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Abstract

A new kind of drift function based on the Laplace transform of rotation symmetric measures on Rk is
introduced and applied to the class of the so-called a�ne Markov chains. An example is given where this
approach provides a better criterion for geometric drift than standard drift functions.
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1. Introduction

Let (E; E) be the state space and let P be a Markov kernel on E. P is called V -geometrically
ergodic if V :E → [1;∞[ is a measurable function and if there exist constants R and �¡ 1 such
that

‖Pn(x; ·)− �‖V 6RV (x)�n;

where � is the (necessarily unique) invariant probability measure. The V -norm is de;ned in Meyn
and Tweedie (1993). To verify geometric ergodicity one can use the so-called drift criterion. Hence
if P is ’-irreducible, aperiodic and has V -geometric drift towards a small set with drift function
V :E → [1;∞[, i.e. if there exist constants b and �¡ 1 and a small set C such that

PV (x) :=
∫

V (y)P(x; dy)6 �V (x) + b1C(x); (1)

then P is V -geometrically ergodic (Meyn and Tweedie, 1993, Theorem 15.0.1).

∗ Corresponding author.
E-mail address: richard@stat.ku.dk (N.R. Hansen).

0167-7152/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0167-7152(02)00288-2

mailto:richard@stat.ku.dk


290 N.R. Hansen, E. Hansen / Statistics & Probability Letters 60 (2002) 289–295

The veri;cation of irreducibility and aperiodicity is sometimes trivial but can also be very di4cult
indeed. Results on this issue can be found in, for instance, Meyn and Tweedie (1993), Mokkadem
(1990) or Doukhan (1994). We will not discuss how to verify irreducibility or aperiodicity but
instead focus on a su4cient criterion for the drift inequality (1) to hold.

The main result is Theorem 2, which states that for E = Rk geometric drift towards a compact
set can be achieved if the Markov chain on average tends to move towards the center of the space
when it is outside some compact set. We need several assumptions to prove this result. First of all
we place the result in the frame of what we call a4ne Markov chains. Furthermore, we need the
existence of some exponential moments of the transition probabilities and it is also assumed that
the conditional variance is bounded. Though the a4ne Markov chain structure is convenient and
the existence of exponential moments is necessary for the approach given in this paper, it is the
bounded conditional variance that is believed to be essential for a result like Theorem 2 to hold.
Finally we illustrate in Example 4 how Theorem 2 gives stronger results than what can be achieved
by another standard drift function.

2. A�ne Markov chains

We will consider a special class of Markov chains on Rk , which have a nice and interpretable
structure. On Rk we denote the usual inner product by 〈·; ·〉 and the related 2-norm by |x|2 = 〈x; x〉.
Also let M (k) denote the set of k × k-matrices.

De�nition 1. A Markov chain (Xn)n∈N0 on Rk is a4ne if there exist measurable maps � :Rk → Rk

and � :Rk → M (k) and a sequence of iid stochastic variables (Wn)n∈N independent of X0 such that

Xn+1 = �(Xn) + �(Xn)Wn+1 (2)

for n∈N0.

The sequence (Wn)n∈N is called the innovation sequence and the distribution of W1 (and hence
of all the Wn’s), the innovation distribution. If � is the innovation distribution we can identify the
transition probabilities as the Markov kernel P given by

P(x; ·) = A(x)(�); (3)

where A(x) :Rk → Rk is the a4ne map A(x)(y)=�(x)+�(x)y. Thus, if we de;ne an a�ne Markov
kernel to be a kernel of form (3) for some �, � and a probability measure �, we have that the
transition probabilities for an a4ne Markov chain are given by an a4ne Markov kernel.

If � is normalized, i.e. satis;es
∫
x�(dx) = 0 and

∫
xxT�(dx) = I , which is often assumed, it is

clear that E(Xn+1|Xn = x) = �(x) and we also ;nd that V (Xn+1|Xn = x) =�(x)�(x)T. This gives the
obvious interpretation of � and � as conditional mean and scale functions. In this paper we will,
however, only need to assume that � is centered, i.e.

∫
x�(dx) = 0.

Several classes of Markov chains, some of them being more general than the a4ne class introduced
here, have been considered in the literature. For instance, chapter 7 in Meyn and Tweedie (1993)
deals with nonlinear state space models in general, TjHstheim (1990) considers a4ne Markov chains
with constant � and Tong (1990) considers a class of Markov chains similar to but more general than
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the a4ne Markov chains, where the dynamic of the Markov chain is separated into a deterministic
term and a noise term. The a4ne class discussed here is easy to handle and interpret and includes
many of the Markov chains being used in applications, like AR-models (Meyn and Tweedie, 1993),
ARCH-models (Hansen and Rahbek, 1998; Engle and Kroner, 1995) and SETAR-models (Tong,
1990; Meyn and Tweedie, 1993).

