure is RNALfold (Hofacker et al., 2004). The implementation does not, however, deal with the sta-

tistical aspect. The purpose of this paper is to develop the statistical theory for local folding and illustrate

how it can be applied in the search for local RNA structures in genomes. In particular we show how to use the

theory to tune some of the parameters used for the algorithm for optimal performance. The development is

partly based on the theoretical results in Hansen (2007). For the results to be of practical use, we have

developed the program, StemSearch, that searches long sequences for the occurrence of local stem loops and

reports a list of essentially different local stem loops together with a statistical evaluation in terms of an

E-value. We discuss how to define ‘‘essentially different’’ in Section 2.3.

It is evident that the computational search for small regulatory RNA molecules like miRNA has inten-

sified over the past 5–7 years. For recent reviews of hitherto used computational techniques for miRNA

discovery, see Lindow and Gorodkin (2007) and Yoon and Micheli (2006). The computational pipelines that

are in use all combine several ideas such as evolutionary conservation of miRNA, matching of miRNA with

mRNA-targets, secondary structure constraints, etc. Moreover, the order of such computational filters for

singling out likely miRNA candidates are also to some extent interchangeable. One intended use of Stem-

Search is therefore as a first filter in a computational pipeline for miRNA searching.

As such a filter, it is of utmost importance to reduce the number of false positives while retaining a

reasonable specificity. The most important contribution of this paper is therefore to show how the statistical

theory not only offers an computation of E-values but actually offers a natural method for discriminative

estimation of parameters. That is, a method for selecting the scoring parameters in the algorithm that yields

an optimal performance in terms of reducing the number of false positives. On the basis of the statistical

setup, we derive a natural class of objective functions to optimize and as an illustration we apply this method

to miRNA datasets from the three different organisms Human, Arabidopsis, and C. elegans.

Throughout the article, we consider algorithms that are based on maximizing a score function over the set

of allowed secondary structures, and we then need to understand the distribution of the maximal score for a

random sequence, that is, a sequence that does not contain parts that are supposed to fold and form

structures. For the energy based methods the score would be minus the free energy. A theoretical analysis of

the distribution of the score for a sequence of independent and identically distributed random nucleotides

was carried out in Xiong and Waterman (1997). With Sn denoting the maximal score over all contiguous

subsequences of a sequence of random nucleotides of length n it is shown in Xiong and Waterman (1997)

that Sn scales linearly or logarithmically in n depending upon the scoring parameters used. If we let mn

denote the expected score obtained for the entire length n sequence, it is, moreover, shown in Xiong and

Waterman (1997) that mn=n converges to m, say, for n??, and the Sn scales linearly if m> 0 and

logarithmically of m< 0. What happens for m¼ 0 is not known precisely, though a qualified guess based on

the theory of random walks is that the scaling is like
ffiffiffi
n
p

. This divides the parameter space used for the

algorithm into two parts called the linear and the logarithmic phase, respectively. The division is quite easy

to interpret; if m> 0 the score grows linearly with the length of the sequence, thus the maximal score is

obtained for a sequence of length roughly n, but for m< 0 the largest score is obtained for a truly local part of

the sequence.

For parameters in the logarithmic phase, it is possible to develop a satisfying statistical theory, and we

show how to optimize the choice of parameters over that part of the space. In addition, we make a

comparison of our program StemSearch to the algorithmically similar program RNALfold, for which the

parameters are in the linear phase of the parameter space. In particular, we illustrate the differences in the

output from the two programs due to the use of parameters from the different phases.
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To avoid making the algorithm and scoring parameters overly complicated—and to aid the presentation of

the main ideas on the statistics—a relatively simple scoring scheme based on a first order Markov chain

models is set up. This is also what is currently used in StemSearch. We derive the bulk of the scoring

parameters from maximum-likelihood estimates of the Markov chain models, but three penalty parameters

remain. We show how to use the discriminative estimation procedure for the estimation of these parameters.

It may be the case that higher order models or other modifications can yield even better results in concrete

cases. Also the choice of focusing on stem loops is restrictive. In practice more general secondary structures

could be allowed if needed but stem loops or hairpins are still the primary structural elements. A review of a

number of different hairpin RNA functions can be found in Svoboda and Cara (2006). The role of RNA

structures and in particular RNA stem loops in splicing is reviewed in Buratti and Baralle (2004). In any

case, the main idea of discriminative estimation can be applied if one can justify that the statistical theory

extrapolates as well.

