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LOCAL ALIGNMENT OF MARKOV CHAINS

BY NIELS RICHARD HANSEN

University of Copenhagen

We consider local alignments without gaps of two independent Markov
chains from a finite alphabet, and we derive sufficient conditions for the num-
ber of essentially different local alignments with a score exceeding a high
threshold to be asymptotically Poisson distributed. From the Poisson approx-
imation a Gumbel approximation of the maximal local alignment score is
obtained. The results extend those obtained by Dembo, Karlin and Zeitouni
[Ann. Probab. 22 (1994) 2022–2039] for independent sequences of i.i.d. vari-
ables.

1. Introduction. Local alignment of two biological sequences (DNA-mole-
cules or proteins) is one of the most important and used tools in modern molecular
biology for locating highly similar contiguous parts of the sequences. High simi-
larity is usually interpreted as an evolutionary or functional relationship between
the molecules. We show how the distribution of local alignment similarity scores
behaves asymptotically when aligning independent Markov chains.

It is important to understand the distribution of local alignment scores for as-
sessing the significance of, for example, the maximally scoring local alignment.
Formally this is a test of the null hypothesis that two sequences are independent
Markov chains against a somewhat unspecified alternative that they are not inde-
pendent. The test statistic considered is the maximal local similarity score.

Usually when considering local alignments we are interested in not only the
maximally scoring local alignment but also other essentially different local align-
ments that reach a score above a given threshold. It is therefore useful also to know
the distribution of the number of local alignments of independent Markov chains
that reach a score above a given threshold. In fact, it is this problem that we handle
in the first place and the obtained Poisson approximation can easily be turned into
a Gumbel approximation of the distribution of the maximal local alignment score.

The kind of local alignment we consider is gapless local alignment meaning that
we search for (contiguous) parts of the two sequences that attain a high similarity
when matched letter by letter. Similarity is measured by adding up a score for
each pair of matched letters. In practice it is common to allow for the insertion
of gaps in the sequences—each gap adding a suitable penalty to the similarity
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score—which usually increases the power of the test. The introduction of gaps
does, however, make the problem of understanding the asymptotic distribution of
local alignment scores substantially more complicated although progress for i.i.d.
sequences has been made more recently; see [4, 10, 17, 18]. In another direction,
exact distributional results for i.i.d. sequences can be obtained if “shifting” is not
allowed and if the scores are integer valued; see [14]. This work has also been
generalized to Markov sequences; see [15].

The main result is stated as Theorem 3.1. It says that if the expected similarity
score under the null hypothesis is negative, then there exist constants θ∗,K∗ > 0
such that if we let s denote the maximal local alignment score obtained when
aligning two independent Markov chains of length n, then the normalized score
defined by

s′ = θ∗s − log(K∗n2)(1)

approximately follows a Gumbel distribution for n → ∞. Moreover, the number
of normalized local alignment scores exceeding the threshold x is approximately
Poisson distributed with mean exp(−x) for n → ∞. We have ignored some details
and there are certain assumptions that need to be fulfilled for this to be a mathe-
matically rigorous statement. We refer to Theorem 3.1 and its prerequisites.

It should be mentioned that the results are the expected generalizations of those
obtained in [6] for independent i.i.d. sequences, but the techniques of proof are
not straightforward generalizations. Indeed, this author would like to emphasize
the novelty of certain techniques developed in this paper. In particular the results
achieved in Sections 5.4 and 5.5 may be of independent interest. Moreover, the
framework of Markov chains does not only provide a change of the null hypothesis
but it also opens up the possibility of choosing new types of score functions as we
discuss in Remark 3.5. This can increase the power of the test. In addition, by
expanding the state space suitably the results obtained in this paper also cover null
hypotheses where the aligned sequences have a higher-order Markov dependency
or come from a hidden Markov model.

2. Local gapless alignment. Let (Xn)n≥1 and (Yn)n≥1 be two sequences of
random variables taking values in a finite set E. We compare parts of one sequence
with parts of the other using a score function f :E × E → Z, and we define the
random variables

Sδ
i,j =

δ∑
k=1

f (Xi+k, Yj+k),

for i, j, δ ≥ 0. The variable Sδ
i,j is the local score for the local comparison of the

sequence part Xi+1 · · ·Xi+δ with the sequence part Yj+1 · · ·Yj+δ .
We make the assumption that f takes integer values to emphasize the lattice

nature of f that is often met in practice. To assure that Z indeed is the minimal
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lattice, the greatest common divisor of the integers f (x, y), x, y ∈ E, is assumed
to be 1. The results obtained are valid if f takes real, nonlattice values in a slightly
modified form; see Remark 3.2.

The score function can be regarded as an E × E matrix, which is convenient
when writing down the values f (x, y). We will find it most useful to simply regard
f as an element in a vector space. Probability measures will then be regarded as
elements in the dual space and we use the functional notation

ν(f ) = ∑
x,y

f (x, y)ν(x, y)

to denote the mean of f evaluated under the probability measure ν.
For n ≥ 1 define

Hn = {(i, j, δ)|0 ≤ i ≤ i + δ ≤ n, 0 ≤ j ≤ j + δ ≤ n}.
The elements (i, j, δ) ∈ Hn are called alignments.

We want to understand the distribution of the collection

(Sδ
i,j )(i,j,δ)∈Hn

of local scores over all alignments. We will in particular be interested in the distri-
bution of

Mn = max
(i,j,δ)∈Hn

Sδ
i,j ,(2)

the maximal local score over the set of alignments. We will also study the number,
Cn(t), say, of essentially different variables Sδ

i,j in Hn exceeding some threshold
t ≥ 0. What we mean by “essentially different” is defined precisely below.

The local scores are efficiently summarized in the score matrix (Ti,j )0≤i,j≤n,
which is defined as follows. For i = 0 or j = 0 let Ti,j = 0 and define recursively

Ti,j = max{Ti−1,j−1 + f (Xi, Yj ),0}(3)

for i, j ≥ 1. As we will show (cf. Remark 3.6 below), the maximum Mn can be
computed as

Mn = max
i,j

Ti,j .(4)

This fact is closely related to the idea in the Smith–Waterman algorithm for com-
puting the (gapped) maximal local alignment score efficiently; see [21].

DEFINITION 2.1. For 0 ≤ i, j ≤ n − 1 define

�(i, j) = inf{δ > 0|Sδ
i,j ≤ 0, or i + δ = n, or j + δ = n}.

If Ti,j = 0, the alignment (i, j,�(i, j)) is called an excursion, and we let En denote
the set of all excursions.
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Note that En is a stochastic subset of Hn. It follows from the definition of the
score matrix (Ti,j ) and the definition of an excursion that if (i, j,�) ∈ En and
0 < δ < �, then

Ti+δ,j+δ = Sδ
i,j .

An excursion corresponds to a diagonal strip in the score matrix, for which the
score starts at zero and then stays strictly positive along that diagonal strip until it
either reaches zero or the indices hit the boundary of the score matrix.

The maximum over an excursion e = (i, j,�) ∈ En is denoted by

Me = max
0<δ≤�

Ti+δ,j+δ.(5)

DEFINITION 2.2. The number of essentially different excesses over t is de-
fined as

Cn(t) = ∑
e∈En

1(Me > t).(6)

From (4) it follows that (Cn(t) = 0) = (Mn ≤ t).

3. Alignment of independent Markov chains. Assume that the stochastic
processes (Xn)n≥1 and (Yn)n≥1 are independent Markov chains with transition
probabilities P and Q, respectively. Assume that P and Q are irreducible and
aperiodic matrices with left invariant probability vectors πP and πQ, respectively.
Let π = πP ⊗ πQ. With

µ = π(f ) = ∑
x,y∈E

f (x, y)πP (x)πQ(y)

the (invariant) mean of f (X1, Y1) we will assume throughout that µ < 0.
In the following, a cycle w.r.t. a matrix of transition probabilities P is a finite

sequence x1, . . . , xn such that

P
(
xi, xi+1(modn)

)
> 0

for i = 1, . . . , n. We will assume that the following regularity conditions on f , P

and Q are fulfilled: For some n ≥ 1 there exist cycles x1, . . . , xn (w.r.t. P ) and
y1, . . . , yn (w.r.t. Q) such that

n∑
k=1

f (xk, yk) > 0.(7)

For any T ≥ 1 there exist an n ≥ 1 and cycles x1, . . . , xn (w.r.t. P ) and y1, . . . , yn

(w.r.t. Q) such that
n∑

k=1

f (xk, yk) 	=
n∑

k=1

f
(
xk, yk+T (modn)

)
.(8)
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See Remark 3.3 below for comments related to this somewhat strange looking
condition.

For convenience we will assume that both Markov chains are stationary, though
the results obtained hold anyway. We denote by P the probability measure Pπ

under which (Xn,Yn)n≥1 is a stationary Markov chain with transition probabilities
P ⊗Q. It will in addition be convenient to assume that there exist auxiliary random
variables X0 and Y0 such that (Xn,Yn)n≥0 under P forms a stationary Markov
chain too. As usual Px,y will denote the probability measure where X1 = x and
Y1 = y.

We define for θ ∈ R an E2 × E2 matrix �(θ) with positive entries by

�(θ)(x,y),(x′,y′) = exp
(
θf (x′, y′)

)
Px,x′Qy,y′,

and we let ϕ(θ) denote the spectral radius (the Perron–Frobenius eigenvalue) of
this matrix. Then ϕ is a convex C∞-function in θ , and due to (7), ϕ(θ) → ∞
for θ → ∞. The fact that ϕ is (log)convex is due to Kingman [12], and the im-
plicit function theorem can be used to show that ϕ is C∞. Furthermore, by Corol-
lary XI.2.9(a) in [3] it holds that

∂θϕ(0) = µ,(9)

hence if µ < 0 there exists a (by convexity unique) solution θ∗ > 0 to the equation
ϕ(θ) = 1. If r∗ denotes the (up to scaling unique) right eigenvector corresponding
to the eigenvalue 1 for �(θ∗), the matrix defined by

R∗
(x,y),(x′,y′) = r∗(x′, y′)

r∗(x, y)
�(θ∗)(x,y),(x′,y′)

is an irreducible stochastic matrix with a unique left invariant probability vector,
which we will denote by π∗.