2.1. Geometric drift for a�ne Markov chains

If we can verify ’-irreducibility and aperiodicity, then we can show geometric ergodicity by
showing that the drift inequality is ful;lled for some drift function. One example of a simple but
useful drift function is V (x)= exp(s|x|) for some suitable s¿ 0. To use this drift function, we need
the innovation distribution to have light tails in the sense that∫

exp(s|x|)�(dx)¡∞ (4)

for some s¿ 0. If we assume that � is a bounded map and ;x s¿ 0 small enough, then with

�(s) = sup
x

∫
exp(s|�(x)y|)�(dy)∈ [1;∞];

we get that

PV (x) =
∫

exp(s|�(x) + �(x)y|)�(dy)6V (x)�(s) exp(s(|�(x)| − |x|));

hence if � is bounded on the compact sets this shows that we have geometric drift with drift function
V (x) = exp(s|x|) if

lim sup
|x|→∞

|�(x)| − |x|¡− 1
s
log(�(s)): (5)

The constant on the right-hand side is negative and as shown in Example 4 it may be strictly
bounded away from 0.

Another class of widely used drift functions is 1 + |x|s for s¿ 0—especially, the case s = 2 is
easy to use. These drift functions tend to give weaker results but are applicable to a wider class of
Markov chains, for instance, the ARCH-models with unbounded � (Hansen and Rahbek, 1998). One
could also try to use a drift function like s �→ exp(s|x|2) instead, but then we need the innovation
distribution to have even faster decaying tails. See also Theorem 16.3.1 in Meyn and Tweedie (1993)
for the general possibility of using exp(sV (x)) as a drift function for some function V .

3. Laplace transforms as drift functions

In this section we show that by choosing another drift function, we can substitute the (in general
strictly negative) constant in (5) with 0 without assuming more than the integrability condition (4).
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Let � be a rotation symmetric probability measure on Rk with compact support and let V� :Rk → R
be the Laplace transform of �, i.e.

V�(x) =
∫
Rk

exp(〈y; x〉)�(dy): (6)

If we ;x a unit vector e and for each x∈Rk ;nd a rotation Ox such that Oxx = |x|e, then because
� is rotation symmetric we get that

V�(x) =
∫
Rk

exp(|x|〈y; e〉)�(dy) =
∫
R
exp(|x|t)!(dt)

with ! being the transformation of � under the map y �→ 〈y; e〉.
For the result in this paper it is su4cient to consider a special family of rotation symmetric

measures !s for s¿ 0 with !s being the probability measure concentrated on the sphere of radius
s and invariant under rotations. This is the so-called surface measure or Lebesgue measure on the
sphere normalized to a probability measure. In this case, we write Vs for V!s and with !=!1 and
Sk−1 denoting the unit sphere in Rk we have that

Vs(x) =
∫
Rk

exp(〈y; x〉)!s(dy) =
∫
Sk−1

exp(s〈y; x〉)!(dy) (7)

=
∫ 1

−1
exp(s|x|t)!(dt): (8)

Note that in the one-dimensional case Vs(x)=cosh(sx). For the application of Vs as a drift function,
the fact that it has the form of a Laplace transform as given by (7) and not just the integral form
given by (8) will play an important role.

Consider an a4ne Markov kernel P with innovation distribution �. We will assume that � satis;es
(4) for some s0 ¿ 0 and we de;ne the map

 (s; y) =
∫

exp(s〈y; x〉)�(dx)

for (s; y)∈ [0; s0]×B(0; 1), with B(0; 1)={x∈Rk | |x|6 1} being the closed unit ball. By decreasing
s0 we can increase B(0; 1) to be any closed ball, and hence we can assume that  is de;ned on
[0; s0]× B(0; d) for some suitable large d and su4ciently small s0 if necessary.

Theorem 2. Let P be an a�ne Markov kernel with � satisfying (4). Assume that � is centered,
that � is bounded, that � is bounded on the compact sets and that

lim sup
|x|→∞

|�(x)| − |x|¡ 0 (9)

holds, then P has geometric drift towards a compact set with drift function Vs̃ for some suitable
s̃¿ 0.
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Proof. By Tonelli and the integral transformation theorem we get

PVs(x) =
∫

Vs(z)P(x; dz)

=
∫ ∫

Sk−1
exp(s〈y; z〉)!(dy)P(x; dz)

=
∫
Sk−1

∫
exp(s〈y; �(x) + �(x)z〉)�(dz)!(dy)

=
∫
Sk−1

exp(s〈y; �(x)〉)
∫

exp(s〈�(x)Ty; z〉)�(dz)!(dy)

=
∫
Sk−1

exp(s〈y; �(x)〉) (s; �(x)Ty)!(dy)

for s¿ 0 su4ciently small.
Let K = {�(x)y∈Rk | x∈Rk and y∈ Sk−1} be the image of the map (x; y) �→ �(x)y. This

set is bounded since � is bounded and therefore K is contained in a compact, convex box Br =
{x∈Rk | |x|∞6 r} for some r ¿ 0, with |x|∞ = maxi=1; :::; k |xi| being the max-norm. Assume now
that s0 is chosen su4ciently small such that  is de;ned on [0; s0]× B(0; d) with Br ⊆ B(0; d).
The box Br has exactly 2k extreme points, which we will denote by z1; : : : ; z2k , and the map

z �→  (s; z)

for ;xed s6 s0 is convex, hence it attains its maximal value over a compact, convex set in one of
the extreme points. With