2. METHODS

We consider a sequence x¼ x1, … , xn of length n of letters from the DNA=RNA alphabet, which we

denote E. A (local) stem structure is a set of coordinate pairs

z¼f(i1, j1), . . . , (im, jm)g

fulfilling that 1� im< � � �< i1< j1< � � �< jm� n. In the implementation StemSearch, we require j1� i1� 3.

Let Z denote the set of such coordinate pairs, that is, the set of stem structures. With S(z,x) the score of the

stem given by z for the sequence x, we search for the maximal score over the set of stems,

S(x)¼ max
z2Z

S(z, x)

and let

ẑz¼ arg maxz2ZS(z, x)

denote the stem where the optimal score is attained. It may not be unique in general.

2.1. Stack scoring and loop penalties

We consider a rather simple way of scoring the structure, where the main part consists of a score for stacks

of hydrogen bonded nucleotides. Thus, for each quadruple of nucleotides x,y,v,w we have a score s(xy,vw)

interpreted as the score for forming the hydrogen bond between v and w when x,y,v,w are organized as shown

on Figure 1.

The sum of the stack scores in the stem z is denoted

S0(z, x)¼
X

(i, j)2z

s(xiþ 1xj� 1, xixj),

FIG. 1. The score s(xy, vw) quantifies the formation of a hydrogen bond between v and w when ‘‘stacked’’ on top of

xy—reading from the hairpin-loop and outwards.
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which is the contribution to the total score of the stem z for the sequence x that comes from the stacks

formed. We will usually then add a penalty term depending on the number and length of internal loops and

bulges and on the length of the hairpin loop. We will only consider sequence independent penalty terms, and

we will treat internal loops and bulges identically. Let rz and lz denote the total number and total length

respectively of the loops and bulges for z, and let hz denote the length of the hairpin loop. Then define the

total score of the structure z for the sequence x to be

S(z, x)¼ S0(z, x)þ (a� b)rzþ blzþ g(hz)

where g : N0 ! (�1, 0] is a function and a, b< 0 are some constants.

2.2. Log-likelihood ratio scores based on Markov chains

The stack scores as well as the loop penalties as introduced above could be based on energy consider-

ations as in the common RNA–structure prediction programs. As an alternative, we present here a way to

compute stack scores based on a first order Markov chain model. Essentially, we suggest the usual minus-

log-likelihood ratio scores based on the log-probability-ratio of a null model of independent nucleo-

tides versus a model for the occurrence of independent hydrogen bonded pairs. However, we want to retain the

stacking idea that the occurrence of a bonding pair may be affected by the pair it is stacked upon. This naturally

suggests that we use a first order Markov chain models. This will complicate the presentation slightly as one

strand in a stem is in the reverse direction of the Markov chain under the null.

As a null model for the x’s we consider a first order Markov chain with P¼ (P(x, y))x, y2E the matrix of

transition probabilities. We will assume that P(x,y)> 0 for all x,y [ E, which guarantees the existence of an

invariant probability distribution p¼ (p(x))x[E fulfilling thatX
x2E

p(x)P(x, y)¼ p(y):

The matrix P provides a model of the transitions in the sequence from the 50 to the 30 end. The transitions in

the other direction, from the 30 end to the 50 end, are given by the reversed transition probabilities

P
 

(x, y)¼ p( y)P( y, x)

p(x)
:

Let (Q(xy,vw))x,y,v,w [ E denote a matrix of transition probabilities on E�E. We imagine that for a given stem

z the letter pairs in a stack are build sequentially from the inner most hydrogen bonded pair of letters by

drawing conditionally on that pair another pair of hydrogen bonded letters according to Q. Thus, the matrix

Q represents the transition probabilities for building up a stack as a first order Markov chain from the hairpin-

loop and outwards. In this framework a natural choice of s(xy,vw) is the log-likelihood ratio

s(xy, vw)¼ log
Q(xy, vw)

P
 

(x, v)P(y, w)
: (1)

Making this choice of scores the total score, S0(z, x), will be the minus-log-likelihood ratio of the Markov

chain model of x given by P (the null model) against the alternative where all paired letters in z are drawn

conditionally, as described above, according to Q and where the remaining letters are drawn according to P.

In the implementation of StemSearch, as discussed below, we have used the log-likelihood ratio approach

to compute the stack scores s(xy, vw) with P estimated from genome data using maximum likelihood and Q

likewise estimated using maximum likelihood from (predicted) miRNA stem structures. That is, the number

of stack transitions are counted in miRNA hairpins, that were predicted by RNAfold.