With g :E2 × E2 → R any given function we introduce two E3 × E3 matrices,
�1(g) and �2(g), by

�1(g)(x,y,z),(x′,y′,z′) = exp
(
g(x, y, x′, y′) + g(x, z, x′, z′)

)
Px,x′Qy,y′Qz,z′,

�2(g)(x,w,y),(x′,w′,y′) = exp
(
g(x, y, x′, y′) + g(w,y,w′, y′)

)
Px,x′Pw,w′Qy,y′,

and we let ϕ1(g) and ϕ2(g) denote the corresponding spectral radii. In terms of the
functions ϕ1 and ϕ2 we define

Ji = sup
g

{2π̂ (g) − logϕi(g)}

for i = 1,2. Here π̂ = π∗ ⊗ R∗ denotes the measure on E2 × E2 with point prob-
abilities π̂(x, y, x′, y′) = π∗(x, y)R∗

(x,y),(x′,y′). We discuss J1 and J2 in further
detail in Remark 3.8.

Finally, if we define the process (Sn)n≥0 by S0 = 0 and for n ≥ 1,

Sn =
n∑

k=1

f (Xk,Yk),(10)
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we can define a constant, K∗, in terms of this process, as done, for example, by
(1.26) in Theorem B in [11]. We discuss this constant in further detail in Re-
mark 3.7.

THEOREM 3.1. Assume that µ < 0, that the regularity conditions given by (7)
and (8) are fulfilled, and that θ∗ and K∗ are the constants defined above. Define
for x ∈ R

tn = logK∗ + logn2 + x

θ∗(11)

and xn ∈ [0, θ∗) by xn = θ∗(tn − 
tn�). Then if

2 min{J1, J2} > 3θ∗π∗(f ),(12)

it holds that ∥∥D(Cn(tn)) − Poi
(
exp(−x + xn)

)∥∥ → 0(13)

for n → ∞. Here ‖ · ‖ denotes the total variation norm and D(Cn(tn)) is the
distribution of Cn(tn). In particular

P(Mn ≤ tn) − exp
(− exp(−x + xn)

) → 0(14)

for n → ∞.

The theorem deserves a number of remarks.

REMARK 3.2. The choice of xn = θ∗(tn − 
tn�) assures that tn − xn/θ
∗ =


tn� ∈ Z. Due to the lattice effect arising from f taking values in Z it follows that(
Cn(tn) = m

) = (
Cn(tn − xn/θ

∗) = m
)

as well as

(Mn ≤ tn) = (Mn ≤ tn − xn/θ
∗),

and this is the reason that we need to correct by xn in the asymptotic formulas. If
f is a real, nonlattice function, Theorem 3.1 holds without the xn-correction.

REMARK 3.3. The regularity condition (8) does not look particularly nice in
general but is usually satisfied by quite trivial arguments. Essentially we want to
avoid the situation where

f (x, y) = f1(x) + f2(y)(15)

for two functions f1, f2 :E → R. It is clear that if f is of the form (15), then (8)
does not hold. It is easy to verify that if P and Q have only strictly positive entries,
condition (8) is equivalent to f not being of the form (15). In general, however,
this author has not been able to prove that f not being of the form (15) is sufficient
for (8) to hold. On the other hand, no counterexamples have been found either. In
the proof we will explicitly need that (8) holds.
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REMARK 3.4. It is possible, and of practical relevance, to allow for the
aligned sequences to have different lengths m and n, say. In this case Theorem 3.1
holds for n,m → ∞ with

tm,n = logK∗ + log(mn) + x

θ∗ .

Some restriction on the simultaneous growth of m and n must be made in order
for this to be true. In the proof of Lemma 5.15 we will need to be able to choose
integers ln,m fulfilling that

lim
n,m→∞

log(nm)

ln,m

= lim
n,m→∞

ln,m

min{n,m} = 0,

where n,m → ∞ refers to the desired simultaneous growth of n and m. Clearly
this can be achieved if m ∼ cn for some constant c > 0, whereas, for example,
m ∼ logn does not work.

REMARK 3.5. For notational convenience Theorem 3.1 was stated and proved
using a score function f that depends on a single pair of variables only. When
aligning Markov chains it would be perfectly natural to use a score function that
depends on pair-transitions instead, that is, f :E2 × E2 → R and

Sδ
i,j =

δ∑
k=1

f (Xi+k−1, Yj+k−1,Xi+k, Yj+k).

Theorem 3.1 holds for this kind of score function with the obvious modifications.
For instance, � is defined as

�(θ)(x,y),(x′,y′) = exp
(
θf (x, y, x′, y′)

)
Px,x′Qy,y′,

and π∗ in (12) is replaced by π̂ . In practice f can be chosen as a (conditional)
log-likelihood ratio. If the alternative to the null hypothesis is assumed to be a
Markov chain on E2 governed by an E2 ×E2 matrix of transition probabilities R,
then we could choose

f (x, y, x′, y′) = log
R(x,y),(x′,y′)
Px,x′Qy,y′

.

This score function does clearly not take integer values in general, but one may
choose to consider 
Nf � for suitably large N if integer scores are preferred.

We find that for this score function f and for θ = 1

�(1)(x,y),(x′,y′) = exp
(
f (x, y, x′, y′)

)
Px,x′Qy,y′

= R(x,y),(x′,y′),

which has row sums equal to 1. Hence ϕ(1) = 1 implying that θ∗ = 1.
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REMARK 3.6. The process (Sn)n≥0 defined by (10) is called a Markov con-
trolled random walk or a Markov additive process (abbreviated MAP); see [3],
Chapter XI. The process (Tn)n≥0 defined by

Tn = Sn − min
0≤k≤n

Sk(16)

is called the reflection of the MAP at the zero barrier. It is straightforward to verify
that (Tn)n≥0 satisfies the recursion

Tn = max{Tn−1 + f (Xn,Yn),0}
for n ≥ 1. In addition

max
1≤k≤m≤n

Sm − Sk = max
1≤m≤n

{
Sm − min

1≤k≤m
Sk

}
(17)

= max
1≤m≤n

Tm.

We see that Sn
0,0 = Sn and Tn,n = Tn. Thus along the main diagonal in the score

matrix (Ti,j )0≤i,j≤n we find the reflection of the MAP (Sn)n≥0. Along all other
diagonals in the score matrix we find the reflections of MAPs too—these MAPs
being defined by shifting the Markov chain (Xn)n≥1 along (Yn)n≥1. It follows from
(17) that (4) indeed holds. Due to independence and stationarity of the two Markov
chains all the reflected MAPs along diagonals have the same distribution, but they
are dependent. The interpretation of Theorem 3.1 is that asymptotically the number
of excursions exceeding level tn has the same distribution as if the reflected MAPs
were independent.

REMARK 3.7. The constant K∗ is defined in terms of the MAP (Sn)n≥0. Let
τ−(0) = 0 and for k ≥ 1 let

τ−(k) = inf
{
n > τ−(k − 1)|Sn ≤ Sτ−(k−1)

}
denote the times when the MAP descends below its previous minimum. These
stopping times are known as the descending ladder epochs for the MAP, and
they are almost surely finite due to assumption that µ < 0. One should note that
τ−(k) is also the kth time that the reflected MAP (Tn)n≥0 hits 0. A thorough
treatment of the ladder epochs is given in [1] covering also general state-space
Markov chains. From Theorem 1(i) in [1] it follows that the sampled Markov chain
(Xτ−(n), Yτ−(n))n≥0 has a unique invariant probability distribution, which we will
denote by ν. As we consider only a finite state-space Markov chain, this is also
a direct consequence of the Wiener–Hopf factorization ([3], Theorem XI.2.12).
Moreover, the sequence defined by

ux,y(n) = P(Tn = 0,Xn = x,Yn = y)

= P
(∃ k : τ−(k) = n,Xn = x,Yn = y

)
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for x, y ∈ E and n ≥ 1 forms a renewal sequence and the elementary renewal
theorem, ([3], Theorem V.1.4) gives that

1

n

n∑
k=1

ux,y(k) → ν(x, y)

µ−
(18)

for n → ∞ where µ− = Eν(τ−(1)). We refer to ([5] Theorem 10.4.3) for a proof
that the inverse of the mean recurrence time indeed is given as the right-hand side
limit above.

As stated in Lemma B in [11], when µ < 0 and (7) holds, then

lim
u→∞Px,y

(
max

1≤n≤τ−(1)
Sn > u

)
exp(θ∗u) = e(x, y)(19)

for some constants e(x, y) ≥ 0, x, y ∈ E. In terms of these limits the constant K∗
can be represented as

K∗ = 1

µ−
∑
x,y

ν(x, y)e(x, y).(20)

As a consequence of Walds identity for MAPs ([3], Corollary XI.2.6), it holds that

µ− = Eν(Sτ−(1))

µ
,

which shows that (20) is identical to the representation of K∗ in (1.26) in [11]. We
refer to [11] for more details and in particular their Section 5 for issues related to
the computation of K∗.

REMARK 3.8. The function g �→ logϕi(g) is a convex function and Ji is thus
the Fenchel–Legendre transform of the function evaluated in 2π̂ . It is possible
to identify Ji as the value of a large deviation rate-function. Considering J1 we
introduce the function h :E3 × E3 → R

E2×E2
by

h(x, y, z, x′, y′, z′) = (
1(x,y),(x′,y′)(v) + 1(x,z),(x,z′)(v)

)
v∈E2×E2 .