 ̃ (s) = max
j=1; ::: ; 2k

 (s; zj);

we therefore get that  (s; z)6  ̃ (s) for all z ∈Br ⊇ K . This gives us

PVs(x)6  ̃ (s)
∫
Sk−1

exp(s〈y; �(x)〉)!(dy) =  ̃ (s)
∫ 1

−1
exp(s|�(x)|t)!(dt):

Now assume that R is given such that for |x|¿R we have |�(x)|6− ,+ |x| for some ,¿ 0. Put

’j(s) =  (s; zj) exp(−s,) =
∫

exp(s(〈zj; x〉 − ,))�(dx)

for j = 1; : : : ; 2k , then ’j is convex and diOerentiable at 0 with

’′
j(0) =

∫
〈zj; x〉�(dx)− ,=−,;

since � is centered, and ’j(0) = 1, it follows that we can ;nd sj ¿ 0 such that ’j(s)¡ 1 for all
s6 sj. With s̃=minj=1; :::;2k {sj}¿ 0, we get that

c =  ̃ (s̃) exp(−s̃,)¡ 1:
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The map u �→ ∫ 1
−1 exp(ut)!(dt) is increasing for u¿ 0, and therefore∫ 1

−1
exp(s̃|�(x)|t)!(dt)6

∫ 1

−1
exp(−s̃,t) exp(s̃|x|t)!(dt)

for |x|¿R and since t �→ exp(−s̃,t) is continuous on [− 1; 1], it follows from Lemma 3 that∫ 1
−1 exp(−s̃,t) exp(s̃|x|t)!(dt)∫ 1

−1 exp(s̃|x|t)!(dt)
→ exp(−s̃,)

for |x| → ∞. This shows that

PVs̃(x)
Vs̃(x)

6  ̃ (s̃)

∫ 1
−1 exp(−s̃,t) exp(s̃|x|t)!(dt)∫ 1

−1 exp(s̃|x|t)!(dt)
→  ̃ (s̃) exp(−s̃,) = c¡ 1

for |x| → ∞ and it follows that for ;xed �∈ (c; 1), we can choose an R0¿R, such that for |x|¿R0

we have
PVs̃(x)
Vs̃(x)

6 �:

Since � is bounded on compact sets, we have

PVs̃(x)6 �Vs̃(x) + b1B(0;R0)(x)

with b= sup|x|6R0
PVs̃(x)¡∞.

The following lemma was used in the theorem. The proof is elementary and is omitted.

Lemma 3. If ! is a probability measure on [− 1; 1] and �h is the probability measure de8ned by

�h(B) =
1∫

exp(ht)!(dt)

∫
B
exp(ht)!(dt) (10)

for h∈R, then if !([q; 1])¿ 0 for all q¡ 1, �h converges weakly to the Dirac measure �1 with
mass at the point 1 for h → ∞.

Example 4 (SETAR-model). Consider the a4ne Markov chain on Rk with �(x) = x − 1n(x) for
1∈R and n(x) = x=|x|. Let �(x) = 3I for some 3¿ 0, and assume that the innovation distribution �
satis;es (4). In the one-dimensional case, this Markov chain is a special case of the SETAR-model
well known to be ergodic for 1¿ 0 (Meyn and Tweedie, 1993).
First we try to use the drift function V (x)=exp(s|x|). By Jensens inequality we ;nd, with notation

as in Section 2.1, that
1
s
log �(s)¿ 3

∫
|y|�(dy):

Put 4=3
∫ |y|�(dy), which is strictly positive if � is not concentrated at 0, then since 1=s log �(s) → 4

for s → 0 it follows that (5) is ful;lled for some s¿ 0 if and only if

lim sup
|x|→∞

|�(x)| − |x|=−1¡− 4:
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Thus, using the standard exponential drift function the best result obtainable is that the SETAR-model
has geometric drift towards a compact set if 1¿4.

However, using Theorem 2, we can now see that the Markov chain has geometric drift to-
wards a compact set if just 1¿ 0. The result is easy to generalize to other models like the general
SETAR-models.

4. Concluding remarks

Under the assumption of su4ciently light-tailed distributions, we have presented an approach to
show geometric drift and thereby geometric ergodicity for the class of multidimensional a4ne Markov
chains. The result obtained is useful and appealing to the intuition, and when applying the result to
SETAR-models we avoid any arti;cial restrictions on the parameters. In the one-dimensional case,
the result is easily established using a drift function like V (x) = cosh(sx), and we have been able
to generalized this to the multidimensional case by using a kind of generalized hyperbolic cosine.
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