2.3. Algorithms and implementation

A standard dynamic programming algorithm can be implemented for finding the maximal score using the

score function S defined above. As a starting point, we define an upper triangular score matrix, V, with Vi,j for

iþ 3� j being the maximal score when (i, j) closes the stem. In addition, a loop penalty matrix W is needed

and the recursions read
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Vi, j¼ max

Viþ 1, j� 1þ s(xiþ 1xj� 1, xixj)

Wiþ 1, j� 1þ s(xiþ 1xj� 1, xixj)

g(i� jþ 1)

8<
:

and

Wi, j¼ max

Wiþ 1, jþ b
Wi, j� 1þ b
Viþ 1, jþ a
Vi, j� 1þ a
g(i� jþ 1)

8>>>><
>>>>:

We will typically band limit V (and W), which effectively means that we restrict attention to stems contained

in a sliding window of size L. The optimal stem is found by a subsequent traceback. The traceback starts in

the V matrix at the position where the maximal score is found and the traceback terminates when it reaches

an entry (i, j) in V with Vi,j¼ g(i� jþ 1).

The time complexity as well as the memory complexity for the band-limited algorithm is O(nL). In the

implementation StemSearch a memory efficient algorithm with memory complexity O(L2) is employed.

Consequently tracebacks are carried out ‘‘on the fly.’’

Typically, one would be interested in finding essentially different, suboptimal stems in addition to the

highest scoring local stem. A version of the so-called island method, as presented in Altschul et al. (2001) for

local alignments, can solve this problem. One defines a matrix I such that Ii,j points to the entry in V where

the traceback from position (i,j) in V will terminate. All entries in I that point to the same terminating entry

are said to belong to the same island. Note that this provides a partition of the matrix V such that entries

located in different islands correspond to trace-backs of stems that share no pairs. The maximal score in an

island is called the island score, and the island score together with the corresponding stem is regarded as a

representative for the island. These scores and stems are referred to as the island scores, and due to the non-

sharing of paired letters the islands and island scores may arguably be regarded as essentially different

suboptimal stems. We refer to Altschul et al. (2001) for a thorough discussion of the island method in the

alignment setup.

Throughout we will only consider the use of StemSearch with a penalty on the size of the loop, and the

statistical theory below is developed from this point of view. We can also imagine using StemSearch to

locate putative stems, whose arms are separated by a very large loop-region. Whether the loop-region is

actually a loop or form some other structure plays no role. To locate such non-local stems we would of

course need to take the bandwidth sufficiently large, but to find non-local stems we should also choose the

loop length penalty function g to be constantly equal 0. This feature is implemented in StemSearch together

with a corresponding statistical evaluation, though this is not discussed further in this paper.

2.4 Statistics

We present here a null model of local stem scores when x is a realization of a ‘‘random DNA sequence’’

that does not contain structural elements. For the suggested statistical model of the scores to be valid we do

not need to assume that the letters in the random DNA sequence are i.i.d. or form a Markov chain, say. But

we will use a Markov chain model in several concrete computations. The null model we consider specifies

that the number of islands with a score exceeding a given threshold t> 0 follows a Poisson distribution and that

the excesses above t of the island scores are independent and exponentially distributed with intensity parameter

l> 0. We refer to Hansen (2007) for some theoretical justification.

It is necessary to assume that g?�? ‘‘sufficiently fast’’. In the case a¼�?, it is shown in Hansen

(2007) that if

X1
k¼ 1

exp (kg(k))\1 (2)

then g?�? sufficiently fast. Note that this condition is always fulfilled if g(n)*gn for some g< 0. We

expect that this condition is also sufficient when a>�?.
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We will also make the additional assumption that the scores s(z, x) are not lattice valued, that is,

they are not a fixed multiple of integers. This is because we will use the exponential distribution. If the

scores are lattice valued, a similar treatment is possible using the geometric distribution (Altschul et al.,

2001).