If (Xn,Yn,Zn)n≥0 is a Markov chain with transition probabilities P ⊗Q⊗Q, the
large deviation rate-function for the empirical average

1

n

n∑
k=1

h(Xk−1, Yk−1,Zk−1,Xk,Yk,Zk)

evaluated in 2α for α a probability measure on E2 × E2 is given as

I (2α) = sup
g

{2α(g) − logϕ1(g)};

see Theorem 3.1.2 in [7]. In particular J1 = I (2π̂).
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Let ν be a probability measure on the space E3 × E3 and define

ν1(x, y, z) = ∑
x′,y′,z′

ν(x, y, z, x′, y′, z′),

ν2(x′, y′, z′) = ∑
x,y,z

ν(x, y, z, x′, y′, z′);

thus ν1 and ν2 are marginal probability measures on E3. The measure ν is called
shift-invariant if ν1 = ν2, and we denote by M̃ the set of shift-invariant probabil-
ity measures on E3 × E3. Considering the Markov chain on E3 with transition
probability matrix P ⊗ Q ⊗ Q, then the large deviation rate-function for the pair-
empirical measure (cf. Theorem VI.3 in [8]) is given as

I 2(ν) = ∑
x,y,z

x′,y′,z′

ν(x, y, z, x′, y′, z′) log
ν(x, y, z, x′, y′, z′)

ν1(x, y, z)Px,x′Qy,y′Qz,z′

= H(ν|ν1 ⊗ P ⊗ Q ⊗ Q)

for ν ∈ M̃. Here H(·|·) denotes the relative entropy. Defining additional marginals

ν12(x, y, x′, y′) = ∑
z,z′

ν(x, y, z, x′, y′, z′),

ν13(x, z, x′, z′) = ∑
y,y′

ν(x, y, z, x′, y′, z′),

with ν12 and ν13 being probability measures on E2 × E2, it is a consequence of
the contraction principle, Theorem III.20 in [8], that

J1 = inf{I 2(ν)|ν ∈ M̃ :ν12 + ν13 = 2π̂}.
A similar representation of J2 is of course possible.

If (Xn)n≥1 and (Yn)n≥1 are independent sequences of i.i.d. variables with the
X’s having distribution π1 and the Y ’s having distribution π2, then

ϕ(θ) = E
(
exp

(
θf (X1, Y1)

))
is the Laplace transform of the distribution of f (X1, Y1), and θ∗ > 0 solves
ϕ(θ) = 1. Moreover, π∗ is the probability measure on E × E with point proba-
bilities π∗(x, y) = exp(θ∗f (x, y))π1(x)π2(y). In this case we can verify that the
infimum above is attained for

ν(x, y, z, x′, y′, z′) = π∗(x, y)π∗(x, z)π∗(x′, y′)π∗(x′, z′)
π∗

1 (x)π∗
1 (x′)

with π∗
1 denoting the first marginal of π∗. To see this first note that ν is clearly

shift-invariant with the desired marginal property, ν12 + ν13 = 2π∗ ⊗π∗. A simple
computation reveals that

I 2(ν) = 2θ∗π∗(f ) − ∑
x

π∗
1 (x) log

π∗
1 (x)

π1(x)
= 2θ∗π∗(f ) − H(π∗

1 |π1),
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and for any other shift-invariant ν̃ with the same marginal property one finds that

I 2(ν̃) = H(ν̃|ν) + I 2(ν),

where H(ν̃|ν) ≥ 0, hence

J1 = 2θ∗π∗(f ) − H(π∗
1 |π1).

Similarly we can show that J2 = 2θ∗π∗(f ) − H(π∗
2 |π2). Since θ∗π∗(f ) =

H(π∗|π1 ⊗ π2), the condition given by (12) is equivalent to

H(π∗|π1 ⊗ π2) > 2 max{H(π∗
1 |π1),H(π∗

2 |π2)},(21)

which is precisely the condition (E′) required in [6] in the i.i.d. case for Cn(tn) to
be asymptotically Poisson distributed. Since condition (H) in [6] is equivalent to
µ < 0 and (7) in the i.i.d. case, and since condition (E′) actually implies that f does
not take the form (15) in the i.i.d. setup, we conclude that (8) is also fulfilled in the
i.i.d. case when assuming (E′); see Remark 3.3. Thus Theorem 3.1 specializes in
the i.i.d. case to Theorem 1 in [6] with the same conditions.

It is a small nuisance that (12) is not as explicit as condition (21) in the i.i.d.
case, as (12) is given in terms of the values of J1 and J2, which in turn are the
results of an optimization. We showed above how to solve this optimization prob-
lem explicitly in the i.i.d. case, but it does not seem that there exists such a simple
solution for general Markov chains. From a practical point of view one may notice
that taking g∗(x, y, x′, y′) = 3θ∗f (x′, y′)/4, then

max{ϕ1(g
∗), ϕ2(g

∗)} < 1(22)

implies (12). Since ϕ1(g
∗) and ϕ2(g

∗) can be computed numerically we see that
(22) provides a usable, sufficient criterion for Theorem 3.1 to hold.

4. The counting construction. We will show that Cn(tn) is asymptotically
Poisson distributed by constructing another counting variable, which equals Cn(tn)

with probability tending to 1, and for which we can verify the conditions given in
Theorem 1 in [2].

We need to introduce some notation. Let

I = {(i, j)|0 ≤ i, j ≤ n − 1};
then for each a = (i, j) ∈ I and δ > 0 we define the (pair) empirical measure εa,δ

by

εa,δ

(
(x, y), (x′, y′)

) = 1

δ

δ∑
k=1

1(x,y),(x′,y′)
(
(Xi+k−1, Yj+k−1), (Xi+k, Yj+k)

)
for (x, y), (x′, y′) ∈ E2. With abuse of notation we will in the following also use
f to denote the function defined on E2 × E2 by (x, y, x′, y′) �→ f (x′, y′). Then

δεa,δ(f ) =
δ∑

k=1

f (Xi+k, Yj+k) = Sδ
i,j .
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Let d denote the total variation metric on the set of probability measures on
E2 × E2. Then for a ∈ I and for any t > 0, η > 0 and integer l > 0 define the
variable

Va = Va(t, l, η) = 1
(
Ta = 0, max

δ: δ≤�(a)∧l
and d(εa,δ ,π̂)<η

δεa,δ(f ) > t

)
.

We should observe that the counting variable Cn(t) has the following representa-
tion:

Cn(t) = ∑
a∈I

1
(
Ta = 0, max

δ : δ≤�(a)
δεa,δ(f ) > t

)
.(23)

We show in Section 5.8 that in the setup of the present paper, for a suitable choice
of ln and η > 0, then

P

(∑
a∈I

Va(tn, ln, η) 	= Cn(tn)

)
→ 0(24)

when n → ∞. The reason for introducing the l-restriction is to be able to control
the dependencies between the Va-variables better. The reason for the restriction on
the empirical measures is more subtle, and we give a discussion of this in Section 6.

As mentioned, we prove that
∑

a∈I Va is asymptotically Poisson distributed by
applying Theorem 1 in [2], which is based on the Chen–Stein method.

We assume that a subset Ba ⊆ I is given for all a ∈ I . This set Ba is called the
neighborhood of strong dependence of Va , and in the proof of Lemma 5.16 we
make a concrete choice of Ba . Furthermore, for a ∈ I let

Fa = σ(Vb|b /∈ Ba)

denote the σ -algebra generated by those variables Vb not in the neighborhood of
strong dependence of Va .

Rephrasing Theorem 1 in [2] gives:

THEOREM 4.1. Suppose that (ln)n≥1, (tn)n≥1 and η > 0 are chosen such that
for some sequence (λn)n≥1

β1,n =
∣∣∣∣∣∑
a∈I

E(Va) − λn

∣∣∣∣∣ → 0,(25)

for n → ∞, and suppose that

β2,n = ∑
a∈I,b∈Ba

E(Va)E(Vb) → 0,(26)

β3,n = ∑
a∈I,b∈Ba,b 	=a

E(VaVb) → 0,(27)

β4,n = ∑
a∈I

E
∣∣E(Va|Fa) − E(Va)

∣∣ → 0,(28)
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for n → ∞; then ∥∥∥∥∥D
(∑

a∈I

Va

)
− Poi(λn)

∥∥∥∥∥ → 0.(29)

In fact, the bound∥∥∥∥∥D
(∑

a∈I

Va

)
− Poi(λn)

∥∥∥∥∥ ≤ β1,n + 2(β2,n + β3,n + β4,n)

always holds.

As a direct consequence, using the coupling inequality, we have the following
corollary.

COROLLARY 4.2. If (29) holds and (24) is fulfilled also, then

‖D(Cn(tn)) − Poi(λn)‖ → 0(30)

and

P(Mn ≤ tn) − exp(−λn) → 0.(31)

5. Proofs. The proof of Theorem 3.1 is divided into a number of lemmas. We
need to verify the conditions in Theorem 4.1, and to this end we need bounds on
the expectations E(VaVb) = P(Va = 1,Vb = 1) for b ∈ Ba and a 	= b. This is the
subject of the following subsections and the most difficult part of the proof. In
Section 5.8 we collect the bounds obtained to prove that the conditions of Theo-
rem 4.1 are fulfilled when aligning independent Markov chains under the assump-
tions given in Theorem 3.1 and we show that (24) holds.

For a, b ∈ I we always have that

E(VaVb) ≤ P

(
max

δ:δ≤�(a)∧l

and d(εa,δ,π̂)<η

δεa,δ(f ) > t, max
δ : δ≤�(b)∧l

and d(εb,δ,π̂)<η

δεb,δ(f ) > t

)
(32)

≤ l2 max
1≤δ1,δ2≤l

P

(
δ1εa,δ1(f ) > t, d

(
εa,δ1, π̂

)
< η,

δ2εb,δ2(f ) > t, d
(
εb,δ2, π̂

)
< η

)
.