We let It for t� 0 denote the set of (declumped) stems in Z produced by the island method with a score

exceeding level t. Then with Nt¼ |It| the number of excesses we use the Poisson distribution to model Nt with

the mean

E(Nt)¼ nK exp(�kt) (3)

for two parameters l, K> 0. The excesses,

S(z, x)� t; z 2 It,

are assumed independent and identically exponentially distributed with mean l�1. The exponential excess

and the Poisson mean value structure are seen to be in concordance. If we take Nt0
, say, to be Poisson

distributed with mean nK exp(�lt0) and let S1, … ,SNt0
be i.i.d. exponentially distributed with mean l�1 then

for any t> t0

Nt¼
XNt0

i¼ 1

1(Si[t� t0)

is Poisson distributed with mean nK exp (�lt) and the excesses above t� t0 are exponential with mean l�1.

These model assumptions are only supposed to hold approximately for sufficiently large n, L and t, which

are chosen such that n ^ exp(lt) and log(n)¼ o(L). It is under such assumptions that the theoretical results in

Hansen (2007) are obtained. In practice this reminds us that there are limitations to the applicability of the

model, and what the nature of these limitations is. It will also be reflected in the estimators considered below,

where we need to take t sufficiently large to get reliable estimators.

The parameters l and K do not depend upon n or L but capture the role of the scoring parameters, as given

by the stack scores s, the internal loop and bulges penalty parameters a, b, and the hairpin loop penalty

function g, together with the distribution of the DNA-sequence. We introduce the normalized scores

S(z, x)¼ kS(z, x)� log K

for z 2 Z, and we call S(z, x) the nat-scores. We note that if we change a, say, then the distribution of the raw

scores changes, and the parameters l and K change as well, but the distribution of the resulting nat-scores

does (approximately) not change. Thus, we get comparability in the null distribution across different choices

of scoring and penalty parameters.

2.5. Optimization of penalty parameters

We introduce in this section a method for choosing penalty parameters with the purpose of minimizing the

expected number of false positives. We take g(n)¼ g(n� 2), n� 2, for g< 0. Let v¼ (a, b, g) denote the

vector of penalty parameters and, to emphasize the influence of v on the optimal score, let

Sv(x)¼ max
z2Z
fS0(z, x)þ (a� b)rzþ blzþ c(hz� 2)g (4)

Let Y denote a random sequence, which we think of as the RNA-sequence we search for with a preference for

forming a stem-loop structure. With q [ (0, 1) and with t(v, q) denoting the (1� q)-quantile for the distri-

bution of Sv(Y), a local folding with threshold t(v, q) has sensitivity1 q. Fixing q to a desired level we would

1When a sequence x that form a stem is embedded in a longer sequence, the search procedure will locate a segment
with a score� Sv (x). We can have strict inequality due to the surroundings of the embedded sequence, which in
principle can increase the sensitivity slightly.
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like to minimize the expected number of false positives, which is the number Nt (v,q) of islands with a

score> t (v, q) under the null model. Minimizing the expected number of false positives, as given by (3),

over the parameter v gives

vopt(q)¼ arg min
v

E(Nt (v, q))

¼ arg min
v

K(v) exp (� k(v) t (v, q))

¼ arg max
v

k(v) t (v, q)� log K(v): ð5Þ

We write l(v) and K(v) to emphasize that these two parameters depend on the penalty parameter vector v. It

is seen that minimizing the expected number of false positives with a fixed sensitivity q is equivalent to

maximizing the (1� q)-quantile for the nat-score l(v)Sv(Y)� log K(v). Alternatively, we argued that the

distribution of the nat-scores under the null model is independent of the parameter v—the dependence

is encoded entirely in l(v) and K(v). Consequently we should aim at moving the entire distribution of

l(v)Sv(Y )� log K(v) towards the higher values. A simple quantitative measure to maximize is the expected

nat-score. Another possibility, as given by (5), is to fix the sensitivity at the desired level q and maximize the

(1� q)-quantile of the distribution of l(v)Sv (Y)� log K(v). Note that neither of the resulting optimal v’s

depend upon the length n of the sequence we search in nor on the bandwidth L we have chosen.

2.6. Estimation of l and K

Since we have no analytic expressions of how l and K varies, we must rely on estimation—either from

simulations or from real DNA-sequences. We can do that as follows. If S1,…, Sm denote m island scores

(obtained by fixing a suitably small threshold), we let

S1:m\S2:m\� � �\Sm� 1:m\Sm:m

denote the scores sorted in increasing order. The null model gives for suitable t� 0 a natural estimator

~kk¼ 1

Nt

XNt

i¼ 1

S(m� iþ 1):m� t

 !� 1

(6)

where Nt is the number of excesses above t. An estimator of K can be derived from (3) by plugging in ~kk. As

the model is only supposed to fit the data for sufficiently large t, n and L, the estimators are only going to

work well for sufficiently large t, n and L. This method for estimating l and K, known as Peaks Over a

Threshold (POT) in the literature on extreme value statistics (de Haan and Ferreira, 2006; Embrechts et al.,

1997), was also used in Altschul et al. (2001) in the context of local alignment. Since we want to plug in the

estimates in (5), we will have to look at l and K varying as functions of the scoring and=or penalty

parameters. A slight variation of the estimators is then more appropriate. Instead of fixing the threshold t, we

fix the number Nt of excesses. Thus for N [ {1, … , M} take the threshold to be t¼ S(m-N):m. Note that this

makes the threshold, t, and not N a random variable. It gives the alternative estimators

k̂k¼ 1

N

XN

i¼ 1

S(m� iþ 1):m� S(m�N):m

 !� 1

ð7Þ

and

K̂K ¼N exp (k̂kS(m�N):m)/n: (8)

A notable property of the latter estimator—which is not shared by the former for fixed t—is that it preserves

the scaling properties of the parameters. The estimator k̂k is known in the literature as the Hill estimator2 (de

Haan and Ferreira, 2006).

2One mostly encounters the Hill estimator in the context of approximate power law distributions, which is what we
get by taking the exponential of our scores.
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For the estimation of the quantile t(v, q), we consider a training dataset Y1, … ,Yl consisting of l se-

quences that form stems, and we let t̂tl(v, q) denote the (1� q)-quantile of Sv(Y1), … ,Sv(Yl). Plugging this

estimator and the estimators (7) and (8) into (5) yields that the empirically optimal penalty parameter vector

is given by

t̂topt(q)¼ arg max
t

k̂k(t)(t̂tl(t, q)� Sm�N:m)

¼ arg max
t

t̂tl(t, q)� Sm�N:m

1
N

PN
i¼ 1 Sm� iþ 1:m� Sm�N:m

(9)

This result is obtained by disregarding the terms in log K̂K(v) that do not depend upon v. The resulting

objective function that we try to maximize has a quite intuitive interpretation—we try to maximize the

excess of the q-quantile above the high level Sm�N:m relative to the average excess above that level under the

null model. Replacing the empirical quantile t̂tl(v, q) with the empirical mean of Sv(Y1), … ,Sv(Yl) results in

maximizing the empirical mean of the nat-scores instead.

2.7. Data analysis

We considered data from C. elegans, Arabidopsis, and Human. Initially, we estimated the first order

transition probabilities, P, based on the entire genomes for each species. A dataset of miRNA precursors was

generated from Rfam, (Griffiths-Jones et al., 2005), for each species with 114 miRNA precursors from C.

elegans, 118 from Arabidopsis, and 462 from Human. The Human miRNA dataset was, furthermore,

randomly split into a training set and a test set of equal size. The miRNA precursor secondary structure was

predicted with RNAfold with default parameters. These datasets of predicted structures were used to estimate

the matrix Q of transition probabilities in a stack. Finally, the log-likelihood ratio scores as given by (1) were

computed for each species. These scores were used subsequently to investigate the statistical theory through

simulations and to optimize over the penalty parameters. For Human, we use only the training set.

3. RESULTS

To investigate the statistical model for the stem scores with parameters in the logarithmic phase, we

conducted a simulation study. For the simulation study we used the parameters estimated from the Human

data, and we simulated a first order Markov chain with transition probabilities P. We choose a¼�4.0,

b¼�2.1 and g¼�0.4. This choice of penalty parameters comes from the optimization on the Human

miRNA training data (Table 1). Taking as initial threshold t¼ 4 we did 1000 replications with n¼ 5000 and

L¼ 200 resulting in a total of m¼ 959075 excesses. Figure 2 shows the empirical distribution of Nt taking

t¼ 15, 18, 21 and 24. The variance-to-mean ratios for the empirical counts are 1.136 ( p-value 0.0017), 1.085

( p-value 0.031), 1.087 ( p-value 0.028), and 1.052 ( p-value 0.12), respectively. The p-values are computed

using the w2=999-approximation with 999 degrees of freedom. In conclusion, the empirical counts are mildly

over-dispersed as compared to the approximating Poisson distribution for the lower thresholds, but the

Table 1. Resulting Optimal Values of a, b, and g, Where We, for Each of the Three Species, Maximized

the Objective Function in (9) for q¼ 0.2, 0.5, 0.8 Based on the Species-Specific miRNA Training Datasets*