To bound E(VaVb) we thus need to bound the probability on the right-hand side
above. The same X- and Y -variables may enter both of the empirical measures
in two essentially different ways. Either variables from both sequences enter both
empirical measures or only variables from one sequence enter both empirical mea-
sures. These two different cases need different treatment. To give an exhaustive
treatment of the different ways that such a sharing of variables can be arranged
becomes unreasonably complicated, so we choose to treat the two essentially dif-
ferent cases for a specific arrangement of the sharing of variables in sufficient
detail for the reader to be able to convince himself that all other arrangements can
be treated similarly.
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5.1. Positive functionals of a Markov chain. We make a useful and general
observation on how to bound the expectation of positive functionals of a Markov
chain. It allows us to assume parts of the same Markov chain to be independent,
stationary versions at the expense of a constant factor.

LEMMA 5.1. Let Z = (Zn)n≥0 be an irreducible Markov chain on a finite
state space F and let 0 = k1 < · · · < kN < ∞ be given. Then there exists a constant
ρN such that if (Zi

n)
ki+1
n=ki

for i = 1, . . . ,N (kN+1 = ∞) are N independent station-

ary Markov chains with the same transition probabilities as Z, and Z̃ = (Z̃n)n≥0
is given by Z̃n = Zi

n if ki ≤ n < ki+1, then for a positive functional

� :FN0 → [0,∞)

it holds that

E(�(Z)) ≤ ρNE(�(Z̃)).(33)

The constant ρN does not depend on the actual initial distribution of Z nor on the
functional �.

PROOF. Assume N = 2. The general result follows by induction. Assume first
that Z is stationary and that (Z1

n)
k2
n=0 and (Z2

n)n≥k2 are independent and stationary.
Then Z has the same distribution as Z̃ conditionally on Z1

k2
= Z2

k2
; hence using

that � is a positive functional

E(�(Z)) = E(�(Z̃);Z1
k2

= Z2
k2

)

P(Z1
k2

= Z2
k2

)

≤ ρE(�(Z̃))

with ρ = (
∑

x∈E π2
x )−1, where π is the invariant distribution.

If Z is nonstationary with initial distribution ν, say, we have that

Eν(�(Z)) = ∑
x

νx

πx

πxEx(�(Z))

≤ 1

minx πx

Eπ(�(Z)).

So ρ2 = ρ/minx πx will do. In general ρN = ρN−1/minx πx can be used. �

5.2. Exponential change of measure. Let Z = (Zn)n≥0 be a Markov chain on
a finite state space F with transition probabilities R. Assume that R is irreducible,
and assume that g :F × F → R is a given function. Then we define the matrix
�(g) with positive entries by

�(g)x,x′ = exp
(
g(x, x′)

)
Rx,x′,
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with spectral radius ψ(g) and corresponding right eigenvector rg = (rg(x))x∈F .
Due to irreducibility of �(g) this eigenvector has strictly positive entries. With

gn(Z) =
n∑

k=1

g(Zk−1,Zk)

we define the process (L
g
n)n≥0 by

Lg
n = rg(Zn) exp(gn(Z))

rg(Z0)ψ(g)n
.

Then with (Fn)n≥0 the filtration of σ -algebras generated by the Markov chain it
follows that

E(Lg
n|Fn−1) = exp(gn−1(Z))

rg(Z0)ψ(g)n
E

(
rg(Zn) exp

(
g(Zn−1,Zn)

)|Zn−1
)

= exp(gn−1(Z))

rg(Z0)ψ(g)n
(�(g)rg)(Zn−1)(34)

= exp(gn−1(Z))

rg(Z0)ψ(g)n
ψ(g)rg(Zn−1) = L

g
n−1.

This shows that (L
g
n,Fn)n≥0 is a martingale, for which L

g
n > 0 and E(L

g
n) =

E(L
g
0) = 1. A probability measure P

g
n on Fn is then defined to have Radon–

Nikodym derivative L
g
n w.r.t. the restriction of P to Fn. These measures can be

extended to a single measure P
g , the exponentially changed or exponentially tilted

measure, under which (Zn)n≥0 is a Markov chain ([3], Theorem XIII.8.1) with
transition probabilities

R
g

x,x′ = rg(x′)
rg(x)ψ(g)

�(g)x,x′ .

We should observe that since the eigenvector fraction is bounded below by a
strictly positive constant, and bounded above as well, then E(L

g
n) = 1 implies that

1

n
log E(exp(gn(Z))) → logψ(g)(35)

for n → ∞.
If we return to the setup of the present paper with F = E2, g = θf for θ ∈ R,

and the Markov chain being Z = (Xn,Yn)n≥0, then

gn(Z) =
n∑

k=1

θf (Xk,Yk) = θSn,

and we find that the matrix R∗ introduced in Section 3 is precisely the matrix
of transition probabilities for the Markov chain under the exponentially changed
measure P

θ∗f . We will denote this measure simply by P
∗. Note that the exponential
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change of measure does not change the distribution π of (X0, Y0) whereas the
invariant measure π∗ for R∗ typically differs from π . The measure under which
(Xn,Yn)n≥0 is a stationary Markov chain with transition probabilities R∗ will be
denoted P

∗
π∗ . We use E

∗ to denote expectations under P
∗.

If we define the stopping time τ = inf{n ≥ 0|Sn > t}, then an easy conse-
quence of the exponential change of measure technique is, according to [3], Theo-
rem XIII.3.2, the following Lundberg-type inequality: For any event G ∈ Fτ with
G ⊆ (τ < ∞)

P(G) = E
∗
(

1

L∗
τ

;G
)

≤ K exp(−θ∗t).(36)

The inequality follows from L
g
τ ≥ K exp(θ∗t) where K bounds that eigenvector

fraction.

5.3. Variables shared in one sequence. Let g :E2 ×E2 → R be a function and
let r

g
i = (r

g
i (x, y, z)) denote the right eigenvector for �i(g) with eigenvalue ϕi(g)

for i = 1,2, respectively. As above, due to irreducibility, all coordinates of these
vectors are strictly positive.

In this section we derive a result corresponding to variables shared from the
X-sequence only, and we thus use the �1 matrix. Similar derivations for variables
shared from the Y -sequence only using �2 are possible.

Fix i ≤ δ1 and δ2 ≥ δ1 − i and define the functions

σ1
(
(xk)k, (yk)k

) =
i∑

k=1

g(xk−1, yk−1, xk, yk),

σ2
(
(xk)k, (yk)k, (zk)k

) =
δ1∑

k=i+1

g(xk−1, yk−1, xk, yk) + g(xk−1, zk−1, xk, zk),

σ3
(
(xk)k, (zk)k

) =
i+δ2∑

k=δ1+1

g(xk−1, zk−1, xk, zk).

Let �0(g) denote the matrix

�0(g)(x,y),(x′,y′) = exp
(
g(x, y, x′, y′)

)
Px,x′Qy,y′

and ϕ0(g) the spectral radius. Let r
g
0 denote the corresponding right eigenvector.

We define a positive functional Lg on (E3)N0 by

Lg = r
g
0 (xi, yi) exp(σ1)

r
g
0 (x0, y0)ϕ0(g)i

r
g
1 (xδ1, yδ1, zδ1) exp(σ2)

r
g
1 (xi, yi, zi)ϕ1(g)δ1−i

r
g
0 (xi+δ2, zi+δ2) exp(σ3)

r
g
0 (xδ1, zδ1)ϕ0(g)i+δ2−δ1

.

Assume that (Zn)n≥1 is a stationary Markov chain with transition probabil-
ities Q independent of (Xn,Yn)n≥1, and let X = (Xn)n≥1, Y = (Yn)n≥1 and
Z = (Zn)n≥1. Introduce also YT = (YT +n)n≥1 as the T -shift of Y for T ≥ 1.
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LEMMA 5.2. It holds that

E
(
Lg(X,Y,Z)

) = 1,(37)

and, furthermore, there exists a constant ρ > 0 such that

E
(
Lg(X,Y,YT )

) ≤ ρ(38)

whenever i + T ≥ δ1 + 1.

PROOF. The first part of the lemma follows by repeating the arguments in
(34) three times corresponding to making three different, successive exponential
changes of measures. The second claim follows by Lemma 5.1. �

We restrict our attention to the case where i + T ≥ δ1 + 1, so that there is no
overlap in the Y -sequence. Let ε1 = ε(0,0),δ1 and ε2 = ε(i,i+T ),δ2 .

LEMMA 5.3. For any g :E ×E → R and ε > 0 there exist constants η,K > 0
such that for all s > 0,

P

(
δ1ε1(f ) > s, d(ε1, π̂) < η,

δ2ε2(f ) > s, d(ε2, π̂) < η

)
≤ K exp

(
−s

(
2π̂ (g) − logϕ1(g)

π∗(f )
− ε

))
.

PROOF. First we show that logϕ1(g) ≥ 2 logϕ0(g). Let

gn(X,Y) =
n∑

k=1

g(Xk−1, Yk−1,Xk,Yk)

and define gn(X,Z) likewise. Let EX, EY and EZ denote the expectation oper-
ators where we only integrate w.r.t. the distribution of X, Y or Z, respectively.
Introduce

ρn(X) = EY
(
exp

(
gn(X,Y)

));
then by (35) and Tonelli

logϕ0(g) = lim
n→∞

1

n
log EX(ρn(X)).

Using Tonelli again and Jensen’s inequality, and that Y and Z are independent and
identically distributed, we find that

E
(
exp

(
gn(X,Y) + gn(X,Z)

)) = EX
(
EY

(
exp

(
gn(X,Y)

))
EZ

(
exp

(
gn(X,Z)

)))
= EX(ρn(X)2) ≥ EX(ρn(X))2.