Human Arabidopsis C. elegans

Sensitivity (q) Sensitivity (q) Sensitivity (q)

0.2 0.5 0.8 Mean 0.2 0.5 0.8 Mean 0.2 0.5 0.8 Mean

a �4.6 �4.0 �3.7 �4.6 �3.7 �3.0 �2.8 �4.1 �2.9 �2.9 �2.8 �3.2

b �2.3 �2.1 �1.9 �2.1 �1.0 �1.4 �1.4 �0.7 �1.6 �1.4 �1.4 �1.4

g �0.2 �0.4 �1.3 �0.2 �2.3 �2.2 �2.3 �2.0 �2.0 �1.6 �2.1 �1.5

l 0.39 0.35 0.31 0.39 0.57 0.49 0.45 0.53 0.46 0.43 0.41 0.48

log(K) 0.34 �0.31 �0.97 0.29 �0.77 �0.94 �0.98 �0.87 �0.92 �0.93 �1.04 �0.84

*The table also shows the optimal parameters computed with the use of the empirical mean in (9) instead. The resulting parameters l
and log(K) were estimated from simulations.
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approximation improves for the higher thresholds. The excesses (not shown) fit an exponential distribution

well. Figure 3 shows the logarithm of the average number of excesses over the threshold as a function of the

threshold for t¼ 15, … , 30. The theory predicts that these points should fall on a straight line. Figure 3

includes the least squares fitted straight line with slope �0.352 and intercept 8.18. This corresponds to an

estimate of l as 0.352 and of log(K) as 8.18� log(5000)¼�0.342. Using the Hill estimator instead with

N¼ 2000 provides the estimates k̂k¼ 0:350 and log(K̂K)¼�0.377 (the corresponding random threshold is

S(959075–2000):959075¼ 21.3).

Next, we optimize over the penalty parameters (a, b, g). For each species, we do a numerical maximization

over v of the objective function in (9) for q¼ 0.2, 0.5, 0.8. The numerical method used was Nelder-Mead as

implemented in the function optimize in R. Empirical studies of the objective function that was optimized

showed that the function was well behaved with apparently no local maxima. For the computation of the

empirical objective function, we compute t̂tl(v, q) for each species using the species specific miRNA dataset.

The computation of S(m�N):m and the excesses were based on simulations using the species-specific transition

probabilities, n¼ 100000, L¼ 200, and N¼ 1500. The results are shown in Table 1. Subsequently, the

parameters l(v) and K(v) were re-estimated using (7) and (8) with n¼ 5�106, L¼ 200 and N¼ 4000. The

results are also shown in Table 1.

Figure 4 shows the fraction of miRNA’s with a nat-score exceeding the threshold t as a function of t for

each species using the optimal penalty parameters for q¼ 0.5. That is, Figure 4 shows the empirical
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FIG. 2. Empirical point probabilities (black bar) and theoretical Poisson point probabilities (white bar) for a simu-

lation study using StemSearch with n¼ 5000, L¼ 200 and v¼ (�4, �2.1, �0.4) on sequences generated by a first order

Markov chain with Human genome transition probabilities. We simulated 1000 sequences and used the thresholds

t¼ 15 (A), t¼ 18 (B), t¼ 21 (C), and t¼ 24 (D). The variance-to-mean ratio for the empirical counts are 1.136 (A),

1.085 (B), 1.087 (C), and 1.052 (D), which is also seen as a mild over-dispersion of the empirical data compared to the

Poisson distribution for the lowest thresholds.
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FIG. 3. The long-average number of excesses as a function of the threshold for a simulation study using StemSearch

with n¼ 5000, L¼ 200, and v¼ (�4, �2.1, �0.4) on sequences generated by a first order Markov chain with Human

genome transition probabilities. The line is the least squares fit to the points with slope �0.352 and intercept 8.18.
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sensitivity based on the miRNA training dataset as a function of the nat-score threshold. The figure has a

close resemblance to a ROC-curve. In our context it seems, however, to be difficult to come up with a

sensible definition of the specificity as there is no well defined total number of false cases—though the

number of false positives for a given threshold is well defined. Thus, the use of ROC-curves to illustrate the

relationship between sensitivity and specificity is not directly applicable. However, the plot in Figure 4 has

an interpretation just like an ROC-curve. The interpretation of the figure is that the further to the north-east

the curve is the better. A choice of q in the objective function (9) corresponds to moving the point on the

curve giving sensitivity q as far to the right as possible. Note that the area under a curve in Figure 4 equals the

average nat-score for the miRNA dataset with the given penalty parameters. For Human, Figure 4 also shows

the empirical sensitivity for the test dataset and for the test dataset with one choice of non-optimal penalty

parameters. We observe that the empirical sensitivity curves for the Human test and train dataset follow each

other very closely, but that there is a notable difference between the curves from the optimal choice of

parameters to the non-optimal choice.

We next illustrate the differences in the output from the free energy based RNALfold program and

StemSearch. A simulation study (not shown) reveals that the default parameter set for RNAfold indeed

belongs to the linear phase of the parameter space. First the precursor for the miRNA mir-37 from C. elegans

was embedded into a sequence of random DNA. The sequence of random nucleotides is generated from a

first order Markov chain model using the transition probabilities estimated for C. elegans. The total length

of the resulting sequence is 1000. The results of running either program on this artificial sequence can be

seen in Figure 5. As long as we take the window size large enough (L> 94 will do), StemSearch produces

almost3 the same 12 highest scoring stems as output. On the contrary, RNALfold produces a highly different

output depending upon whether L¼ 100 or L¼ 200. Only when L¼ 100 does RNALfold rank the segment
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FIG. 4. The empirical sensitivity for each of the three species-specific miRNA training datasets using the penalty

parameters from Table 1 with q¼ 0.5. For Human, the empirical sensitivity for the test dataset is also shown using both

the optimized penalty parameters from Table 1 and the non-optimal choice of (a , b, g)¼ (�4, �4, �2). If we aim for a

sensitivity of 60%, say, the threshold should be changed from 9.5 when using the optimized penalty parameters to 7.1

for the suboptimal choice—considering the Human miRNA test dataset—resulting in an increase of the expected

number of false positives with a factor of approximately 11.

3A few, longer, suboptimal segments are found when we raise the window size to 200, say.
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corresponding to the embedded mir-37 precursor as number 1. For L¼ 200, the mir-37 precursor drowns in

noise. Note in addition that the size of the high-scoring segments from RNALfold are all close to the actual

window size, which is what we would expect from the fact that the energy parameters are in the linear phase

of the parameter space. Although Figure 5 only shows a single miRNA, the picture is a generic represen-

tation of the differences between the output from StemSearch and RNALfold.

To further illustrate this difference on real data, we ran both programs on two 20kb regions of the Human

genome that each contain a mir-cluster—one containing mir-17 and one containing mir-106a—and which

contain a total of 12 miRNA’s. Figure 6 shows the final results. What was first observed was that both

regions contain an annotated CpG-island. As a consequence of the strong CG-bias in the CpG-islands both

programs produce a large number of high-scoring hits in the CpG-islands and they are thus masked before

further analysis. Likewise, both regions were masked using RepeatMasker. What is shown in Figure 6 is the

result after the masking. We may note that there are still traces of the CpG-islands at the boundaries of the
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FIG. 5. The C. elegans mir-37 miRNA precursor consisting of 98 nucleotides is embedded in a sequence of random

DNA of a total length 1000 (A). StemSearch locates almost the same high-scoring segments taking any bandwidth as

long as L> 94 (here L¼ 200), and the figure shows the position and score of the twelve highest scoring segments (B).

Using RNALfold with window sizes L¼ 100 (C) or L¼ 200 (D) produces completely different results, and only with

L¼ 100 does RNALfold identify the mir-7 precursor.
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annotations—especially for the mir-17 region. To define which of the hits from either program that cor-

respond to the annotated miRNA we computed for each hit the distance to the annotation as the sum of the

distance between the starting position of the annotation and the hit and the ending position of the annotation

and the hit. Then we selected the hit with the smallest distance as being the ‘‘score for the annotated

miRNA.’’ These scores are shown on Figure 6 together with the rank of the hit among those hits plotted. In

terms of locating the miRNA’s as high-scoring hits, StemSearch with L¼ 200 and RNALfold with L¼ 100

show comparable performance with RNALfold being perhaps slightly better for the mir-106a region.

However, the performance for RNALfold degrades when we set L¼ 200. It may be argued that because

RNALfold operates in the linear phase, one should normalize the scores by dividing with the length of the hit.

Doing so (not shown) improves the performance of RNALfold for L¼ 200 but degrades the performance for

L¼ 100 leaving no clear picture whether one should normalize or not.