Using (35) again gives

logϕ1(g) = lim
n→∞

1

n
log E

(
exp

(
gn(X,Y) + gn(X,Z)

))
≥ 2 lim

n→∞
1

n
log EX(ρn(X)) = 2 logϕ0(g).
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Since 2(δ1 − i) + i + (i + δ2 − δ1) = δ1 + δ2 and σ1 + σ2 + σ3 = δ1ε1(g) +
δ2ε2(g), the inequality logϕ1(g) ≥ 2 logϕ0(g) gives that

Lg(X,Y,YT ) ≥ γ exp
(
δ1ε1(g) + δ2ε2(g) − (δ1 + δ2) logϕ1(g)/2

)
with γ > 0 a lower bound on the eigenvector fractions. We may assume that
2π̂ (g) − logϕ1(g) > π∗(f )ε since the result is trivial otherwise. Then we can
find ε′ > 0 such that

2(π̂(g) − ε′) − logϕ1(g)

π∗(f ) + ε′ = 2π̂(g) − logϕ1(g)

π∗(f )
− ε

and choose η so small that for ν a probability measure on E2 × E2 with
d(ν, π̂) < η we have |ν(g) − π̂ (g)| ≤ ε′ and |ν(f ) − π∗(f )| ≤ ε′. On the event

A =
(
δ1ε1(f ) > s, d(ε1, π̂) < η,

δ2ε2(f ) > s, d(ε2, π̂) < η

)

we see that

δ1ε1(g) + δ2ε2(g) − (δ1 + δ2) logϕ1(g)/2 ≥ δ1 + δ2

2

(
2
(
π̂(g) − ε′) − logϕ1(g)

)
≥ s

(
2π̂(g) − logϕ1(g)

π∗(f )
− ε

)
since on A we have δ1 + δ2 > 2s/(π∗(f ) + ε′). Hence

P(A) = E

(
Lg(X,Y,YT )

Lg(X,Y,YT )
;A

)

≤ γ −1 exp
(
−s

(
2π̂ (g) − logϕ1(g)

π∗(f )
− ε

))
E

(
Lg(X,Y,YT );A)

≤ ργ −1 exp
(
−s

(
2π̂ (g) − logϕ1(g)

π∗(f )
− ε

))
,

where the first inequality follows by bounding the denominator from below
using the inequalities obtained above, and the second inequality follows from
Lemma 5.2. �

If the condition (12) is fulfilled, then 2J1 > 3θ∗π∗(f ) and we can in particular
choose a function g and an ε > 0 sufficiently small such that

2π̂(g) − logϕ1(g) ≥ (3θ∗/2 + 2ε)π∗(f ).

The following corollary is therefore a direct consequence of Lemma 5.3.



1280 N. R. HANSEN

COROLLARY 5.4. If (12) is fulfilled, there exist constants ε, η,K > 0 such
that for all s > 0

P

(
δ1ε1(f ) > s, d(ε1, π̂) < η,

δ2ε2(f ) > s, d(ε2, π̂) < η

)
≤ K exp

(−(3θ∗/2 + ε)s
)
.(39)

The result in Corollary 5.4 gives a prototypical inequality under the assumption
2J1 > 3θ∗π∗(f ) when only variables from the X-sequence enter both of the em-
pirical measures. If only variables from the Y -sequence enter both empirical mea-
sures, a similar inequality is obtained under the assumption that 2J2 > 3θ∗π∗(f ).

5.4. A uniform large deviation result. To handle the case with variables shared
from both sequences we need a special large deviation result for Markov chains
that we will derive in this section. We first state the useful Azuma–Hoeffding in-
equality for martingales with bounded increments; see Lemma 1.5 in [13] or The-
orem 1.3.1 in [19].

LEMMA 5.5. If (Zn,Fn)n≥0 is a mean-zero martingale with Z0 = 0 such that
for all n ≥ 1

|Zn − Zn−1| ≤ cn

for some sequence (cn)n≥1, then for λ > 0

P(Zn ≥ λ) ≤ exp
(
− λ2

2
∑n

k=1 c2
k

)
.

Fix j ≥ 1 and let in this section (Xn,Yn)
j
n=1 be a stationary, aperiodic and

irreducible Markov chain with transition probabilities given by R and invariant
distribution πR . Let (Yn)n≥j+1 be an independent, stationary, aperiodic and irre-
ducible Markov chain with transition probabilities given by Q and invariant distri-
bution πQ. For an E2 × E2 matrix G define the norm of the matrix as

‖G‖∞ = max
(x,y)

∑
(z,w)

∣∣G(x,y),(z,w)

∣∣.
With 1 the column vector of 1’s, the matrix Rk converges to 1πR due to irre-
ducibility and aperiodicity, and since the rate of convergence is sufficiently fast, in
fact geometric, we have that

∞∑
k=0

‖Rk − 1πR‖∞ < ∞.

For an E2 vector f we let ‖f ‖∞ = max(x,y) |f (x, y)| denote the max-norm. Then
clearly for any E2 × E2 matrix G, with G(f ) the matrix product of G with the
vector f , ‖G(f )‖∞ ≤ ‖f ‖∞‖G‖∞, and especially

‖Rk(f ) − 1πR(f )‖∞ ≤ ‖f ‖∞‖Rk − 1πR‖∞.
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For T ≥ 1 a fixed constant we want to give an exponential bound of the proba-
bility

P

( j∑
k=1

f (Xk,Yk+T ) ≥
j∑

k=1

f (Xk,Yk)

)
(40)

if E(f (Xk,Yk+T )) < E(f (Xk,Yk)) all k. This is achieved by introducing a rele-
vant martingale and then using the Azuma–Hoeffding inequality.

Let F0 = {∅,�} and for n ≥ 1 let Fn denote the σ -algebra generated by
X1, . . . ,Xn, Y1, . . . , Yn together with Yj+1, . . . , Yn+T if n + T > j . Define

Sj,T =
j∑

k=1

[f (Xk,Yk+T ) − f (Xk,Yk)] (S0,T = 0),

and with ξj,T = E(Sj,T ) let

Zn = E(Sj,T − ξj,T |Fn).(41)

Then (Zn,Fn)
j
n=0 is a mean-zero martingale with Z0 = 0 (depending on T , though

we have suppressed this in the notation). Notice that Zj = Sj,T − ξj,T . The fol-
lowing lemma shows that the martingale differences

|Zn − Zn−1| =
∣∣E(Sj,T |Fn) − E(Sj,T |Fn−1)

∣∣
are uniformly bounded by a constant.

LEMMA 5.6. There exists a constant η independent of j and T such that

|Zn − Zn−1| ≤ η.(42)

Here η can be chosen as

η = 6‖f ‖∞
∞∑

k=0

‖Rk − 1πR‖∞.(43)

PROOF. The Markov property gives that for n ≤ k ≤ j

E
(
f (Xk,Yk)|Fn

) = Rk−n(f )(Xn,Yn).

Define the function f̂ by

f̂ (x, y) = RT (
f (x, ·))(x, y) = ∑

z,w

f (x,w)RT
(x,y),(z,w),

and for n ≤ k ≤ j define f̃k,n

f̃k,n(x, y) =


∑
z

f (x, z)Qk−n
y,z , if n + T > j ,∑

z

f (x, z)πQ(z), if n + T ≤ j .
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Then

E
(
f (Xk,Yk+T )|Fn

) =


Rk−n(f̂ )(Xn,Yn), k ∈ C1,
Rk−n

(
f̃k,n(·, Yn+T )

)
(Xn,Yn), k ∈ C2,

Rk+T −n
(
f (Xk, ·))(Xn,Yn), k ∈ C3,

where

C1 = {k|n ≤ k < k + T ≤ j},
C2 = {k|n ≤ k ≤ j < k + T },
C3 = {k|n − T ≤ k < n ≤ k + T ≤ j}.

Observing that

E(Sj,T |Fn) =
j∑

k=1

E
(
f (Xk,Yk+T )|Fn

) −
j∑

k=1

E
(
f (Xk,Yk)|Fn

)
and subtracting E(Sj,T |Fn−1) from this, the martingale difference Zn − Zn−1 is
seen to be the sum of the following two terms:

t1 =
j∑

k=n−T

[
E

(
f (Xk,Yk+T )|Fn

) − E
(
f (Xk,Yk+T )|Fn−1

)]
,

t2 =
j∑

k=n

[
E

(
f (Xk,Yk)|Fn−1

) − E
(
f (Xk,Yk)|Fn

)]
.

Since ∣∣E(
f (Xk,Yk)|Fn

) − πR(f )
∣∣ = |Rk−n(f )(Xn,Yn) − πR(f )|
≤ ‖f ‖∞ ‖Rk−n − 1πR‖∞,

the term t2 is controlled by the following inequality:

|t2| ≤ 2‖f ‖∞
j∑

k=n

‖Rk−n − 1πR‖∞ ≤ 2‖f ‖∞
∞∑

k=0

‖Rk − 1πR‖∞.(44)

Noting that ‖f̂ ‖∞,‖f̃k,n(·, y)‖∞,‖f (x, ·)‖∞ ≤ ‖f ‖∞ we observe that for
k ∈ C1, ∣∣E(

f (Xk,Yk+T )|Fn

) − πR(f̂ )
∣∣ ≤ ‖f ‖∞‖Rk−n − 1πR‖∞,

for k ∈ C2,∣∣E(
f (Xk,Yk+T )|Fn

) − πR

(
f̃k,n(·, Yn+T )

)∣∣ ≤ ‖f ‖∞‖Rk−n − 1πR‖∞,
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and for k ∈ C3,∣∣E(
f (Xk,Yk+T )|Fn

) − πR

(
f (Xk, ·))∣∣ ≤ ‖f ‖∞‖Rk+T −n − 1πR‖∞.