4. DISCUSSION

We have shown how a statistical theory for the occurrence of local RNA structures can be formulated

and how the effect of the scoring parameters enters through the two parameters l and K. The statistical

model is incorporated in the corresponding implementation StemSearch, which is a program for local

folding of longer sequences. The program is a dedicated datamining tool, and the implementation is

sufficiently fast to be able to scan entire genomes for stem-loops. If we search a sequence of length n,

StemSearch provides a ranked list of occurrences of local stem-loop structures, a nat-score s and an E-

value. The nat-score is an intrinsic quantification of the corresponding stem loop, and the E-value ex-

presses the expected number of random stem loops with a nat-score exceeding s in a random sequence of

length n. The computation of the nat-score is based on two parameters l and K, which come from the
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FIG. 6. High scoring structures from StemSearch and RNALfold on two 20kb regions of the Human genome con-

taining the mir-17 miRNA cluster (left) and the mir-106a cluster (right). Both clusters contain six annotated miRNA’s.

Both regions contain a CpG-island annotation, and both programs produce a larger number of high scores on the

borders of the masked CpG-island. The hits from either program that matches the annotated miRNA’s best are shown
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statistical model, and which depend upon the scoring parameters, the penalty parameters and the null

model.

An interesting point is that the length n of the sequence we search in enters in the formula (3) in a

multiplicative way and the bandwidth L does not enter at all. Consequently, the suggested method for

optimization of the penalty parameters by minimization of the expected number of false positives is

unaffected by the length n as well as the bandwidth L, and we can estimate the parameters using a dataset—

simulated, shuffled or real sequences—that is much smaller than typical genomes. This reduces the com-

putational costs dramatically as compared to brute-force simulations to compute estimates of the expected

number of false positives (for a given threshold), say, and it becomes practical to optimize such a quanti-

tative measure of discriminative performance over the penalty parameters.

We also showed how standard estimators from extreme value statistics can be used to estimate l and K.

The data used for the estimation can be the output from running StemSearch on simulated sequences, or if

possible running StemSearch on a valid ‘‘null model’’ dataset of sequences that do not contain stem loops.

Using simulated sequences, based on the species specific first order Markov chain, we illustrated how the

statistical theory and in particular the nat-score normalization can be utilized to optimize the measure of

discriminative power over the penalty parameters.

In this paper we have focused on optimizing over the three penalty parameters. From Table 1 the results

seem fairly robust to the precise choice of objective function. It also seems that there are notable differences

between the species, but we emphasize that we provide no evidence that the differences are statistically

significant. We also illustrated that there can be a considerable gain in choosing optimal penalty parameters

as compared to non-optimal penalty parameters. The stack score parameters (in total 6�16¼ 96 free

parameters as we allow for canonical and GU=UG pairs only) were derived as log-likelihood ratios. As an

alternative we could minimize the expected number of false positives over the entire 96þ 3-dimensional

space of stack score and penalty parameters. This does, however, raise a number of difficulties. The

dimensionality of the parameter space makes this a non-trivial numerical optimization problem, and either

the run-time of StemSearch must be lowered or the computations must be parallelized to make this a realistic

endeavor. There is also a real chance that such an optimization will overfit the parameters dramatically to the

specific training dataset used.

Finally we compared the output from StemSearch with the output from RNALfold. We showed that due to

the fact that RNALfold uses parameters from the linear phase, it is rather sensitive to the choice of the

bandwidth L. StemSearch is less sensitive to the precise choice of L, and with L¼ 200 its ability to locate

miRNA’s, whose sizes are in the range of 68–96 bases, in two 20-kb regions of the Human genome

containing two miRNA-clusters, was comparable to that of RNALfold with L¼ 100 and superior to

RNALfold with L¼ 200. As a final remark we observed that neither of the programs was able to clearly

discriminate all 12 real miRNA’s from the remaining genome sequence. This is most likely a consequence of

the general difficulty in discriminating RNA-genes from the bulk genome based on structural scores alone.

With the statistical theory behind StemSearch we have provided a novel method for optimizing the dis-

criminative performance over the parameter space. Future improvements may be obtained by combinations

of (1) extentions of the scoring scheme in StemSearch in the direction of the more flexible scheme in

RNALfold, (2) optimization over larger parts of the (extended) parameter space, and (3) optimization against

more realistic null-models, for instance by using empirical sequence data as null models.
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