Since the three inequalities above also hold when conditioning on Fn−1 we obtain∑
k∈C1∪C2∪C3

∣∣E(
f (Xk,Yk+T )|Fn

) − E
(
f (Xk,Yk+T )|Fn−1

)∣∣
≤ 2‖f ‖∞

∑
k∈C1∪C2

‖Rk−n − 1πR‖∞ + 2‖f ‖∞
∑
k∈C3

‖Rk+T −n − 1πR‖∞

≤ 4‖f ‖∞
∞∑

k=0

‖Rk − 1πR‖∞.

Finally, if n − T ≤ k < n < j < k + T , then

E
(
f (Xk,Yk+T )|Fn

) = E
(
f (Xk,Yk+T )|Fn−1

) = f (Xk,Yk+T ),

hence

|t1| ≤ 4‖f ‖∞
∞∑

k=0

‖Rk − 1πR‖∞,

which together with (44) gives (42) with η chosen as (43). �

THEOREM 5.7. If ξj,T < 0, it holds that

P(Sj,T ≥ 0) = P(Sj,T − ξj,T ≥ −ξj,T ) ≤ exp
(
− ξ2

j,T

2jη2

)
(45)

with η chosen as in Lemma 5.6.

PROOF. This follows directly from the Azuma–Hoeffding inequality for the
mean-zero martingale (Zn,Fn)

j
n=1, since it has increments uniformly bounded

by η. �

5.5. Mean value inequalities. We will apply the result in the previous section
by considering the Markov chain (Xn,Yn)

j
n=1 under the exponentially tilted mea-

sure P
∗
π∗ and (Yn)n≥j+1 under Pπ . To do so we will need to establish inequalities

relating the mean of f (Xn,Yn) to the mean of f (Xn,Yn+T ) [or f (Xn+T , Yn)]. Let

µ∗ = E
∗
π∗

(
f (X1, Y1)

) = π∗(f )

denote the stationary mean of f (Xn,Yn) under the exponentially tilted measure
and let

µ∗
T = E

∗
π∗

(
f (X1, Y1+T )

)
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denote the stationary mean when shifting the Y -sequence T positions.
It was mentioned in Section 3 that the function ϕ is log-convex. In the following

we will need results obtained in [16] about strict log-convexity of ϕ-like functions.
Let F be a finite set, g :F → R any function and R an irreducible F ×F matrix

of transition probabilities. Following Definition 2 in [16] we say that g is degener-
ate w.r.t. R if there exists a constant γ such that for all cycles x1, . . . , xn w.r.t. R

n∑
k=1

g(xk) = γ n.

Let ψ(θ) for θ ∈ R be the spectral radius of the F × F matrix �(θ) with entries

�(θ)x,x′ = exp(θg(x′))Rx,x′ .

From Theorem 5 in [16] it follows that if g is nondegenerate w.r.t. R, then ψ is
strictly log-convex, and if g is degenerate w.r.t. R, then ψ(θ) = exp(γ θ) (i.e.,
logψ is linear). The consequence that we will use repeatedly below is that if
ψ(0) = ψ(θ∗) = 1 for θ∗ > 0 and if g is degenerate w.r.t. R, then necessarily
ψ(θ) = 1 for all θ ∈ R and the constant γ equals 0. Thus if we can find a single
cycle x1, . . . , xn w.r.t. R such that

n∑
k=1

g(xk) 	= 0,(46)

then g cannot be degenerate w.r.t. R, and the function ψ becomes strictly
(log-)convex. Most importantly, we can conclude that ∂θψ(0) < 0.

LEMMA 5.8. With π∗
1 and π∗

2 denoting the marginals of π∗ it holds that
π∗

1 ⊗ πQ(f ) < µ∗ as well as πP ⊗ π∗
2 (f ) < µ∗.

PROOF. We consider (Xn,Yn)n≥1 under the tilted measure P
∗
π∗ and an inde-

pendent stationary Markov chain (Zn)n≥1 with transition probabilities Q. Then

(Xn,Yn,Zn)n≥1

is a Markov chain on E3, and we define the function f̃ on E3 by

f̃ (x, y, z) = f (x, z) − f (x, y).

The Markov chain has transition probabilities given by

R∗
(x,y),(x′,y′)Qz,z′ = r∗(x′, y′)

r∗(x, y)
exp

(
θ∗f (x′, y′)

)
Px,x′Qy,y′Qz,z′,

with invariant distribution π∗ ⊗ πQ. We also introduce the �̃(θ) matrix

�̃(θ)(x,y,z),(x′,y′,z′) = exp
(
θ
(
f (x′, z′) − f (x′, y′)

))
R∗

(x,y),(x′,y′)Qz,z′ .
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With ϕ̃(θ) the spectral radius of �̃(θ) we have that ϕ̃(0) = ϕ̃(θ∗) = 1 since �̃(0)

is stochastic and �̃(θ∗) has a right eigenvector with eigenvalue 1 having entries
r∗(x, z)/r∗(x, y). Moreover, (8) provides the necessary cycle to show that (46)
holds, and since

∂θ ϕ̃(0) = π∗ ⊗ πQ(f̃ ) = π∗
1 ⊗ πQ(f ) − π∗(f ) = π∗

1 ⊗ πQ(f ) − µ∗

by (9), it follows that π∗
1 ⊗ πQ(f ) < µ∗. The second inequality follows similarly.

�

LEMMA 5.9. The sequence (µ∗
T )T ≥1 is convergent, and

µ∗∞ := lim
T →∞µ∗

T < µ∗.

PROOF. We first observe that

µ∗
T = E

∗
π∗

(
f (X1, Y1+T )

) → π∗
1 ⊗ π∗

2 (f )

for T → ∞, where π∗
1 and π∗

2 are the marginals of π∗.
We consider (Xn,Yn)n≥1 under the tilted measure P

∗
π∗ and let (Wn,Zn)n≥1 be

an independent copy with the same distribution. Then

(Xn,Yn,Wn,Zn)n≥1

is a Markov chain on E4 with transition probabilities R∗
(x,y),(x′,y′)R

∗
(w,z),(w′,z′) and

invariant distribution π∗ ⊗ π∗. We define the function f∞ on E4 by

f∞(x, y,w, z) = f (x, z) + f (w,y) − f (x, y) − f (w, z).

Introduce the corresponding �̃∞(θ) matrix by

�̃∞(θ)(x,y,w,z),(x′,y′,w′,z′) = exp
(
θf∞(x′, y′,w′, z′)

)
R∗

(x,y),(x′,y′)R
∗
(w,z),(w′,z′)

and its spectral radius ϕ̃∞(θ). By arguments analogous to those in Lemma 5.8 we
conclude that ϕ̃∞(0) = ϕ̃∞(θ∗) = 1, and that ∂θ ϕ̃∞(0) = 2µ∗∞ − 2µ∗ < 0. Hence
µ∗∞ < µ∗. Regarding ∂θ ϕ̃∞(0) < 0, we can again use (8) to verify that (46) holds.

�

It is interesting and very useful that the inequality in Lemma 5.9 holds not only
in the limit but in fact for all T .

LEMMA 5.10. For all T ≥ 1 it holds that

µ∗
T < µ∗.(47)
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PROOF. With ST
n = ∑n

k=1 f (Xk,Yk+T ) and Sn = ∑n
k=1 f (Xk,Yk) we ob-

serve that Sn
D= ST

n under P = Pπ , since the X- and Y -sequences are independent,
stationary Markov chains. By (35) this implies that

1

n
log E(exp(θST

n )) → logϕ(θ)(48)

for n → ∞.
Consider first the case T = 1 and the Markov chain

(Xn,Xn+1, Yn,Yn+1)n≥1,

which under the tilted measure has transition probabilities

R∗
(x,w,y,z),(x′,w′,y′,z′) = r∗(w′, z′)

r∗(w, z)
exp

(
θ∗f (w′, z′)

)
Pw,w′Qz,z′δw,x′δz,y′ .

Introduce the matrix

�̃1(θ)(x,w,y,z),(x′,w′,y′,z′) = exp
(
θ
(
f (x′, z′) − f (w′, z′)

))
R∗

(x,w,y,z),(x′,w′,y′,z′)

and its spectral radius ϕ̃1(θ). Clearly, ϕ̃1(0) = 1 and we observe that

�̃1(θ
∗)(x,w,y,z),(x′,w′,y′,z′) = r∗(w′, z′)

r∗(w, z)
exp

(
θ∗f (x′, z′)

)
Pw,w′Qz,z′δw,x′δz,y′ .

The matrix �̃1(θ
∗) has the same spectrum if we remove the eigenvector fraction,

hence (35) together with (48) imply that

log ϕ̃1(θ
∗) = lim

n→∞
1

n
log E(exp(θ∗S1

n)) = logϕ(θ∗) = 0,

thus ϕ̃1(θ
∗) = 1.

Furthermore, by (9) ∂θ ϕ̃1(0) = µ∗
1 − µ∗. Using (8) (for T = 1) together with

(46) we find that ∂θ ϕ̃1(0) < 0, hence

µ∗
1 < µ∗.

A similar argument for T ≥ 2 is possible by introducing the Markov chain

(Xn, . . . ,Xn+T , Yn, . . . , Yn+T )n≥1

and a function fT given by

fT (x0, . . . , xT , y0, . . . , yT ) = f (x0, yT ) − f (xT , yT ).

The spectral radius ϕ̃T (θ) of the corresponding matrix �̃T (θ) fulfills that ϕ̃T (0) =
ϕ̃T (θ∗) = 1 and that ∂θ ϕ̃T (0) = µ∗

T − µ∗ < 0, using (8) to show that (46) holds.
Thus µ∗

T < µ∗. �
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5.6. Variables shared in both sequences. We define for i, j,m,T ≥ 1 with
i ≤ j

S1 =
i∑

k=1

f (Xk,Yk), S2 =
j∑

k=i+1

f (Xk,Yk),

S̃2 =
j∑

k=i+1

f (Xk,Yk+T ), S3 =
i+m∑

k=j+1

f (Xk,Yk+T ).

LEMMA 5.11. There exist an ε > 0 and some K (both independent of T ) such
that

P(S1 + S2 > t, S̃2 + S3 > t) ≤ K exp
(−θ∗(1 + ε)t

)
(49)

for t ≥ 0.

PROOF. Assume first that the number of variables j − i in the overlapping part
is small, less than t (4‖f ‖∞)−1, say, in which case we obtain the estimate

P(S1 + S2 > t, S̃2 + S3 > t) ≤ P(S1 > 3t/4, S3 > 3t/4)

≤ ρP(S1 > 3t/4)P(S3 > 3t/4)

≤ K exp(−3θ∗t/2),

using Lemma 5.1 for the second inequality and then a standard exponential change
of measure argument; see (36). This implies (49) with ε = 1/2.

If instead j − i ≥ t (4‖f ‖∞)−1 we observe that

P(S1 + S2 > t, S̃2 + S3 > t)
(50)

≤ P(S1 + S2 > t, S̃2 ≥ S2) + P(S̃2 + S3 > t,S2 ≥ S̃2).

With L∗
j = r(Xj ,Yj )/r(X0, Y0) exp(θ∗(S1 + S2)) we obtain

Pπ(S1 + S2 > t, S̃2 ≥ S2) = Pπ

(L∗
j

L∗
j

;S1 + S2 > t, S̃2 ≥ S2

)
≤ γ exp(−θ∗t)P∗

π,j (S̃2 ≥ S2),

where P
∗
π,j denotes the tilted measure up to index j . Using Lemma 5.1, we can,

at the expense of a factor ρ, assume that the sequence (Xn,Yn)
j
n=i is a stationary

Markov chain under the tilted measure and that (Yn)n≥j+1 is independent and
stationary under the original measure. Under this assumption it follows that the
mean of S̃2 −S2 equals (j −T − i)µ∗

T +T π∗
1 ⊗πQ(f )−(j − i)µ∗. Using Lemmas

5.8, 5.9 and 5.10 we can find a ζ > 0, independent of T , such that

(j − T − i)µ∗
T + T π∗

1 ⊗ πQ(f ) − (j − i)µ∗ < −(j − i)ζ.
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Hence Theorem 5.7 gives that

P
∗
π,j (S̃2 ≥ S2) ≤ ρ exp

(
−ζ 2(j − i)

2η2

)
≤ ρ exp

(
− ζ 2t

8‖f ‖∞η2

)
or, with ε = ζ 2(θ∗8‖f ‖∞η2)−1,

P(S1 + S2 ≥ t, S̃2 ≥ S2) ≤ ργ exp
(−θ∗(1 + ε)t

)
.

Of course, a similar argument takes care of the second term in (50) and (49) fol-
lows. �

5.7. Useful mixing inequalities. When the aligned sequences are i.i.d. the sets
Ba entering Theorem 4.1 are usually chosen such that Va and Fa are independent,
in which case E|E(Va|Fa) − E(Va)| = 0 and the term β4,n in Theorem 4.1 vanish.
In the framework of Markov chains we need to control β4,n by using exponential
β-mixing of stationary, finite state-space Markov chains. To this end we need a few
results on how to translate knowledge about the β-mixing coefficients into useful
bounds on E|E(Va|Fa) − E(Va)|.

For two σ -algebras F and G the α-mixing measure of dependence is

α(F ,G) = sup
A∈F ,B∈G

|P(A ∩ B) − P(A)P(B)|.

The following lemma relates α-mixing measures to mean values of the desired
form.

LEMMA 5.12. Let F and G be σ -algebras and let A ∈ G. With η = 1(A)

E
∣∣E(η|F ) − E(η)

∣∣ ≤ 2α(F ,G).(51)

PROOF. With B = (E(η|F ) ≥ E(η)) ∈ F and ξ = 1(B) we see that

E
∣∣E(η|F ) − E(η)

∣∣ = E
(
ξ
(
E(η|F ) − E(η)

)) − E
(
(1 − ξ)

(
E(η|F ) − E(η)

))
= 2

(
E(ξη) − E(ξ)E(η)

)
= 2

(
P(A ∩ B) − P(A)P(B)

) ≤ 2α(F ,G). �

The β-mixing measure of dependence between the σ -algebras F and G is de-
fined as

β(F ,G) = E

(
sup
A∈F

∣∣P(A|G) − P(A)
∣∣).

For a stationary stochastic process (Zn)n∈Z and for a subset I ⊆ Z we define
the σ -algebra FI = σ(Zn;n ∈ I ). The β-mixing coefficient is defined as

β(n) = β
(
F[n,∞),F(−∞,0]

) = E

(
sup

A∈F[n,∞)

∣∣P(
A|F(−∞,0]

) − P(A)
∣∣),(52)



LOCAL ALIGNMENT OF MARKOV CHAINS 1289

for n ≥ 1 and the process (Zn)n∈Z is called β-mixing if β(n) → 0 for n → ∞. For
two subsets I, J ⊆ Z, the distance, d(I, J ), between the sets is defined as

d(I, J ) = inf
n∈I,m∈J

|n − m|.
If I, J ⊆ Z, we write I < J if n < m for all n ∈ I and m ∈ J .

LEMMA 5.13. Assume that I1 < J < I2 are three subsets of Z. With I =
I1 ∪ I3 it holds that

α(FI ,FJ ) ≤ 3β
(
d(I, J )

)
.

This result is Theorem 3.1 in [20]. See also [9], Theorem 1.3.3 for a slightly
more general result.

5.8. Proof of the Poisson approximation. We recall the notation from Remarks
3.6 and 3.7 where

τ−(1) = inf{n > 0|Sn ≤ 0}
and we let εδ = ε(0,0),δ such that Sδ = δεδ(f ).

LEMMA 5.14. There exist constants K,c > 0 such that for all n ≥ 1

P
(
τ−(1) ≥ n

) ≤ K exp(−cn).(53)

Moreover, for any η > 0 there exist constants K(η), c(η) > 0 such that for all δ ≥ 1

P
(
Sδ > t, d(εδ, π̃) ≥ η

) ≤ K(η) exp
(−θ∗t − c(η)δ

)
.(54)

PROOF. We first note that there exists θ > 0 such that logϕ(θ) < 0 due to
logϕ(0) = 0 and ∂θ logϕ(0) = ∂θϕ(0) = µ < 0. Choose such a θ > 0 and let
c = − logϕ(θ) > 0—for optimality we may choose θ that minimizes logϕ(θ).
Exponential change of measure gives

P
(
τ−(1) ≥ n

) = E
θf

(
1

L
θf
τ−(1)

;n ≤ τ−(1) < ∞
)

≤ K0E
θf (

exp
(−cτ−(1) − θSτ−(1)

);n ≤ τ−(1) < ∞)
≤ K0 exp(−cn)Eθf (

exp
(−θSτ−(1)

);n ≤ τ−(1) < ∞)
≤ K exp(−cn).

Here K0 is the maximum of the eigenvector fractions and

K = K0E
θf (

exp
(−θSτ−(1)

))
,

which is finite because 0 ≥ Sτ−(1) ≥ minx,y f (x, y). This shows (53).
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For the second inequality we find that

P
(
Sδ > t, d(εδ, π̂) ≥ η

) = E
∗
(

1

L∗
δ

;Sδ > t, d(εδ, π̂) ≥ η

)
≤ K0 exp(−θ∗t)P∗(

d(εδ, π̂) ≥ η
)
.

Large deviation theory for Markov chains gives that

lim sup
δ→∞

1

δ
log P

∗(
d(εδ, π̂) ≥ η

) ≤ − inf
ν : d(ν,π̂)≥η

I 2(ν),

where the infimum is taken over all shift-invariant probability measures on E2 ×
E2. Here the rate-function I 2 is continuous and I 2(ν) > 0 for all ν 	= π̂ . We refer
to Definition III.23, Theorem IV.3 and Lemma IV.5 in [8]. Consequently we can
choose K0(η), c(η) > 0, with c(η) < infν:d(ν,π̂)≥η I 2(ν), such that for all δ ≥ 1

P
∗(

d(εδ, π̂) ≥ η
) ≤ K0(η) exp(−c(η)δ).

We conclude that (54) holds with K(η) = K0K0(η). �

LEMMA 5.15. If we, for some x ∈ R, let

t = tn = logK∗ + logn2 + x

θ∗(55)

and assume that (ln)n≥1 is a sequence of positive integers satisfying

lim
n→∞ l−1

n logn = lim
n→∞n−1ln = 0,

then with xn = θ∗(tn − 
tn�) ∈ [0, θ∗) it holds that∑
a∈I

E
(
Va(tn, ln, η)

) ∼ E(Cn(tn)) ∼ exp(−x + xn)

for all η > 0.

PROOF. Introduce the probabilities

p(n, x, y) = Px,y

(
max

δ:δ≤τ−(1)
Sδ > tn

)
= Px,y

(
max

δ:δ≤τ−(1)
Sδ > 
tn�

)
and

p̃(n, x, y) = Px,y

(
max

δ : δ≤τ−(1)∧ln
and d(εδ,π̂)≤η

Sδ > tn

)
.

Furthermore, for a = (i, j) ∈ I let

q(a, x, y) = P(Ta = 0,Xi = x,Yj = y).
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Using the Markov property we find that the conditional probability of the event
(maxδ:δ≤�(a) δεa,δ(f ) > tn), conditionally on (Ta = 0,Xi = x,Yj = y), is smaller
than p(n, x, y) because �(a) is restricted by the boundaries of the score matrix.
Thus

P

(
Ta = 0, max

δ:δ≤�(a)
δεa,δ(f ) > tn

)
≤ ∑

x,y∈E

p(n, x, y)q(a, x, y),(56)

which by (23) gives

E(Cn(tn)) ≤ ∑
x,y∈E

p(n, x, y)
∑
a∈I

q(a, x, y).

With Ĩ = {(i, j) ∈ I |i, j ≤ n − ln} we find for a = (i, j) ∈ Ĩ , by conditioning on
the event (Ta = 0,Xi = x,Yj = y), that

P(Va = 1) = ∑
x,y∈E

p̃(n, x, y)q(a, x, y)

and hence ∑
a∈Ĩ

E(Va) = ∑
x,y∈E

p̃(n, x, y)
∑
a∈Ĩ

q(a, x, y).

Since by construction
∑

a∈I Va ≤ Cn(tn) we get the following chain of inequal-
ities:∑

x,y∈E

p̃(n, x, y)
∑
a∈Ĩ

q(a, x, y) ≤ ∑
a∈I

E(Va)

≤ E(Cn(tn)) ≤ ∑
x,y∈E

p(n, x, y)
∑
a∈I

q(a, x, y).

We are done once we have shown that the lower and upper bounds both behave as
exp(−x + xn). To this end, first note that by (19)

p(n, x, y) exp(θ∗
tn�) → e(x, y),

for n → ∞ and as a consequence of (18), essentially considering the score matrix
one diagonal at the time, we find that

1

n2

∑
a∈I

q(a, x, y) → ν(x, y)

µ−

for n → ∞. This gives that

exp(x − xn)
∑

x,y∈E

p(n, x, y)
∑
a∈I

q(a, x, y)

= 1

K∗
∑

x,y∈E

p(n, x, y) exp(θ∗
tn�) n−2
∑
a∈I

q(a, x, y)

→ 1

K∗µ−
∑

x,y∈E

e(x, y)ν(x, y) = 1
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for n → ∞.
Regarding the lower bound, we observe that

p̃(n, x, y) ≤ p(n, x, y)

≤ p̃(n, x, y) + P
(
τ−(1) ≥ ln

) + P
(∃ δ ≤ ln :Sδ > tn, d(εδ, π̂) > η

)
.

Since l−1
n logn → 0 for n → ∞ we conclude from (53) that P(τ−(1) ≥ ln) =

o(exp(θ∗tn)). For the last probability on the right-hand side above we first observe
that if Sδ > tn, then necessarily δ ≥ ‖f ‖−1∞ tn. Thus using (54) and that n−1ln → 0
for n → ∞ we see that

P
(∃ δ ≤ ln :Sδ > tn, d(εδ, π̂) > η

) ≤ ln exp
(−(

θ∗ + c(η)‖f ‖−1∞
)
tn

)
= o(exp(θ∗tn)).

Hence

p̃(n, x, y) exp(θ∗
tn�) → e(x, y),

for n → ∞. Since n−1ln → 0 we also have that

n−2
∑
a∈Ĩ

q(a, x, y) → ν(x, y)

µ−

for n → ∞. By an argument similar to that above

exp(x − xn)
∑

x,y∈E

p̃(n, x, y)
∑
a∈Ĩ

q(a, x, y) → 1

for n → ∞, and this completes the proof. �

LEMMA 5.16. With (tn)n≥1 and (ln)n≥1 chosen as in Lemma 5.15, assuming
in addition that

lim
n→∞n−εln = 0

for all ε > 0, then under the assumptions in Theorem 3.1, the conditions in Theo-
rem 4.1 are fulfilled for some η > 0 with

λn = exp(−x + xn),

that is, ∥∥∥∥∥D
(∑

a∈I

Va(tn, ln, η)

)
− Poi

(
exp(−x + xn)

)∥∥∥∥∥→ 0.
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PROOF. We define the neighborhood of strong dependence, Ba for a ∈ I , as
follows. Define for a = (i, j) ∈ I

B1
a = {(k,m) ∈ I ||k − i| ≤ 2ln}, B2

a = {(k,m) ∈ I ||m − j | ≤ 2ln},
and Ba = B1

a ∪ B2
a .

Note that (36) provides the bound E(Va) ≤ K exp(−θ∗tn), and since |I | = n2

and |Ba| ≤ 4nln, then ∑
a∈I,b∈Ba

E(Va)E(Vb) ≤ K ′lnn−1 → 0

for n → ∞. This shows that (26) holds.
We prove that (27) is fulfilled by splitting the set Ba into three disjoint sets and,

depending on the set, give a bound of E(VaVb) for b in each of these sets. For
a ∈ I let

Ba = Ca ∪ D1
a ∪ D2

a

with Ca , D1
a and D2

a being the disjoint sets

Ca = B1
a ∩ B2

a , D1
a = B1

a\Ca, D2
a = B2

a\Ca.

Consider the case b ∈ Ca and b 	= a. Using (32) together with Lemma 5.11 we
can find an ε > 0 such that

E(VaVb) ≤ l2
nK exp

(−θ∗(1 + ε)tn
)
.

Hence, observing that
∑

a∈I |Ca| ≤ 16l2
nn

2,∑
a∈I,b∈Ca,b 	=a

E(VaVb) ≤ K ′l4
nn

−2ε → 0

for n → ∞.
For b ∈ D1

a use (32) together with Corollary 5.4, which applies due to (12), to
find η, ε,K > 0 such that

E(VaVb) ≤ Kl2
n exp

(−(3/2 + ε)θ∗tn
)
.

Since |D1
a| ≤ 4lnn we conclude that∑

a∈I,b∈D1
a

E(VaVb) ≤ K ′l3
nn

−3ε → 0

for n → ∞. The same bound is obtainable for b ∈ D2
a (cf. the comment after

Corollary 5.4), and all in all we conclude that (27) is fulfilled.
The two-dimensional process (Xn,Yn)n≥1 is a stationary, irreducible Markov

chain on a finite state space, hence we can extend it to a doubly infinite, stationary
process (Xn,Yn)n∈Z, which is exponentially β-mixing. The β-mixing coefficients
therefore satisfy

β(n) ≤ K exp(−γ n)
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for some constants K,γ > 0. For a = (i, i) ∈ I we define I1 = (−∞, i − ln],
I2 = [i + 1, i + ln], and I3 = [i + 2ln + 1,∞), for which d(I1 ∪ I3, I2) = ln + 1.
With I = I1 ∪ I3 and J = I2, then clearly Fa ⊆ FI = σ(Xn,Yn|n ∈ I1 ∪ I3) and Va

is measurable w.r.t. FJ = σ(Xn,Yn|n ∈ I2). By Lemmas 5.12 and 5.13 it follows
that

E
∣∣E(Va|Fa) − E(Va)

∣∣ ≤ 2α(FI ,FJ ) ≤ 6β(ln + 1) ≤ K ′ exp(−γ ln).

For nondiagonal a = (i, j) ∈ I we can shift the X-process by stationarity to reduce
the problem to the previous one and thus to obtain the same bound. This bound
implies that ∑

a∈I

E
∣∣E(Va|Fa) − E(Va)

∣∣ ≤ K ′n2 exp(−γ ln) → 0

for n → ∞. This shows that (28) holds, and combining the bounds obtained in this
proof with Lemma 5.15 we see that Theorem 4.1 gives the result. �

REMARK 5.17. We have a little flexibility left in the choice of (ln)n≥1. It does
not matter how we choose this sequence precisely, as it is only an intermediate,
technical necessity for the proof. We just need to make sure that a sequence can be
chosen with the desired properties—and this is indeed the case.

FINISHING THE PROOF OF THEOREM 3.1. Having proved Lemma 5.16 we
only need to verify (24) according to Corollary 4.2. To this end we note that by
construction

∑
a∈I Va ≤ Cn(tn), hence

P

(∑
a∈I

Va 	= Cn(tn)

)
≤ E(Cn(tn)) − ∑

a∈I

EVa → 0

for n → ∞ by Lemma 5.15. �

6. Concluding remarks. As mentioned in the Introduction, the result is a
generalization of that obtained by [6] for aligning independent i.i.d. sequences.
The overall strategy of constructing a counting variable that approximates Cn(t),
and whose asymptotic behavior can be derived from [2], Theorem 1, is identical
to the strategy employed in [6], though we have chosen an approximation whose
relation to Cn(t) seems more obvious. We have also chosen to use exponential
change of measure arguments to obtain most of the needed inequalities, whereas
Dembo, Karlin and Zeitouni [6] rely more on combinatorial and large deviation
inequalities.

One major challenge was to find a appropriate generalization of condition (E′)
in [6] for the i.i.d. case. First the condition given by (22) was obtained directly,
but this condition is not able to completely retain the i.i.d. case. Fortunately the
referees insisted that another attempt should be made to obtain the correct gener-
alization of (E′). As it turned out, it is essential in the construction of the variables
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Va to require that the pair-empirical measure is close to π̂ . Although this does not
affect the asymptotic behavior of the expectations E(Va), it does provide bounds,
as a result of Lemma 5.4, on the expectations E(VaVb) that seem unobtainable
otherwise.

Another major challenge was the generalization of the part of the proof of
Lemma 2 in [6] called case (c), where a smart permutation argument relying on
exchangeability of i.i.d. variables was used. The solution presented here, which
works for Markov chains, is an application of the Azuma–Hoeffding inequality for
martingales as described in Sections 5.4 and 5.5.

Besides this an extra argument based on mixing inequalities was needed in order
to take care of the β4,n-term, which was not present in the i.i.d. case.

Acknowledgment. Thanks are due to the referees for useful comments and
for encouraging me to find a natural extension in the Markov setup of condition
(E′) in [6].
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